Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 197
Filter
1.
Exp Mol Med ; 55(6): 1247-1257, 2023 06.
Article in English | MEDLINE | ID: mdl-37332046

ABSTRACT

Sarcomas constitute a heterogeneous group of rare and difficult-to-treat tumors that can affect people of all ages, representing one of the most common forms of cancer in childhood and adolescence. Little is known about the molecular entities involved in sarcomagenesis. Therefore, the identification of processes that lead to the development of the disease may uncover novel therapeutic opportunities. Here, we show that the MEK5/ERK5 signaling pathway plays a critical role in the pathogenesis of sarcomas. By developing a mouse model engineered to express a constitutively active form of MEK5, we demonstrate that the exclusive activation of the MEK5/ERK5 pathway can promote sarcomagenesis. Histopathological analyses identified these tumors as undifferentiated pleomorphic sarcomas. Bioinformatic studies revealed that sarcomas are the tumors in which ERK5 is most frequently amplified and overexpressed. Moreover, analysis of the impact of ERK5 protein expression on overall survival in patients diagnosed with different sarcoma types in our local hospital showed a 5-fold decrease in median survival in patients with elevated ERK5 expression compared with those with low expression. Pharmacological and genetic studies revealed that targeting the MEK5/ERK5 pathway drastically affects the proliferation of human sarcoma cells and tumor growth. Interestingly, sarcoma cells with knockout of ERK5 or MEK5 were unable to form tumors when engrafted into mice. Taken together, our results reveal a role of the MEK5/ERK5 pathway in sarcomagenesis and open a new scenario to be considered in the treatment of patients with sarcoma in which the ERK5 pathway is pathophysiologically involved.


Subject(s)
MAP Kinase Kinase 5 , Sarcoma , Animals , Humans , Mice , MAP Kinase Kinase 5/genetics , MAP Kinase Kinase 5/metabolism , MAP Kinase Signaling System , Prognosis , Sarcoma/genetics
2.
Cells ; 12(8)2023 04 13.
Article in English | MEDLINE | ID: mdl-37190064

ABSTRACT

Oxidative stress regulates many physiological and pathological processes. Indeed, a low increase in the basal level of reactive oxygen species (ROS) is essential for various cellular functions, including signal transduction, gene expression, cell survival or death, as well as antioxidant capacity. However, if the amount of generated ROS overcomes the antioxidant capacity, excessive ROS results in cellular dysfunctions as a consequence of damage to cellular components, including DNA, lipids and proteins, and may eventually lead to cell death or carcinogenesis. Both in vitro and in vivo investigations have shown that activation of the mitogen-activated protein kinase kinase 5/extracellular signal-regulated kinase 5 (MEK5/ERK5) pathway is frequently involved in oxidative stress-elicited effects. In particular, accumulating evidence identified a prominent role of this pathway in the anti-oxidative response. In this respect, activation of krüppel-like factor 2/4 and nuclear factor erythroid 2-related factor 2 emerged among the most frequent events in ERK5-mediated response to oxidative stress. This review summarizes what is known about the role of the MEK5/ERK5 pathway in the response to oxidative stress in pathophysiological contexts within the cardiovascular, respiratory, lymphohematopoietic, urinary and central nervous systems. The possible beneficial or detrimental effects exerted by the MEK5/ERK5 pathway in the above systems are also discussed.


Subject(s)
Antioxidants , Mitogen-Activated Protein Kinase 7 , Antioxidants/metabolism , MAP Kinase Kinase 5/genetics , MAP Kinase Kinase 5/metabolism , Mitogen-Activated Protein Kinase 7/genetics , Mitogen-Activated Protein Kinase 7/metabolism , Oxidative Stress , Reactive Oxygen Species , Humans , Animals
3.
Clin Transl Med ; 13(4): e1217, 2023 04.
Article in English | MEDLINE | ID: mdl-37029785

ABSTRACT

BACKGROUND: The dismal prognosis of advanced ovarian cancer calls for the development of novel therapies to improve disease outcome. In this regard, we set out to discover new molecular entities and to assess the preclinical effectiveness of their targeting. METHODS: Cell lines, mice and human ovarian cancer samples were used. Proteome profiling of human phosphokinases, in silico genomic analyses, genetic (shRNA and CRISPR/Cas9) and pharmacological strategies as well as an ex vivo human preclinical model were performed. RESULTS: We identified WNK1 as a highly phosphorylated protein in ovarian cancer and found that its activation or high expression had a negative impact on patients' survival. Genomic analyses showed amplification of WNK1 in human ovarian tumours. Mechanistically, we demonstrate that WNK1 exerted its action through the MEK5-ERK5 signalling module in ovarian cancer. Loss of function, genetic or pharmacological experiments, demonstrated anti-proliferative and anti-tumoural effects of the targeting of the WNK1-MEK5-ERK5 route. Additional studies showed that this pathway modulated the anti-tumoural properties of the MEK1/2 inhibitor trametinib. Thus, treatment with trametinib activated the WNK1-MEK5-ERK5 route, raising the possibility that this effect may limit the therapeutic benefit of ERK1/2 targeting in ovarian cancer. Moreover, in different experimental settings, including an ex vivo patient-derived model consisting of ovarian cancer cells cultured with autologous patient sera, we show that inhibition of WNK1 or MEK5 increased the anti-proliferative and anti-tumour efficacy of trametinib. CONCLUSIONS: The present study uncovers the participation of WNK1-MEK5-ERK5 axis in ovarian cancer pathophysiology, opening the possibility of acting on this pathway with therapeutic purposes. Another important finding of the present study was the activation of that signalling axis by trametinib, bypassing the anti-tumoural efficacy of this drug. That fact should be considered in the context of the use of trametinib in ovarian cancer.


Subject(s)
MAP Kinase Kinase 5 , Ovarian Neoplasms , Humans , Animals , Mice , Female , MAP Kinase Kinase 5/genetics , MAP Kinase Kinase 5/metabolism , MAP Kinase Signaling System , Signal Transduction , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , WNK Lysine-Deficient Protein Kinase 1/genetics , WNK Lysine-Deficient Protein Kinase 1/metabolism
4.
Cell Mol Life Sci ; 79(10): 524, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36123565

ABSTRACT

Endometrial cancer (EC) is the most common type of gynecologic cancer in women of developed countries. Despite surgery combined with chemo-/radiotherapy regimens, overall survival of patients with high-risk EC tumors is poor, indicating a need for novel therapies. The MEK5-ERK5 pathway is activated in response to growth factors and to different stressors, including oxidative stress and cytokines. Previous evidence supports a role for the MEK5-ERK5 pathway in the pathology of several cancers. We investigated the role of ERK5 in EC. In silico analysis of the PanCancer Atlas dataset showed alterations in components of the MEK5-ERK5 pathway in 48% of EC patients. Here, we show that ERK5 inhibition or silencing decreased EGF-induced EC cell proliferation, and that genetic deletion of MEK5 resulted in EC impaired proliferation and reduced tumor growth capacity in nude mice. Pharmacologic inhibition or ERK5 silencing impaired NF-kB pathway in EC cells and xenografts. Furthermore, we found a positive correlation between ERK5 and p65/RELA protein levels in human EC tumor samples. Mechanistically, genetic or pharmacologic impairment of ERK5 resulted in downregulation of NEMO/IKKγ expression, leading to impaired p65/RELA activity and to apoptosis in EC cells and xenografts, which was rescued by NEMO/IKKγ overexpression. Notably, ERK5 inhibition, MEK5 deletion or NF-kB inhibition sensitized EC cells to standard EC chemotherapy (paclitaxel/carboplatin) toxicity, whereas ERK5 inhibition synergized with paclitaxel to reduce tumor xenograft growth in mice. Together, our results suggest that the ERK5-NEMO-NF-κB pathway mediates EC cell proliferation and survival. We propose the ERK5/NF-κB axis as new target for EC treatment.


Subject(s)
Endometrial Neoplasms , NF-kappa B , Animals , Carboplatin , Cell Proliferation , Cytokines/metabolism , Endometrial Neoplasms/genetics , Epidermal Growth Factor/metabolism , Female , Humans , MAP Kinase Kinase 5/genetics , MAP Kinase Kinase 5/metabolism , MAP Kinase Signaling System , Mice , Mice, Nude , NF-kappa B/genetics , NF-kappa B/metabolism , Paclitaxel/pharmacology , Paclitaxel/therapeutic use
5.
J Cancer Res Clin Oncol ; 148(12): 3257-3266, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35713705

ABSTRACT

PURPOSE: This study was designed to evaluate the role and expression of MEK5 signalling in clear cell renal cell carcinoma (ccRCC) and to determine the relevance of MEK5 and mTOR signalling in ccRCC. METHODS: The expression of MEK5 was compared between ccRCC and normal tissues using the ONCOMINE and TCGA databases. MEK5 expression was evaluated in 14 human ccRCC samples. CCK8, wound-healing, and clone formation assays were performed to examine the cell proliferation, migration, and clone formation abilities of ccRCC cells treated with MEK5 and the inhibitor BIX02189. Furthermore, Western blotting was performed to verify the regulation and influence of MEK5 on the mTOR signalling pathway. Finally, a murine subcutaneous tumour model was constructed, and the effect and safety of BIX02189 were evaluated in vivo. RESULTS: The ONCOMINE and TCGA databases indicated that MEK5 expression in ccRCC was significantly higher than that in normal tissues, which was further confirmed in clinical specimens. MEK5 knockdown markedly inhibited ccRCC cell proliferation, colony formation, and migration, whereas MEK5 overexpression resulted in the opposite results. Western blotting revealed that overexpression of MEK5 could further activate the mTOR signalling pathway. Moreover, the MEK5 inhibitor BIX02189 significantly inhibited cell proliferation, arrested the cell cycle in the G0/G1 phase, induced apoptosis, and effectively inhibited cell migration and clone formation. BIX02189 also showed an excellent antitumor effect and a favourable safety profile in murine models. CONCLUSIONS: MEK5 expression was aberrantly increased in ccRCC, which activated the mTOR signalling pathway and regulated cell proliferation, cell cycle progression, migration, and clone formation in ccRCC. Targeted inhibition of MEK5 represents a promising new strategy in patients with ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , MAP Kinase Kinase 5 , Animals , Humans , Mice , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , TOR Serine-Threonine Kinases/metabolism , MAP Kinase Kinase 5/metabolism
6.
J Cell Biol ; 221(7)2022 07 04.
Article in English | MEDLINE | ID: mdl-35695893

ABSTRACT

Atherosclerosis, the major cause of myocardial infarction and stroke, results from converging inflammatory, metabolic, and biomechanical factors. Arterial lesions form at sites of low and disturbed blood flow but are suppressed by high laminar shear stress (LSS) mainly via transcriptional induction of the anti-inflammatory transcription factor, Kruppel-like factor 2 (Klf2). We therefore performed a whole genome CRISPR-Cas9 screen to identify genes required for LSS induction of Klf2. Subsequent mechanistic investigation revealed that LSS induces Klf2 via activation of both a MEKK2/3-MEK5-ERK5 kinase module and mitochondrial metabolism. Mitochondrial calcium and ROS signaling regulate assembly of a mitophagy- and p62-dependent scaffolding complex that amplifies MEKK-MEK5-ERK5 signaling. Blocking the mitochondrial pathway in vivo reduces expression of KLF2-dependent genes such as eNOS and inhibits vascular remodeling. Failure to activate the mitochondrial pathway limits Klf2 expression in regions of disturbed flow. This work thus defines a connection between metabolism and vascular inflammation that provides a new framework for understanding and developing treatments for vascular disease.


Subject(s)
Endothelial Cells , Kruppel-Like Transcription Factors , Mitochondria , Stress, Mechanical , Atherosclerosis/pathology , CRISPR-Cas Systems , Calcium Signaling , Endothelial Cells/metabolism , Humans , Inflammation , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , MAP Kinase Kinase 5 , MAP Kinase Kinase Kinase 2 , MAP Kinase Kinase Kinase 3 , Mitochondria/metabolism , Mitogen-Activated Protein Kinase 7/genetics , Mitogen-Activated Protein Kinase 7/metabolism , Reactive Oxygen Species
7.
Bioengineered ; 13(5): 12888-12898, 2022 05.
Article in English | MEDLINE | ID: mdl-35609325

ABSTRACT

The mitogen-activated protein kinase kinase 5 (MEK5)/extracellular signal-regulated kinase 5 (ERK5) axis has been reported to promote tumorigenesis in breast cancer (BC). Therefore, targeting the MEK5/ERK5 axis is a potential strategy against BC. BAY-885 is a novel inhibitor of ERK5; however, to date, its anti-tumor effects in BC have not been investigated. This study aimed to assess the anti-tumor effects of BAY-885 in BC and identify its underlying mechanisms of action. Unlike other ERK5 inhibitors, which frequently failed to mimic ERK5 genetic ablation phenotypes, the BAY-885 treatment effectively recapitulated ERK5 depletion effects in BC cells. Results revealed that BAY-885 affected the viability and induced apoptosis in BC cells. Moreover, the BAY-885-mediated downregulation of myeloid cell leukemia-1 (Mcl-1) and upregulation of Bim were dependent on ERK5 inhibition. Furthermore, BAY-885 triggered activation of endoplasmic reticulum (ER) stress, which further led to the upregulation of Bim and downregulation of Mcl-1. ER stress was induced in an ERK5 inhibition-dependent manner. These findings suggested that BAY-885 induced apoptosis in BC cells via ER stress/Mcl-1/Bim axis, suggesting that BAY-885 may serve as a therapeutic agent for BC.


Subject(s)
Breast Neoplasms , MAP Kinase Kinase 5 , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Breast Neoplasms/metabolism , Endoplasmic Reticulum Stress , Female , Humans , MAP Kinase Kinase 5/genetics , MAP Kinase Kinase 5/metabolism
8.
Int J Mol Sci ; 22(20)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34681917

ABSTRACT

Malignant melanoma is the deadliest skin cancer, with a poor prognosis in advanced stages. We recently showed that the extracellular signal-regulated kinase 5 (ERK5), encoded by the MAPK7 gene, plays a pivotal role in melanoma by regulating cell functions necessary for tumour development, such as proliferation. Hedgehog-GLI signalling is constitutively active in melanoma and is required for proliferation. However, no data are available in literature about a possible interplay between Hedgehog-GLI and ERK5 pathways. Here, we show that hyperactivation of the Hedgehog-GLI pathway by genetic inhibition of the negative regulator Patched 1 increases the amount of ERK5 mRNA and protein. Chromatin immunoprecipitation showed that GLI1, the major downstream effector of Hedgehog-GLI signalling, binds to a functional non-canonical GLI consensus sequence at the MAPK7 promoter. Furthermore, we found that ERK5 is required for Hedgehog-GLI-dependent melanoma cell proliferation, and that the combination of GLI and ERK5 inhibitors is more effective than single treatments in reducing cell viability and colony formation ability in melanoma cells. Together, these findings led to the identification of a novel Hedgehog-GLI-ERK5 axis that regulates melanoma cell growth, and shed light on new functions of ERK5, paving the way for new therapeutic options in melanoma and other neoplasms with active Hedgehog-GLI and ERK5 pathways.


Subject(s)
MAP Kinase Kinase 5/genetics , Melanoma/genetics , Mitogen-Activated Protein Kinase 7/genetics , Skin Neoplasms/genetics , Zinc Finger Protein GLI1/metabolism , Animals , Cell Line , Cell Proliferation , Cell Survival , Chromatin Immunoprecipitation , Gene Expression Regulation, Neoplastic , HEK293 Cells , Hedgehog Proteins/metabolism , Humans , MAP Kinase Kinase 5/metabolism , Melanoma/metabolism , Mice , Mitogen-Activated Protein Kinase 7/metabolism , NIH 3T3 Cells , Patched-1 Receptor/metabolism , Signal Transduction , Skin Neoplasms/metabolism , Melanoma, Cutaneous Malignant
9.
Nat Commun ; 12(1): 5253, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34489471

ABSTRACT

Genome-wide association studies (GWAS) have identified many disease-associated variants, yet mechanisms underlying these associations remain unclear. To understand obesity-associated variants, we generate gene regulatory annotations in adipocytes and hypothalamic neurons across cellular differentiation stages. We then test variants in 97 obesity-associated loci using a massively parallel reporter assay and identify putatively causal variants that display cell type specific or cross-tissue enhancer-modulating properties. Integrating these variants with gene regulatory information suggests genes that underlie obesity GWAS associations. We also investigate a complex genomic interval on 16p11.2 where two independent loci exhibit megabase-range, cross-locus chromatin interactions. We demonstrate that variants within these two loci regulate a shared gene set. Together, our data support a model where GWAS loci contain variants that alter enhancer activity across tissues, potentially with temporally restricted effects, to impact the expression of multiple genes. This complex model has broad implications for ongoing efforts to understand GWAS.


Subject(s)
Adipocytes/physiology , Enhancer Elements, Genetic , Genetic Pleiotropy , Obesity/genetics , Adipocytes/cytology , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/pathology , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/pathology , Genome-Wide Association Study , Gigantism/genetics , Gigantism/pathology , Heart Defects, Congenital/genetics , Heart Defects, Congenital/pathology , Humans , Hypothalamus/physiology , Intellectual Disability/genetics , Intellectual Disability/pathology , MAP Kinase Kinase 5/genetics , Neurons/cytology , Neurons/physiology , Polymorphism, Single Nucleotide , Protein Kinases/genetics , Quantitative Trait Loci , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Transcription Factors/genetics , Transcriptome
10.
Int J Mol Sci ; 22(14)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34299213

ABSTRACT

The MEK5/ERK5 mitogen-activated protein kinases (MAPK) cascade is a unique signaling module activated by both mitogens and stress stimuli, including cytokines, fluid shear stress, high osmolarity, and oxidative stress. Physiologically, it is mainly known as a mechanoreceptive pathway in the endothelium, where it transduces the various vasoprotective effects of laminar blood flow. However, it also maintains integrity in other tissues exposed to mechanical stress, including bone, cartilage, and muscle, where it exerts a key function as a survival and differentiation pathway. Beyond its diverse physiological roles, the MEK5/ERK5 pathway has also been implicated in various diseases, including cancer, where it has recently emerged as a major escape route, sustaining tumor cell survival and proliferation under drug stress. In addition, MEK5/ERK5 dysfunction may foster cardiovascular diseases such as atherosclerosis. Here, we highlight the importance of the MEK5/ERK5 pathway in health and disease, focusing on its role as a protective cascade in mechanical stress-exposed healthy tissues and its function as a therapy resistance pathway in cancers. We discuss the perspective of targeting this cascade for cancer treatment and weigh its chances and potential risks when considering its emerging role as a protective stress response pathway.


Subject(s)
Atherosclerosis/physiopathology , MAP Kinase Kinase 5/metabolism , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 7/metabolism , Animals , Atherosclerosis/metabolism , Humans , Neoplasms/enzymology , Neoplasms/metabolism
11.
Cancer Lett ; 519: 141-149, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34245854

ABSTRACT

The promising therapeutic efficacy of the third generation EGFR inhibitor, osimertinib (AZD9291), for the treatment of patients with EGFR-mutant non-small cell lung cancer (NSCLC) has been demonstrated in the clinic both as first-line and second line therapy. However, inevitable acquired resistance limits its long-term benefit to patients and is thus a significant clinical challenge. The current study focuses on studying the potential role of targeting MEK5-ERK5 signaling in overcoming acquired resistance to osimertinib. Osimertinib and other third generation EGFR inhibitors exerted a rapid and sustained suppressive effect on ERK5 phosphorylation primarily in EGFR-mutant NSCLC cell lines and lost this activity in some osimertinib-resistant cell lines. Osimertinib combined with either ERK5 or MEK5 inhibitors synergistically decreased the survival of osimertinib-resistant cell lines with enhanced induction of apoptosis primarily via augmenting Bim expression. Moreover, the combination effectively inhibited the growth of osimertinib-resistant xenografts in vivo. Together, these findings suggest the potential role of MEK5-ERK5 signaling in modulating development of acquired resistance to osimertinib and value of targeting this signaling as a potential strategy in overcoming acquired resistance to osimertinib and possibly other third generation EGFR inhibitors.


Subject(s)
Acrylamides/pharmacology , Aniline Compounds/pharmacology , Apoptosis/drug effects , Bcl-2-Like Protein 11/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , MAP Kinase Kinase 5/metabolism , Mitogen-Activated Protein Kinase 7/metabolism , Protein Kinase Inhibitors/pharmacology , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/metabolism , Humans , Lung Neoplasms/metabolism , Mice , Phosphorylation/drug effects , Signal Transduction/drug effects
12.
Aging (Albany NY) ; 13(12): 16088-16104, 2021 06 27.
Article in English | MEDLINE | ID: mdl-34176788

ABSTRACT

Traumatic brain injury (TBI) is a highly lethal event with a poor prognosis. Recovering residual neuronal function in the intermediate stage of TBI is important for treatment; however, neuroinflammation and neuronal apoptosis impede residual neuronal repair processes. Considering that hyperglycemia influences inflammatory processes and neuronal survival, we examined the effects of high glucose on neuroinflammation and neuronal death during the intermediate phase of TBI. Rat models of type 2 diabetes mellitus and/or TBI were developed and behaviorally assessed. Neurological function and cognitive abilities were impaired in TBI rats and worsened by type 2 diabetes mellitus. Histopathological staining and analyses of serum and hippocampal mRNA and protein levels indicated that neuroinflammation and apoptosis were induced in TBI rats and exacerbated by hyperglycemia. Hyperglycemia inhibited hippocampal mitogen-activated protein kinase kinase 5 (MEK5) phosphorylation in TBI rats. In vitro assays were used to assess inflammatory factor expression, apoptotic protein levels and neuronal survival after MEK5 activation in TBI- and/or high-glucose-treated neurons. MEK5/extracellular signal-regulated kinase 5 (ERK5) pathway activation reduced the inflammation, cleaved caspase-3 expression, Bax/Bcl-2 ratio and apoptosis of TBI neurons, even under high-glucose conditions. Thus, high glucose exacerbated neuroinflammation and apoptosis in the intermediate stage post-TBI by inhibiting the MEK5/ERK5 pathway.


Subject(s)
Apoptosis/drug effects , Brain Injuries, Traumatic/pathology , Disease Progression , Glucose/toxicity , Inflammation/pathology , Neurons/pathology , Animals , Brain Injuries, Traumatic/physiopathology , Cell Survival , Cognitive Dysfunction/complications , Cognitive Dysfunction/physiopathology , Down-Regulation/genetics , Hyperglycemia/complications , Hyperglycemia/physiopathology , Inflammation Mediators/metabolism , MAP Kinase Kinase 5/metabolism , MAP Kinase Signaling System , Male , Models, Biological , Phosphorylation , Rats, Sprague-Dawley , Up-Regulation/genetics
13.
Benef Microbes ; 12(3): 283-293, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34030609

ABSTRACT

Escherichia coli Nissle (EcN), a probiotic bacterium protects against several disorders. Multiple reports have studied the pathways involved in cardiac hypertrophy. However, the effects of probiotic EcN against diabetes-induced cardiac hypertrophy remain to be understood. We administered five weeks old Wistar male (271±19.4 g body weight) streptozotocin-induced diabetic rats with 109 cfu of EcN via oral gavage every day for 24 days followed by subjecting the rats to echocardiography to analyse the cardiac parameters. Overexpressed interleukin (IL)-6 induced the MEK5/ERK5, JAK2/STAT3, and MAPK signalling cascades in streptozotocin-induced diabetic rats. Further, the upregulation of calcineurin, NFATc3, and p-GATA4 led to the elevation of hypertrophy markers, such as atrial and B-type natriuretic peptides. In contrast, diabetic rats supplemented with probiotic EcN exhibited significant downregulated IL-6. Moreover, the MEK5/ERK5 and JAK2/STAT3 cascades involved during eccentric hypertrophy and MAPK signalling, including phosphorylated MEK, ERK, JNK, and p-38, were significantly attenuated in diabetic rats after supplementation of EcN. Western blotting and immunofluorescence revealed the significant downregulation of NFATc3 and downstream mediators, thereby resulting in the impairment of cardiac hypertrophy. Taken together, the findings demonstrate that supplementing probiotic EcN has the potential to show cardioprotective effects by inhibiting diabetes-induced cardiomyopathies.


Subject(s)
Cardiomegaly/therapy , Diabetes Mellitus, Experimental/therapy , Diabetic Cardiomyopathies/therapy , Escherichia coli/physiology , Interleukin-6/antagonists & inhibitors , MAP Kinase Signaling System/drug effects , Probiotics/therapeutic use , Animals , Calcineurin/metabolism , Cardiomegaly/metabolism , Cardiomegaly/physiopathology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/physiopathology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/physiopathology , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Interleukin-6/metabolism , Janus Kinase 2/metabolism , MAP Kinase Kinase 5/metabolism , Male , Mitogen-Activated Protein Kinase 7/metabolism , Rats , Rats, Wistar , STAT3 Transcription Factor/metabolism , Streptozocin
14.
J Cell Biochem ; 122(8): 835-850, 2021 08.
Article in English | MEDLINE | ID: mdl-33876843

ABSTRACT

Triple-negative breast cancer (TNBC) presents a clinical challenge due to the aggressive nature of the disease and a lack of targeted therapies. Constitutive activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway has been linked to chemoresistance and metastatic progression through distinct mechanisms, including activation of epithelial-to-mesenchymal transition (EMT) when cells adopt a motile and invasive phenotype through loss of epithelial markers (CDH1), and acquisition of mesenchymal markers (VIM, CDH2). Although MAPK/ERK1/2 kinase inhibitors (MEKi) are useful antitumor agents in a clinical setting, including the Food and Drug Administration (FDA)-approved MEK1,2 dual inhibitors cobimetinib and trametinib, there are limitations to their clinical utility, primarily adaptation of the BRAF pathway and ocular toxicities. The MEK5 (HGNC: MAP2K5) pathway has important roles in metastatic progression of various cancer types, including those of the prostate, colon, bone and breast, and elevated levels of ERK5 expression in breast carcinomas are linked to a worse prognoses in TNBC patients. The purpose of this study is to explore MEK5 regulation of the EMT axis and to evaluate a novel pan-MEK inhibitor on clinically aggressive TNBC cells. Our results show a distinction between the MEK1/2 and MEK5 cascades in maintenance of the mesenchymal phenotype, suggesting that the MEK5 pathway may be necessary and sufficient in EMT regulation while MEK1/2 signaling further sustains the mesenchymal state of TNBC cells. Furthermore, additive effects on MET induction are evident through the inhibition of both MEK1/2 and MEK5. Taken together, these data demonstrate the need for a better understanding of the individual roles of MEK1/2 and MEK5 signaling in breast cancer and provide a rationale for the combined targeting of these pathways to circumvent compensatory signaling and subsequent therapeutic resistance.


Subject(s)
Cell Movement , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 2/metabolism , MAP Kinase Kinase 5/metabolism , MAP Kinase Signaling System , Proto-Oncogene Proteins c-fos/biosynthesis , Triple Negative Breast Neoplasms/metabolism , Female , Humans , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 1/genetics , MAP Kinase Kinase 2/antagonists & inhibitors , MAP Kinase Kinase 2/genetics , MAP Kinase Kinase 5/antagonists & inhibitors , MAP Kinase Kinase 5/genetics , MCF-7 Cells , Proto-Oncogene Proteins c-fos/genetics , Triple Negative Breast Neoplasms/genetics
15.
Endocrinol Metab (Seoul) ; 35(4): 801-810, 2020 12.
Article in English | MEDLINE | ID: mdl-33232597

ABSTRACT

BACKGROUND: As the genetic variants of trabecular bone microarchitecture are not well-understood, we performed a genome-wide association study to identify genetic determinants of bone microarchitecture analyzed by trabecular bone score (TBS). METHODS: TBS-associated genes were discovered in the Ansung cohort (discovery cohort), a community-based rural cohort in Korea, and then validated in the Gene-Environment Interaction and Phenotype (GENIE) cohort (validation cohort), consisting of subjects who underwent health check-up programs. In the discovery cohort, 2,451 participants were investigated for 1.42 million genotyped and imputed markers. RESULTS: In the validation cohort, identified as significant variants were evaluated in 2,733 participants. An intronic variant in iroquois homeobox 3 (IRX3), rs1815994, was significantly associated with TBS in men (P=3.74E-05 in the discovery cohort, P=0.027 in the validation cohort). Another intronic variant in mitogen-activated protein kinase kinase 5 (MAP2K5), rs11630730, was significantly associated with TBS in women (P=3.05E-09 in the discovery cohort, P=0.041 in the validation cohort). Men with the rs1815994 variant and women with the rs11630730 variant had lower TBS and lumbar spine bone mineral density. The detrimental effects of the rs1815994 variant in men and rs11630730 variant in women were also identified in association analysis (ß=-0.0281, ß=-0.0465, respectively). CONCLUSION: In this study, the rs1815994 near IRX3 in men and rs11630730 near MAP2K5 in women were associated with deterioration of the bone microarchitecture. It is the first study to determine the association of genetic variants with TBS. Further studies are needed to confirm our findings and identify additional variants contributing to the trabecular bone microarchitecture.


Subject(s)
Bone Density/physiology , Cancellous Bone/diagnostic imaging , Homeodomain Proteins/genetics , MAP Kinase Kinase 5/genetics , Osteoporosis/genetics , Transcription Factors/genetics , Absorptiometry, Photon , Adult , Aged , Cohort Studies , Female , Genetic Variation , Genome-Wide Association Study , Humans , Independent Living , Linear Models , Lumbar Vertebrae/diagnostic imaging , Male , Middle Aged , Osteoporosis/diagnosis , Republic of Korea , Risk Assessment
16.
Bioorg Med Chem Lett ; 30(23): 127552, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32946922

ABSTRACT

The importance of ERK5 kinase signaling in tumorigenicity, metastasis, and drug resistance of cancer stem cells (CSCs) has been recognized recently, and we report a unique dual inhibitor that blocks binding of the ERK5 activator and ERK5 autophosphorylation simultaneously. The conventional ATP-binding site inhibitors have not yet yielded expected level of anti-cancer effects, due to complexities in converting ERK5 activation into CSC biological effects. We designed the first ERK5-targeted anti-CSC dual active hetero-bivalent inhibitor that blocks the regulatory peptide interaction involved in ERK5 kinase activation and that simultaneously inhibits the conventional ATP-binding pocket as well. We utilized two assay systems to independently prove disruption of these two ERK5 activities via a single compound. We also showed that this compound inhibited CSC activities, such as colony formation, cell proliferation, and migration.


Subject(s)
Antineoplastic Agents/pharmacology , MAP Kinase Kinase 5/antagonists & inhibitors , Mitogen-Activated Protein Kinase 7/antagonists & inhibitors , Neoplastic Stem Cells/drug effects , Peptides/pharmacology , Protein Kinase Inhibitors/pharmacology , Amino Acid Sequence , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Design , Drug Screening Assays, Antitumor , Humans , MAP Kinase Kinase 5/chemistry , Mitogen-Activated Protein Kinase 7/chemistry , Mitogen-Activated Protein Kinase 7/metabolism , Molecular Docking Simulation , Peptides/chemical synthesis , Peptides/metabolism , Phosphorylation/drug effects , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Protein Multimerization/drug effects , Signal Transduction/drug effects
17.
J Leukoc Biol ; 108(4): 1215-1223, 2020 10.
Article in English | MEDLINE | ID: mdl-32745297

ABSTRACT

Macrophages are highly plastic cells, responding to diverse environmental stimuli to acquire different functional phenotypes. Signaling through MAPKs has been reported to regulate the differentiation of macrophages, but the role of ERK5 in IL-4-mediated M2 macrophage differentiation is still unclear. Here, we showed that the ERK5 signaling pathway plays a critical role in IL-4-induced M2 macrophage differentiation. Pharmacologic inhibition of MEK5, an upstream activator of ERK5, markedly reduced the expression of classical M2 markers, such as Arg-1, Ym-1, and Fizz-1, as well as the production of M2-related chemokines and cytokines, CCL22, CCL17, and IGF-1 in IL-4-stimulated macrophages. Moreover, pharmacologic inhibition of ERK5 also decreased the expression of several M2 markers induced by IL-4. In accordance, myeloid cell-specific Erk5 depletion (Erk5∆mye ), using LysMcre /Erk5f/f mice, confirmed the involvement of ERK5 in IL-4-induced M2 polarization. Mechanistically, the inhibition of ERK5 did not affect STAT3 or STAT6 phosphorylation, suggesting that ERK5 signaling regulates M2 differentiation in a STAT3 and STAT6-independent manner. However, genetic deficiency or pharmacologic inhibition of the MEK5/ERK5 pathway reduced the expression of c-Myc in IL-4-activated macrophages, which is a critical transcription factor involved in M2 differentiation. Our study thus suggests that the MEK5/ERK5 signaling pathway is crucial in IL-4-induced M2 macrophage differentiation through the induction of c-Myc expression.


Subject(s)
Cell Differentiation/immunology , Interleukin-4/immunology , MAP Kinase Kinase 5/immunology , MAP Kinase Signaling System/immunology , Macrophages/immunology , Mitogen-Activated Protein Kinase 7/immunology , Proto-Oncogene Proteins c-myc/immunology , Animals , Antigens, Differentiation/genetics , Antigens, Differentiation/immunology , Cell Differentiation/genetics , Gene Expression Regulation/immunology , Interleukin-4/genetics , MAP Kinase Kinase 5/genetics , MAP Kinase Signaling System/genetics , Mice , Mice, Inbred BALB C , Mice, Knockout , Mitogen-Activated Protein Kinase 7/genetics , Proto-Oncogene Proteins c-myc/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/immunology , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/immunology
18.
Trends Mol Med ; 26(4): 394-407, 2020 04.
Article in English | MEDLINE | ID: mdl-32277933

ABSTRACT

Twenty years have passed since extracellular signal-regulated kinase 5 (ERK5) and its upstream activator, mitogen-activated protein kinase 5 (MEK5), first emerged onto the cancer research scene. Although we have come a long way in defining the liaison between dysregulated MEK5-ERK5 signaling and the pathogenesis of epithelial and nonepithelial malignancies, selective targeting of this unique pathway remains elusive. Here, we provide an updated review of the existing evidence for a correlation between aberrant MEK5-ERK5 (phospho)proteomic/transcriptomic profiles, aggressive cancer states, and poor patient outcomes. We then focus on emerging insights from preclinical models regarding the relevance of upregulated ERK5 activity in promoting tumor growth, metastasis, therapy resistance, undifferentiated traits, and immunosuppression, highlighting the opportunities, prospects, and challenges of selectively blocking this cascade for antineoplastic treatment and chemosensitization.


Subject(s)
Antineoplastic Agents/pharmacology , MAP Kinase Kinase 5/metabolism , Mitogen-Activated Protein Kinase 7/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Animals , Humans , Proteomics/methods
19.
Cancer Res ; 80(6): 1293-1303, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31969375

ABSTRACT

Small-cell lung cancer (SCLC) is an aggressive form of lung cancer with dismal survival rates. While kinases often play key roles driving tumorigenesis, there are strikingly few kinases known to promote the development of SCLC. Here, we investigated the contribution of the MAPK module MEK5-ERK5 to SCLC growth. MEK5 and ERK5 were required for optimal survival and expansion of SCLC cell lines in vitro and in vivo. Transcriptomics analyses identified a role for the MEK5-ERK5 axis in the metabolism of SCLC cells, including lipid metabolism. In-depth lipidomics analyses showed that loss of MEK5/ERK5 perturbs several lipid metabolism pathways, including the mevalonate pathway that controls cholesterol synthesis. Notably, depletion of MEK5/ERK5 sensitized SCLC cells to pharmacologic inhibition of the mevalonate pathway by statins. These data identify a new MEK5-ERK5-lipid metabolism axis that promotes the growth of SCLC. SIGNIFICANCE: This study is the first to investigate MEK5 and ERK5 in SCLC, linking the activity of these two kinases to the control of cell survival and lipid metabolism.


Subject(s)
Lipid Metabolism/drug effects , Lung Neoplasms/pathology , MAP Kinase Kinase 5/metabolism , Mitogen-Activated Protein Kinase 7/metabolism , Small Cell Lung Carcinoma/pathology , Animals , Atorvastatin/pharmacology , Atorvastatin/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Cholesterol/biosynthesis , Gene Knockdown Techniques , Humans , Hydroxymethylglutaryl CoA Reductases/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Lipidomics , Lung Neoplasms/drug therapy , MAP Kinase Kinase 5/genetics , MAP Kinase Signaling System/genetics , Mevalonic Acid/metabolism , Mice , Mitogen-Activated Protein Kinase 7/genetics , RNA-Seq , Small Cell Lung Carcinoma/drug therapy , Xenograft Model Antitumor Assays
20.
Oncogene ; 39(12): 2467-2477, 2020 03.
Article in English | MEDLINE | ID: mdl-31980741

ABSTRACT

Radiotherapy is commonly used to treat a variety of solid human tumors, including localized prostate cancer. However, treatment failure often ensues due to tumor intrinsic or acquired radioresistance. Here we find that the MEK5/ERK5 signaling pathway is associated with resistance to genotoxic stress in aggressive prostate cancer cells. MEK5 knockdown by RNA interference sensitizes prostate cancer cells to ionizing radiation (IR) and etoposide treatment, as assessed by clonogenic survival and short-term proliferation assays. Mechanistically, MEK5 downregulation impairs phosphorylation of the catalytic subunit of DNA-PK at serine 2056 in response to IR or etoposide treatment. Although MEK5 knockdown does not influence the initial appearance of radiation- and etoposide-induced γH2AX and 53BP1 foci, it markedly delays their resolution, indicating a DNA repair defect. A cell-based assay shows that nonhomologous end joining (NHEJ) is compromised in cells with ablated MEK5 protein expression. Finally, MEK5 silencing combined with focal irradiation causes strong inhibition of tumor growth in mouse xenografts, compared with MEK5 depletion or radiation alone. These findings reveal a convergence between MEK5 signaling and DNA repair by NHEJ in conferring resistance to genotoxic stress in advanced prostate cancer and suggest targeting MEK5 as an effective therapeutic intervention in the management of this disease.


Subject(s)
Antineoplastic Agents/pharmacology , DNA End-Joining Repair , DNA, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , MAP Kinase Kinase 5/genetics , Mutagens/pharmacology , Prostatic Neoplasms/drug therapy , Animals , Cell Cycle/radiation effects , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , DNA End-Joining Repair/drug effects , Drug Delivery Systems , Gene Knockdown Techniques , Humans , MAP Kinase Kinase 5/antagonists & inhibitors , MAP Kinase Kinase 5/metabolism , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/radiation effects , Male , Mice , Mitogen-Activated Protein Kinase 7/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/radiotherapy , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL