Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 205
Filter
1.
Crit Rev Immunol ; 44(6): 13-25, 2024.
Article in English | MEDLINE | ID: mdl-38848290

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia. Aberrant regulation of microRNAs (miRNAs) has been implicated in the pathogenesis of AD. In a large case-control study recruiting 208 patients with AD and 205 elderly control subjects, miRNA-let-7d-5p attracted our attention for its downregulated level in patients with AD. However, the biological functions of let-7d-5p in AD pathogenesis have not been investigated. This study emphasized the functions and mechanisms of let-7d-5p in the pathogenesis of AD. Mouse microglial BV2 cells treated with amyloid-ß (Aß)1-42 were used as in vitro AD inflammation models. We reported that let-7d-5p was downregulated in Aß1-42-stimulated BV2 cells, and upregulation of let-7d-5p promoted the transversion of microglial cells from Ml phenotype to M2 phenotype. Then, the binding relationship between let-7d-5p and Map3k1 was verified by luciferase reporter assays. Mechanistically, let-7d-5p could target Map3k1 3'UTR to inactivate ERK/p38 MAPK signaling. Therefore, it was suggested that let-7d-5p might be a novel modulator of microglial neuroinflammation and serve as a novel target for diagnosis and treatment of AD.


Subject(s)
Alzheimer Disease , MAP Kinase Signaling System , MicroRNAs , Microglia , p38 Mitogen-Activated Protein Kinases , MicroRNAs/genetics , MicroRNAs/metabolism , Microglia/metabolism , Microglia/immunology , Animals , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/immunology , Mice , p38 Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Kinase Kinase 1/metabolism , MAP Kinase Kinase Kinase 1/genetics , Inflammation/genetics , Inflammation/immunology , Cell Line , Amyloid beta-Peptides/metabolism
2.
Dis Model Mech ; 17(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38501211

ABSTRACT

Mitogen-activated protein 3 kinase 1 (MAP3K1) has a plethora of cell type-specific functions not yet fully understood. Herein, we describe a role for MAP3K1 in female reproductive tract (FRT) development. MAP3K1 kinase domain-deficient female mice exhibited an imperforate vagina, labor failure and infertility. These defects corresponded with shunted Müllerian ducts (MDs), the embryonic precursors of FRT, that manifested as a contorted caudal vagina and abrogated vaginal-urogenital sinus fusion in neonates. The MAP3K1 kinase domain is required for optimal activation of the Jun-N-terminal kinase (JNK) and cell polarity in the MD epithelium, and for upregulation of WNT signaling in the mesenchyme surrounding the caudal MD. The MAP3K1-deficient epithelial cells and MD epithelium had reduced expression of WNT7B ligands. Correspondingly, conditioned media derived from MAP3K1-competent, but not -deficient, epithelial cells activated a TCF/Lef-luciferase reporter in fibroblasts. These observations indicate that MAP3K1 regulates MD caudal elongation and FRT development, in part through the induction of paracrine factors in the epithelium that trans-activate WNT signaling in the mesenchyme.


Subject(s)
Epithelial Cells , MAP Kinase Kinase Kinase 1 , Vagina , Animals , Female , Mice , Epithelial Cells/metabolism , Epithelium/metabolism , Vagina/metabolism , Wnt Signaling Pathway , MAP Kinase Kinase Kinase 1/genetics , MAP Kinase Kinase Kinase 1/metabolism
3.
Kaohsiung J Med Sci ; 39(9): 896-903, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37314251

ABSTRACT

The incidence of early-onset colorectal cancer (CRC), which affects people under 50, is increasing for unknown reasons. Additionally, no underlying genetic cause is found in 20%-30% of patients suspected of having familial CRC syndrome. Whole exome sequencing (WES) has generated evidence for new genes associated with CRC susceptibility, but many patients remain undiagnosed. This study applied WES in five early-onset CRC patients from three unrelated families to identify novel genetic variants that could be linked to rapid disease development. Furthermore, the candidate variants were validated using Sanger sequencing. Two heterozygote variations, c.1077-2A>G and c.199G>A, were found in the MSH2 and the MLH1 genes, respectively. Sanger sequencing analysis confirmed that these (likely) pathogenic mutations segregated in all the affected families' members. In addition, we identified a rare heterozygote variant (c.175C>T) with suspected pathogenic potential in the MAP3K1 gene; formally the variant is of uncertain significance (VUS). Our findings support the hypothesis that CRC onset may be oligogenic and molecularly heterogeneous. Larger and more robust studies are needed to understand the genetic basis of early-onset CRC development, combined with novel functional analyses and omics approaches.


Subject(s)
Colorectal Neoplasms , MAP Kinase Kinase Kinase 1 , Humans , MutS Homolog 2 Protein/genetics , Exome Sequencing , Mutation/genetics , Colorectal Neoplasms/genetics , Genetic Predisposition to Disease , MutL Protein Homolog 1/genetics , MAP Kinase Kinase Kinase 1/genetics
4.
Cell Oncol (Dordr) ; 46(5): 1213-1234, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37166744

ABSTRACT

PURPOSE: In this study, we assessed whether the overexpression of MAP3K1 promotes the proliferation, migration, and invasion of breast cancer cells, which affect the prognosis of hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative early stage breast cancer. METHODS: Two HR-positive, HER2-negative breast cancer cell lines (MCF7 and T-47D) overexpressing MAP3K1 were transfected with two MAP3K1 short hairpin RNA plasmids (shMAP3K1 [#3] and shMAP3K1 [#5]). The proliferation, migration, and invasion of these cells were then examined. We assessed whether shMAP3K1 affects the cell cycle, levels of downstream signaling molecules (ERK, JNK, p38 MAPK, and NF-κB), and sensitivity to chemotherapeutic and hormonal agents. To assess the anti-tumor effect of MAP3K1 knockdown in the breast cancer orthotopic model, MCF7 and T-47D cells treated with or without shMAP3K1 (#3) and shMAP3K1 (#5) were inoculated into the mammary fat pads of mice. In total, 182 patients with HR-positive, HER2-negative T1 and T2 breast cancer and 0-3 nodal metastases were included. Additionally, 73 patients with T1 and T2 breast cancer and negative nodes who received adjuvant endocrine therapy alone were selected as an independent validation cohort. RESULTS: In both cell lines, shMAP3K1 (#3) and shMAP3K1 (#5) significantly reduced cell growth, migration, and invasion by downregulating MMP-9 and by blocking the G2/M phase of the cell cycle and its regulatory molecule cyclin B1. Moreover, both shMAP3K1 (#3) and shMAP3K1 (#5) downregulated ERK-, JNK-, p38 MAPK-, and NF-κB-dependent gene transcription and enhanced the sensitivity of both cell lines to doxorubicin, docetaxel, and tamoxifen. We observed that both shMAP3K1 (#3) and shMAP3K1 (#5) inhibited tumor growth compared with that in the scrambled group of MCF7 and T-47D cell orthotopic tumors. Patients with MAP3K1 overexpression exhibited significantly poorer 10-year disease-free survival (DFS) (70.4% vs. 88.6%, p = 0.003) and overall survival (OS) (81.9% vs. 96.3%, p = 0.001) than those without MAP3K1 overexpression. Furthermore, phospho-ERK (p < 0.001) and phospho-JNK (p < 0.001) expressions were significantly associated with MAP3K1 expression, and both phospho-ERK and phospho-JNK expressions were significantly correlated with poor 10-year DFS and OS. These biological findings, including a significant association between DFS and OS, and the expressions of MAP3K1, phospho-ERK, and phospho-JNK were further validated in an independent cohort. Multivariate analysis identified MAP3K1 expression as an independent poor prognostic factor for DFS and OS. CONCLUSION: Our results indicate that the overexpression of MAP3K1 plays a major role in the poor prognosis of HR-positive, HER2-negative early stage breast cancer.


Subject(s)
Breast Neoplasms , MAP Kinase Kinase Kinase 1 , Humans , Animals , Mice , Female , Breast Neoplasms/pathology , NF-kappa B , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Tamoxifen , Disease-Free Survival , p38 Mitogen-Activated Protein Kinases , MAP Kinase Kinase Kinase 1/genetics
5.
Genes (Basel) ; 14(3)2023 03 13.
Article in English | MEDLINE | ID: mdl-36980976

ABSTRACT

Polymorphisms rs2472493 near ABCA1, rs7636836 in FNDC3B, and rs61275591 near the ANKRD55-MAP3K1 genes were previously reported to exhibit genome-wide significance in primary open-angle glaucoma (POAG). Since these polymorphisms have not been investigated in the Arab population of Saudi Arabia, we examined their association with POAG in a Saudi cohort. Genotyping was performed in 152 POAG cases and 246 controls using Taqman real-time assays and their associations with POAG and clinical markers, such as intraocular pressure, cup/disc ratio, and the number of antiglaucoma medications, were tested by statistical methods. There was no association observed between POAG and the minor allele frequencies of rs2472493[G], rs7636836[T], or rs61275591[A]. None of the genetic models such as co-dominant, dominant, recessive, over-dominant, and log-additive demonstrated any genotype link. The Rs2472493 genotype showed a modest association (p = 0.044) with the number of antiglaucoma medications in the POAG group, but no significant genotype effect on post hoc analysis. In addition, a G-T allelic haplotype of rs2472493 (ABCA1) and rs7636836 (FNDC3B) did show an over two-fold increased risk of POAG (odds ratio = 2.18), albeit non-significantly (p = 0.092). Similarly, no other allelic haplotype of the three variants showed any significant association with POAG. Our study did not replicate the genetic association of rs2472493 (ABCA1), rs763683 (FNDC3B), and rs61275591 (ANKRD55-MAP3K1) in POAG and related clinical phenotypes, suggesting that these polymorphisms are not associated with POAG in a Saudi cohort of Arab ethnicity. However, large population-based multicenter studies are needed to validate these results.


Subject(s)
Glaucoma, Open-Angle , MAP Kinase Kinase Kinase 1 , Humans , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/epidemiology , Antiglaucoma Agents , Saudi Arabia/epidemiology , Case-Control Studies , Polymorphism, Genetic , MAP Kinase Kinase Kinase 1/genetics , Fibronectins/genetics , ATP Binding Cassette Transporter 1/genetics , Carrier Proteins/genetics
6.
BMC Gastroenterol ; 22(1): 513, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36510163

ABSTRACT

BACKGROUND/OBJECTIVES: The hormone-dependent effect of MAP3K1 gene polymorphisms may explain sex-specific differences in gastric cancer (GC) risk. Phytoestrogens have been shown to interact with this genetic factor. Here, we investigated the association between MAP3K1 gene polymorphisms and GC risk by sex and whether these associations differ depending on soy products intake. METHODS: Participants aged 20-79 years were recruited from two hospitals between December 2002 and September 2006. In all, 440 cases and 485 controls were recruited, among, 246 pairs of cases and controls, matched by sex, age (± 5 years), study admission period (± 1 years), and hospital, were included for the analysis. RESULTS: In dominant model, men with the A allele of rs252902 showed significantly increased GC risk (odd ratio; OR=2.19, 95% confidence interval; CI=1.31-3.64) compared to GG homozygotes. When stratified by intake of soy products, men with the A allele of rs252902 and low intake of soy products showed significantly higher GC risk (OR=3.29, 95% CI=1.55-6.78) than that in GG homozygotes. CONCLUSIONS: Men with the risk allele of MAP3K1 had a significantly increased GC risk compared to GG homozygotes; this trend was more pronounced in those with low intake of soy products.


Subject(s)
MAP Kinase Kinase Kinase 1 , Stomach Neoplasms , Male , Female , Humans , Stomach Neoplasms/genetics , Case-Control Studies , Polymorphism, Single Nucleotide , Alleles , Odds Ratio , Risk Factors , Genetic Predisposition to Disease , MAP Kinase Kinase Kinase 1/genetics
7.
Mol Med Rep ; 26(5)2022 Nov.
Article in English | MEDLINE | ID: mdl-36102299

ABSTRACT

The 46, XY disorder of sex development (DSD) is the main cause of birth defects; however, as it is a group of highly heterogeneous diseases, >50% of cases are not accurately diagnosed. Identification of more cases will improve understanding of the relationship between genotype and phenotype for DSD. The present study conducted a systematic analysis of the clinical characteristics of a proband with 46, XY DSD, applied genetic analysis by whole­exome sequencing to this pedigree and performed bioinformatics analysis of the identified variant. The proband presented with a short penis, lack of testicles and partial growth hormone (GH) deficiency at 1 year old. Histopathological examination revealed there were oviduct, epididymis and fibrous vascular tissue on both sides of the abdomen. The last follow­up at 5 years of age revealed that the patient exhibited restricted growth, a 1.5­cm penis and lack of testicles. Notably, a novel pathogenic mitogen­activated protein kinase kinase kinase 1 (MAP3K1) variant (c.3020A>G) was identified in the proband, resulting in a change in the 1,007th amino acid (glutamine) of the encoded protein. This variant caused the uncharged neutral glutamine to be replaced by a positively charged basic arginine. p.Gln1007 in MAP3K1 was confirmed to be conserved across various species. Pathogenicity analysis using bioinformatics tools suggested that this MAP3K1 variant may cause functional defects. In conclusion, the present study identified a novel MAP3K1 variant that was the cause of 46, XY DSD and partial GH deficiency. The present findings extend the mutation spectrum of MAP3K1 and provide novel characteristics of 46, XY DSD.


Subject(s)
Disorder of Sex Development, 46,XY , MAP Kinase Kinase Kinase 1 , Disorder of Sex Development, 46,XY/diagnosis , Disorder of Sex Development, 46,XY/genetics , Glutamine/genetics , Growth Hormone/genetics , Humans , MAP Kinase Kinase Kinase 1/genetics , Male , Phenotype
8.
Taiwan J Obstet Gynecol ; 61(5): 903-905, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36088066

ABSTRACT

OBJECTIVE: Swyer syndrome, or 46, XY complete gonadal dysgenesis, is a disorder of human sexual development which present with female external genitalia, lack of female reproductive organs, and a 46, XY karyotype. Many genes that participate in human sexual development have been implicated in the pathogenesis of 46, XY gonadal dysgenesis. CASE REPORT: A 18-year-old phenotypically female was presented with primary amenorrhea. Surveillance revealed hypergonadotropic hypogonadism, a normal male 46, XY karyotype and absent of functional gonad, which was confirmed by pathological examination of the streak gonad. Whole exome sequencing showed germline mutations of a novel missense variant, c.570G > C, p.Lys190Asn, in exon 2 of MAP3K1 gene. CONCLUSION: Given evolutionary conservation of lysine residue at position 190, the amino acid substitution may interfere with interaction between MAP3K1 and RHOA, and contributes to complete gonadal dysgenesis in the context of 46,XY.


Subject(s)
Gonadal Dysgenesis, 46,XY , Gonadal Dysgenesis , MAP Kinase Kinase Kinase 1 , Turner Syndrome , Adolescent , Female , Gonadal Dysgenesis, 46,XY/genetics , Humans , Karyotyping , MAP Kinase Kinase Kinase 1/genetics , Male , Mutation, Missense
9.
Sci Rep ; 12(1): 11482, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35798792

ABSTRACT

Epithelial development starts with stem cell commitment to ectoderm followed by differentiation to the basal keratinocytes. The basal keratinocytes, first committed in embryogenesis, constitute the basal layer of the epidermis. They have robust proliferation and differentiation potential and are responsible for epidermal expansion, maintenance and regeneration. We generated basal epithelial cells in vitro through differentiation of mouse embryonic stem cells (mESCs). Early on in differentiation, the expression of stem cell markers, Oct4 and Nanog, decreased sharply along with increased ectoderm marker keratin (Krt) 18. Later on, Krt 18 expression was subdued when cells displayed basal keratinocyte characteristics, including regular polygonal shape, adherent and tight junctions and Krt 14 expression. These cells additionally expressed abundant Sca-1, Krt15 and p63, suggesting epidermal progenitor characteristics. Using Map3k1 mutant mESCs and environmental dioxin, we examined the gene and environment effects on differentiation. Neither Map3k1 mutation nor dioxin altered mESC differentiation to ectoderm and basal keratinocytes, but they, individually and in combination, potentiated Krt 1 expression and basal to spinous differentiation. Similar gene-environment effects were observed in vivo where dioxin exposure increased Krt 1 more substantially in the epithelium of Map3k1+/- than wild type embryos. Thus, the in vitro model of epithelial differentiation can be used to investigate the effects of genetic and environmental factors on epidermal development.


Subject(s)
Dioxins , Keratinocytes , MAP Kinase Kinase Kinase 1 , Mouse Embryonic Stem Cells , Animals , Cell Differentiation , Dioxins/pharmacology , Epidermal Cells , Epidermis/metabolism , Keratinocytes/cytology , Keratinocytes/drug effects , MAP Kinase Kinase Kinase 1/genetics , Mice , Mouse Embryonic Stem Cells/cytology , Mutation
10.
J Clin Lab Anal ; 36(6): e24470, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35524422

ABSTRACT

BACKGROUND: Papillary thyroid carcinoma (PTC) grows slowly but has a great risk of metastasis. MicroRNAs are well known as vital tumor-related gene regulators. In PTC, the role of miR-203a-3p and the underlying mechanisms remain not completely understood. METHODS: We conducted CCK8 assay, wound healing assay, transwell experiment and flow cytometry analyses to investigate the function of miRNA-203a-3p. The interaction of miRNA-203a-3p with its gene MAP3K1 was characterized by quantitative real-time polymerase chain reaction, western blotting and luciferase assay. RESULTS: We found that the levels of miRNA-203a-3p were statistically decreased in PTC tissues. When mimics were delivered to TPC-1 and KTC-1 cells to upregulate miR-203a-3p, it was observed that cell proliferation, metastatic abilities and cell cycle process were prevented but cell apoptosis was enhanced. Furthermore, we proved the interaction between MAP3K1 and miR-203a-3p. Intriguingly, similar to miR-203a-3p mimics, siMAP3K1 showed a tumor-suppressive effect, and this effect could be reversed when miR-203a-3p was simultaneously inhibited. Finally, selected autophagy-linked proteins such as LC3 Beclin-1 were detected and found to be increased when miR-203a-3p was upregulated or MAP3K1 was inhibited. CONCLUSION: Overall, miR-203a-3p inhibits the oncogenic characteristics of TPC-1 and KTC-1 cells via suppressing MAP3K1 and activating autophagy. Our findings might enrich the understanding and the therapeutic strategies of PTC.


Subject(s)
Carcinoma, Papillary , MAP Kinase Kinase Kinase 1 , MicroRNAs , Thyroid Neoplasms , Autophagy/genetics , Carcinoma, Papillary/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , MAP Kinase Kinase Kinase 1/genetics , MAP Kinase Kinase Kinase 1/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology
11.
Cell Cycle ; 21(11): 1194-1211, 2022 06.
Article in English | MEDLINE | ID: mdl-35230926

ABSTRACT

Colon cancer (CC) is a common malignant tumor of the digestive tract. Circular RNAs (circRNAs) play important roles in the progression of CC. This study aimed to explore the role and mechanism of circRNA_0085315 in CC. In this study, we used qRT-PCR and Western blot assays to analyze the expressions of circRNA, miRNA, and mRNA as well as the expression of the related proteins. Luciferase reporter, RNA pull-down, and qRT-PCR assays were used to prove the relationship among circRNA, miRNA, and mRNA. CCK-8, colony formation, and transwell assays were used to perform the analysis of cell proliferation, migration, and invasion. Our results showed that the higher circRNA_0085315 expression led to the poorer prognosis of CC patients. The function of circRNA_0085315 as a ceRNA in competing with MAP3K1 mRNA to sponge miR-1200. CircRNA_0085315 sponged miR-1200 to promote cell proliferation, migration, and invasion and affected the expression of Ki67, MMP2, E-cadherin, and N-cadherin, but not circRNA_0085315-mut without the binding site of miR-1200. MAP3K1-overexpression or miR-1200 mimics prevented the suppression on the enhanced cell proliferation, migration, and invasion caused by circRNA_0085315-overexpression. circRNA_0085315 increased the phosphorylation levels of JNK, p38, and ERK1/2 by stimulating MAP3K1 up-regulation caused by miR-1200 inhibition. In conclusion, circRNA_0085315 serves as a ceRNA and promotes CC progression through the activation of the MAPK signaling pathway mediated via the miR-1200/MAP3K1 axis, suggesting that circRNA_0085315 may be a promising diagnostic and therapeutic target for CC.


Subject(s)
Colonic Neoplasms , MAP Kinase Kinase Kinase 1 , MicroRNAs , RNA, Circular , Cell Line, Tumor , Cell Proliferation/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Humans , MAP Kinase Kinase Kinase 1/genetics , MAP Kinase Kinase Kinase 1/metabolism , MAP Kinase Signaling System , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction
12.
Sex Dev ; 16(2-3): 92-97, 2022.
Article in English | MEDLINE | ID: mdl-35290982

ABSTRACT

Pathogenic variants in the MAP3K1 gene are an important cause of 46,XY non-syndromic partial and complete gonadal dysgenesis, accounting for at least 4% of cases. Inheritance occurs in a sex-limited, autosomal dominant fashion with virtually complete penetrance in 46,XY individuals. 46,XX carriers appear to have normal fertility and no developmental abnormalities. Pathogenic variants occur almost exclusively within known domains of the MAP3K1 protein, facilitating annotation when identified. Where studied, these variants have been modeled to alter the local MAP3K1 folding and surface domains and have been shown to alter interactions with known binding partners. The net effect of these variants is to increase phosphorylation of downstream targets ERK1, ERK2, and p38, resulting in multiple gain-of-function effects interfering with testis determination and enabling ovarian determination.


Subject(s)
Gonadal Dysgenesis, 46,XY , Gonadal Dysgenesis , MAP Kinase Kinase Kinase 1 , Male , Humans , MAP Kinase Kinase Kinase 1/genetics , Gonadal Dysgenesis, 46,XY/genetics , Gonadal Dysgenesis, 46,XY/pathology , Gonadal Dysgenesis/genetics , Heterozygote , Testis/pathology
13.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34911761

ABSTRACT

Arterial remodeling is an important adaptive mechanism that maintains normal fluid shear stress in a variety of physiologic and pathologic conditions. Inward remodeling, a process that leads to reduction in arterial diameter, plays a critical role in progression of such common diseases as hypertension and atherosclerosis. Yet, despite its pathogenic importance, molecular mechanisms controlling inward remodeling remain undefined. Mitogen-activated protein kinases (MAPKs) perform a number of functions ranging from control of proliferation to migration and cell-fate transitions. While the MAPK ERK1/2 signaling pathway has been extensively examined in the endothelium, less is known about the role of the MEKK3/ERK5 pathway in vascular remodeling. To better define the role played by this signaling cascade, we studied the effect of endothelial-specific deletion of its key upstream MAP3K, MEKK3, in adult mice. The gene's deletion resulted in a gradual inward remodeling of both pulmonary and systematic arteries, leading to spontaneous hypertension in both vascular circuits and accelerated progression of atherosclerosis in hyperlipidemic mice. Molecular analysis revealed activation of TGFß-signaling both in vitro and in vivo. Endothelial-specific TGFßR1 knockout prevented inward arterial remodeling in MEKK3 endothelial knockout mice. These data point to the unexpected participation of endothelial MEKK3 in regulation of TGFßR1-Smad2/3 signaling and inward arterial remodeling in artery diseases.


Subject(s)
Hypertension, Pulmonary/pathology , MAP Kinase Kinase Kinase 1/metabolism , MAP Kinase Kinase Kinase 3/metabolism , Transforming Growth Factor beta/metabolism , Vascular Remodeling/physiology , Animals , Gene Deletion , Gene Expression Regulation/drug effects , Genotype , Hindlimb/blood supply , Human Umbilical Vein Endothelial Cells , Humans , Hypertension, Pulmonary/metabolism , Ischemia , MAP Kinase Kinase Kinase 1/genetics , MAP Kinase Kinase Kinase 3/genetics , Mice , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Selective Estrogen Receptor Modulators/toxicity , Signal Transduction , Tamoxifen/toxicity , Transforming Growth Factor beta/genetics
14.
PLoS Negl Trop Dis ; 15(12): e0010027, 2021 12.
Article in English | MEDLINE | ID: mdl-34879059

ABSTRACT

BACKGROUND: The metacestode larval stage of the fox-tapeworm Echinococcus multilocularis causes alveolar echinococcosis by tumour-like growth within the liver of the intermediate host. Metacestode growth and development is stimulated by host-derived cytokines such as insulin, fibroblast growth factor, and epidermal growth factor via activation of cognate receptor tyrosine kinases expressed by the parasite. Little is known, however, concerning signal transmission to the parasite nucleus and cross-reaction with other parasite signalling systems. METHODOLOGY/PRINCIPAL FINDINGS: Using bioinformatic approaches, cloning, and yeast two-hybrid analyses we identified a novel mitogen-activated kinase (MAPK) cascade module that consists of E. multilocularis orthologs of the tyrosine kinase receptor interactor Growth factor receptor-bound 2, EmGrb2, the MAPK kinase kinase EmMEKK1, a novel MAPK kinase, EmMKK3, and a close homolog to c-Jun N-terminal kinase (JNK), EmMPK3. Whole mount in situ hybridization analyses indicated that EmMEKK1 and EmMPK3 are both expressed in E. multilocularis germinative (stem) cells but also in differentiated or differentiating cells. Treatment with the known JNK inhibitor SP600125 led to a significantly reduced formation of metacestode vesicles from stem cells and to a specific reduction of proliferating stem cells in mature metacestode vesicles. CONCLUSIONS/SIGNIFICANCE: We provide evidence for the expression of a MEKK1-JNK MAPK cascade module which, in mammals, is crucially involved in stress responses, cytoskeletal rearrangements, and apoptosis, in E. multilocularis stem cells. Inhibitor studies indicate an important role of JNK signalling in E. multilocularis stem cell survival and/or maintenance. Our data are relevant for molecular and cellular studies into crosstalk signalling mechanisms that govern Echinococcus stem cell function and introduce the JNK signalling cascade as a possible target of chemotherapeutics against echinococcosis.


Subject(s)
Echinococcus multilocularis/enzymology , Helminth Proteins/metabolism , MAP Kinase Kinase 4/metabolism , MAP Kinase Kinase Kinase 1/metabolism , Stem Cells/enzymology , Animals , Cell Proliferation , Echinococcus multilocularis/genetics , Echinococcus multilocularis/growth & development , GRB2 Adaptor Protein/genetics , GRB2 Adaptor Protein/metabolism , Helminth Proteins/genetics , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase Kinase 1/genetics , MAP Kinase Kinase Kinase 3/genetics , MAP Kinase Kinase Kinase 3/metabolism , MAP Kinase Signaling System , Stem Cells/cytology
15.
Int J Mol Sci ; 22(18)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34576208

ABSTRACT

Sex determination triggers the differentiation of the bi-potential gonad into either an ovary or testis. In non-mammalian vertebrates, the presence or absence of oestrogen dictates gonad differentiation, while in mammals, this mechanism has been supplanted by the testis-determining gene SRY. Exogenous oestrogen can override this genetic trigger to shift somatic cell fate in the gonad towards ovarian developmental pathways by limiting the bioavailability of the key testis factor SOX9 within somatic cells. Our previous work has implicated the MAPK pathway in mediating the rapid cellular response to oestrogen. We performed proteomic and phosphoproteomic analyses to investigate the precise mechanism through which oestrogen impacts these pathways to activate ß-catenin-a factor essential for ovarian development. We show that oestrogen can activate ß-catenin within 30 min, concomitant with the cytoplasmic retention of SOX9. This occurs through changes to the MAP3K1 cascade, suggesting this pathway is a mechanism through which oestrogen influences gonad somatic cell fate. We demonstrate that oestrogen can promote the shift from SOX9 pro-testis activity to ß-catenin pro-ovary activity through activation of MAP3K1. Our findings define a previously unknown mechanism through which oestrogen can promote a switch in gonad somatic cell fate and provided novel insights into the impacts of exogenous oestrogen exposure on the testis.


Subject(s)
MAP Kinase Kinase Kinase 1/metabolism , beta Catenin/metabolism , Animals , Cell Differentiation/drug effects , Cell Differentiation/physiology , Estrogens/pharmacology , Humans , MAP Kinase Kinase Kinase 1/genetics , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism
16.
Biochem Pharmacol ; 193: 114748, 2021 11.
Article in English | MEDLINE | ID: mdl-34461116

ABSTRACT

Cav1.2 L-type voltage-gated Ca2+ channels play a central role in pancreatic ß-cells by integrating extracellular signals with intracellular signaling events leading to insulin secretion and altered gene transcription. Here, we investigated the intracellular signaling pathway following stimulation of Cav1.2 Ca2+ channels and addressed the function of the transcription factor activator protein-1 (AP-1) in pancreatic ß-cells of transgenic mice. Stimulation of Cav1.2 Ca2+ channels activates AP-1 in insulinoma cells. Pharmacological and genetic experiments identified c-Jun N-terminal protein kinase as a signal transducer connecting Cav1.2 Ca2+ channel activation with gene transcription. Moreover, the basic region-leucine zipper proteins ATF2 and c-Jun or c-Jun-related proteins were involved in stimulus-transcription coupling. We addressed the functions of AP-1 in pancreatic ß-cells analyzing a newly generated transgenic mouse model. These transgenic mice expressed A-Fos, a mutant of c-Fos that attenuates DNA binding of c-Fos dimerization partners. In insulinoma cells, A-Fos completely blocked AP-1 activation following stimulation of Cav1.2 Ca2+ channels. The analysis of transgenic A-Fos-expressing mice revealed that the animals displayed impaired glucose tolerance. Thus, we show here for the first time that AP-1 controls an important function of pancreatic ß-cells in vivo, the regulation of glucose homeostasis.


Subject(s)
Insulin-Secreting Cells/metabolism , Insulinoma/metabolism , Transcription Factor AP-1/metabolism , Activating Transcription Factor 2/genetics , Activating Transcription Factor 2/metabolism , Animals , Benzamides/chemistry , Benzamides/pharmacology , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Cell Line, Tumor , Gene Expression Regulation/physiology , Glucose Intolerance , MAP Kinase Kinase Kinase 1/genetics , MAP Kinase Kinase Kinase 1/metabolism , Mice , Mice, Transgenic , Pyridines/chemistry , Pyridines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , RNA Interference , Rats , Transcription Factor AP-1/genetics
17.
Mol Cell Biol ; 41(10): e0008121, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34251884

ABSTRACT

Cullin-4 ubiquitin ligase (CRL4) complexes are differentially composed and highly dynamic protein assemblies that control many biological processes, including the global genome nucleotide excision repair (GG-NER) pathway. Here, we identified the kinase mitogen-activated protein kinase kinase kinase 1 (MEKK1) as a novel constitutive interactor of a cytosolic CRL4 complex that disassembles after DNA damage due to the caspase-mediated cleavage of MEKK1. The kinase activity of MEKK1 was important to trigger autoubiquitination of the CRL4 complex by K48- and K63-linked ubiquitin chains. MEKK1 knockdown prohibited DNA damage-induced degradation of the CRL4 component DNA-damage binding protein 2 (DDB2) and the CRL4 substrate p21 and also cell recovery and survival. A ubiquitin replacement strategy revealed a contribution of K63-branched ubiquitin chains for DNA damage-induced DDB2/p21 decay, cell cycle regulation, and cell survival. These data might also have implications for cancer, as frequently occurring mutations of MEKK1 might have an impact on genome stability and the therapeutic efficacy of CRL4-dependent immunomodulatory drugs such as thalidomide derivatives.


Subject(s)
DNA Repair/physiology , MAP Kinase Kinase Kinase 1/metabolism , Ubiquitin-Protein Ligases/metabolism , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Survival , Cyclin-Dependent Kinase Inhibitor p21/genetics , DNA/chemistry , DNA Damage/physiology , DNA Repair/genetics , DNA-Binding Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , MAP Kinase Kinase Kinase 1/genetics , Nuclear Proteins/metabolism , Ubiquitin-Protein Ligases/physiology , Ubiquitination
18.
Cancer Med ; 10(18): 6227-6238, 2021 09.
Article in English | MEDLINE | ID: mdl-34331411

ABSTRACT

BACKGROUND: Sarcomatoid hepatocellular carcinoma (HCC) is a rare and highly lethal histological subtype of HCC, with completely unknown genetic etiology and therapeutic targets. METHODS: We included 16 patients with sarcomatoid HCC receiving radical resection among 6731 cases of pathological confirmed HCC in year 2008 to 2018 in our hospital. We compared the clinical features, prognosis and cancer genome between 15 sarcomatoid HCC and propensity score-matched 75 non-sarcomatoid HCC patients. The other concurrent case was analyzed using phylogenetic tree to assess the tumor heterogeneity and evolution. RESULTS: Sarcomatoid HCC group showed larger tumor size, more advanced differentiation grade, lower tumor free survival (p = 0.038) and overall survival (p = 0.001), and sarcomatoid type was an independent risk factor for patient death. Integrating sarcomatoid subtype into AJCC staging could increase the diagnostic curve in predicting patient survival. The cancer genome spectrum showed sarcomatoid HCC group had significant higher mutation rates in CDKN2A, EPHA5, FANCM and MAP3K1. Mutations in CDKN2A significantly reduced tumor-free and overall survival in sarcomatoid HCC patients. Moreover, 46.6% sarcomatoid HCC patients had druggable mutations in cell cycle pathway genes, which were targeted by Abemaciclib, et al. We also found sarcomatoid and non-sarcomatoid lesions might originate from a common progenitor but progress differently. CONCLUSION: Our cancer genome analysis showed a specific genomic profile of sarcomatoid HCC, which were characterized by a high mutation rate in cell cycle genes particularly CDKN2A. The results indicate CDK4/6 inhibitors including abemaciclib, ribociclib and palbociclib as potential therapeutic targets and may help for therapeutic decision making.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Liver Neoplasms/genetics , Liver/pathology , Neoplasm Recurrence, Local/epidemiology , Aged , Aminopyridines/therapeutic use , Benzimidazoles/therapeutic use , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/therapy , Chemotherapy, Adjuvant , DNA Helicases/genetics , Disease-Free Survival , Female , Follow-Up Studies , Hepatectomy , Humans , Liver/surgery , Liver Neoplasms/diagnosis , Liver Neoplasms/mortality , Liver Neoplasms/therapy , MAP Kinase Kinase Kinase 1/genetics , Male , Middle Aged , Mutation Rate , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/prevention & control , Prognosis , Receptor, EphA5/genetics , Risk Factors , Tumor Burden
19.
Orphanet J Rare Dis ; 16(1): 268, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34112222

ABSTRACT

BACKGROUND: Dozens of genes are involved in 46, XY differences in sex development (DSD). Notably, about 3/4 of patients cannot make a clear etiology diagnosis and single gene variant identified cannot fully explain the clinical heterogeneity of 46, XY DSD. MATERIALS AND METHODS: We conducted a systematic clinical analysis of a 46, XY DSD patient, and applied whole-exome sequencing for the genetic analysis of this pedigree. The identified variants were analyzed by bioinformatic analysis and in vitro studies were performed in human embryonic kidney 293T (HEK-293T) cells which were transiently transfected with wild type or variant NR5A1 and MAP3K1 plasmid. Furthermore, protein production of SRY-box transcription factor 9 (SOX9) was analyzed in cell lysates. RESULTS: A novel NR5A1 variant (c.929A > C, p. His310Pro) and a rare MAP3K1 variant (c.2282T > C, p. Ile761Thr) were identified in the proband, whereas the proband's mother and sister who only carry rare MAP3K1 variant have remained phenotypically healthy to the present. These two variants were predicted to be pathogenic by bioinformatic analysis. In vitro, NR5A1 variant decreased the SOX9 production by 82.11% compared to wild type NR5A1, while MAP3K1 variant had little effect on the SOX9 production compared to wild type MAP3K1. Compared to wild type NR5A1 transfection, the SOX9 production of cells transfected with both wild type plasmids decreased by about 17.40%. Compared to variant NR5A1 transfection, the SOX9 production of cells transfected with both variant plasmids increased by the 36.64%. CONCLUSIONS: Our findings suggested the novel compound variants of NR5A1 and MAP3K1 can alter the expression of SOX9 and ultimately lead to abnormality of sex development.


Subject(s)
Disorder of Sex Development, 46,XY , MAP Kinase Kinase Kinase 1/genetics , Steroidogenic Factor 1/genetics , Humans , Mutation , Pedigree , Sexual Development , Exome Sequencing
20.
Exp Anim ; 70(4): 459-468, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34078823

ABSTRACT

In this study, we describe an N-ethyl-N-nitrosourea-induced mouse model with a corneal opacity phenotype that was associated with "eye open at birth" (EOB). Histological and immunohistochemistry staining analysis showed abnormal differentiation of the corneal epithelial cells in the mutant mice. The EOB phenotype was dominantly inherited on a C57BL/6 (B6) background. This allele carries a T941A substitution in exon 4 that leads to an L314Q amino acid change in the open reading frame of MAP3K1 (MEEK1). We named this novel Map3k1 allele Map3k1L314Q. Phalloidin staining of F-actin was reduced in the mutant epithelial leading edge cells, which is indicative of abnormality in epithelial cell migration. Interestingly enough, not only p-c-Jun and p-JNK but also c-Jun levels were decreased in the mutant epithelial leading edge cells. This study identifies a novel mouse Map3k1 allele causing EOB phenotype and the EOB phenotype in Map3k1L314Q mouse may be associated with the reduced level of p-JNK and c-Jun.


Subject(s)
Cell Movement , Ethylnitrosourea/adverse effects , Eyelids/growth & development , MAP Kinase Kinase Kinase 1/genetics , Mutation , Animals , Epithelial Cells/physiology , MAP Kinase Kinase Kinase 1/metabolism , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...