Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 855
Filter
4.
Biochim Biophys Acta Bioenerg ; 1865(4): 149492, 2024 11 01.
Article in English | MEDLINE | ID: mdl-38960080

ABSTRACT

Mitochondrial DNA (mtDNA) mutations, including the m.3243A>G mutation that causes mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), are associated with secondary coenzyme Q10 (CoQ10) deficiency. We previously demonstrated that PPARGC1A knockdown repressed the expression of PDSS2 and several COQ genes. In the present study, we compared the mitochondrial function, CoQ10 status, and levels of PDSS and COQ proteins and genes between mutant cybrids harboring the m.3243A>G mutation and wild-type cybrids. Decreased mitochondrial energy production, defective respiratory function, and reduced CoQ10 levels were observed in the mutant cybrids. The ubiquinol-10:ubiquinone-10 ratio was lower in the mutant cybrids, indicating blockage of the electron transfer upstream of CoQ, as evident from the reduced ratio upon rotenone treatment and increased ratio upon antimycin A treatment in 143B cells. The mutant cybrids exhibited downregulation of PDSS2 and several COQ genes and upregulation of COQ8A. In these cybrids, the levels of PDSS2, COQ3-a isoform, COQ4, and COQ9 were reduced, whereas those of COQ3-b and COQ8A were elevated. The mutant cybrids had repressed PPARGC1A expression, elevated ATP5A levels, and reduced levels of mtDNA-encoded proteins, nuclear DNA-encoded subunits of respiratory enzyme complexes, MNRR1, cytochrome c, and DHODH, but no change in TFAM, TOM20, and VDAC1 levels. Alterations in the CoQ10 level in MELAS may be associated with mitochondrial energy deficiency and abnormal gene regulation. The finding of a reduction in the ubiquinol-10:ubiquinone-10 ratio in the MELAS mutant cybrids differs from our previous discovery that cybrids harboring the m.8344A>G mutation exhibit a high ubiquinol-10:ubiquinone-10 ratio.


Subject(s)
DNA, Mitochondrial , Energy Metabolism , Mitochondria , Mutation , Ubiquinone , Ubiquinone/analogs & derivatives , Ubiquinone/metabolism , Ubiquinone/deficiency , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Humans , Energy Metabolism/genetics , Mitochondria/metabolism , Mitochondria/genetics , Ataxia/genetics , Ataxia/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , MELAS Syndrome/genetics , MELAS Syndrome/metabolism , Cell Line, Tumor , Muscle Weakness , Mitochondrial Diseases
5.
FASEB J ; 38(12): e23742, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38865203

ABSTRACT

Mitochondrial disease is a devastating genetic disorder, with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) and m.3243A>G being the most common phenotype and genotype, respectively. The treatment for MELAS patients is still less effective. Here, we performed transcriptomic and proteomic analysis in muscle tissue of MELAS patients, and discovered that the expression of molecules involved in serine catabolism were significantly upregulated, and serine hydroxymethyltransferase 2 (SHMT2) increased significantly in both the mRNA and protein levels. The SHMT2 protein level was also increased in myoblasts with m.3243A>G mutation, which was transdifferentiated from patients derived fibroblasts, accompanying with the decreased nicotinamide adenine dinucleotide (NAD+)/reduced NAD+ (NADH) ratio and cell viability. After treating with SHMT2 inhibitor (SHIN1), the NAD+/NADH ratio and cell viability in MELAS myoblasts increased significantly. Taken together, our study indicates that enhanced serine catabolism plays an important role in the pathogenesis of MELAS and that SHIN1 can be a potential small molecule for the treatment of this disease.


Subject(s)
Glycine Hydroxymethyltransferase , MELAS Syndrome , Serine , Humans , MELAS Syndrome/metabolism , MELAS Syndrome/genetics , MELAS Syndrome/pathology , Glycine Hydroxymethyltransferase/metabolism , Glycine Hydroxymethyltransferase/genetics , Serine/metabolism , Myoblasts/metabolism , NAD/metabolism , Male , Proteomics/methods , Female , Transcriptome , Multiomics
6.
ACS Nano ; 18(26): 17240-17250, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38906834

ABSTRACT

This study investigates transfer ribonucleic acid (tRNA) conformational dynamics in the context of MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) using solid-state silicon nitride (SiN) nanopore technology. SiN nanopores in thin membranes with specific dimensions exhibit high signal resolution, enabling real-time and single-molecule electronic detection of tRNA conformational changes. We focus on human mitochondrial tRNALeu(UAA) (mt-Leu(UAA)) that decodes Leu codons UUA/UUG (UUR) during protein synthesis on the mt-ribosome. The single A14G substitution in mt-Leu(UAA) is the major cause of MELAS disease. Measurements of current blockades and dwell times reveal distinct conformational dynamics of the wild-type (WT) and the A14G variant of mt-Leu(UAA) in response to the conserved post-transcriptional m1G9 methylation. While the m1G9-modified WT transcript adopts a more stable structure relative to the unmodified transcript, the m1G9-modified MELAS transcript adopts a less stable structure relative to the unmodified transcript. Notably, these differential features were observed at 0.4 M KCl, but not at 3 M KCl, highlighting the importance of experimental settings that are closer to physiological conditions. This work demonstrates the feasibility of the nanopore platform to discern tRNA molecules that differ by a single-nucleotide substitution or by a single methylation event, providing an important step forward to explore changes in the conformational dynamics of other RNA molecules in human diseases.


Subject(s)
MELAS Syndrome , Nanopores , Nucleic Acid Conformation , MELAS Syndrome/genetics , Humans , RNA, Transfer/genetics , RNA, Transfer/chemistry , RNA/chemistry , RNA/genetics
7.
Eur J Clin Invest ; 54(7): e14217, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38644687

ABSTRACT

OBJECTIVES AND SCOPE: Primary mitochondrial diseases (PMDs) are rare genetic disorders resulting from mutations in genes crucial for effective oxidative phosphorylation (OXPHOS) that can affect mitochondrial function. In this review, we examine the bioenergetic alterations and oxidative stress observed in cellular models of primary mitochondrial diseases (PMDs), shedding light on the intricate complexity between mitochondrial dysfunction and cellular pathology. We explore the diverse cellular models utilized to study PMDs, including patient-derived fibroblasts, induced pluripotent stem cells (iPSCs) and cybrids. Moreover, we also emphasize the connection between oxidative stress and neuroinflammation. INSIGHTS: The central nervous system (CNS) is particularly vulnerable to mitochondrial dysfunction due to its dependence on aerobic metabolism and the correct functioning of OXPHOS. Similar to other neurodegenerative diseases affecting the CNS, individuals with PMDs exhibit several neuroinflammatory hallmarks alongside neurodegeneration, a pattern also extensively observed in mouse models of mitochondrial diseases. Based on histopathological analysis of postmortem human brain tissue and findings in mouse models of PMDs, we posit that neuroinflammation is not merely a consequence of neurodegeneration but a potential pathogenic mechanism for disease progression that deserves further investigation. This recognition may pave the way for novel therapeutic strategies for this group of devastating diseases that currently lack effective treatments. SUMMARY: In summary, this review provides a comprehensive overview of bioenergetic alterations and redox imbalance in cellular models of PMDs while underscoring the significance of neuroinflammation as a potential driver in disease progression.


Subject(s)
Energy Metabolism , Mitochondrial Diseases , Neuroinflammatory Diseases , Oxidative Stress , Humans , Oxidative Stress/physiology , Mitochondrial Diseases/physiopathology , Mitochondrial Diseases/metabolism , Neuroinflammatory Diseases/physiopathology , Neuroinflammatory Diseases/metabolism , Animals , Energy Metabolism/physiology , Oxidative Phosphorylation , Mice , Mitochondria/metabolism , Fibroblasts/metabolism , Induced Pluripotent Stem Cells/metabolism , Leigh Disease/metabolism , Leigh Disease/genetics , Leigh Disease/physiopathology , MELAS Syndrome/metabolism , MELAS Syndrome/physiopathology , MELAS Syndrome/genetics , Disease Models, Animal
8.
Blood ; 144(6): 657-671, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38635773

ABSTRACT

ABSTRACT: Pseudouridine is the most prevalent RNA modification, and its aberrant function is implicated in various human diseases. However, the specific impact of pseudouridylation on hematopoiesis remains poorly understood. Here, we investigated the role of transfer RNA (tRNA) pseudouridylation in erythropoiesis and its association with mitochondrial myopathy, lactic acidosis, and sideroblastic anemia syndrome (MLASA) pathogenesis. By using patient-specific induced pluripotent stem cells (iPSCs) carrying a genetic pseudouridine synthase 1 (PUS1) mutation and a corresponding mutant mouse model, we demonstrated impaired erythropoiesis in MLASA-iPSCs and anemia in the MLASA mouse model. Both MLASA-iPSCs and mouse erythroblasts exhibited compromised mitochondrial function and impaired protein synthesis. Mechanistically, we revealed that PUS1 deficiency resulted in reduced mitochondrial tRNA levels because of pseudouridylation loss, leading to aberrant mitochondrial translation. Screening of mitochondrial supplements aimed at enhancing respiration or heme synthesis showed limited effect in promoting erythroid differentiation. Interestingly, the mammalian target of rapamycin (mTOR) inhibitor rapamycin facilitated erythroid differentiation in MLASA-iPSCs by suppressing mTOR signaling and protein synthesis, and consistent results were observed in the MLASA mouse model. Importantly, rapamycin treatment partially ameliorated anemia phenotypes in a patient with MLASA. Our findings provide novel insights into the crucial role of mitochondrial tRNA pseudouridylation in governing erythropoiesis and present potential therapeutic strategies for patients with anemia facing challenges related to protein translation.


Subject(s)
Erythropoiesis , Induced Pluripotent Stem Cells , Mitochondria , RNA, Transfer , Animals , Mice , Humans , RNA, Transfer/genetics , RNA, Transfer/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Induced Pluripotent Stem Cells/metabolism , Pseudouridine/metabolism , Anemia, Sideroblastic/genetics , Anemia, Sideroblastic/metabolism , Anemia, Sideroblastic/pathology , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , Hydro-Lyases/metabolism , Hydro-Lyases/genetics , MELAS Syndrome/genetics , MELAS Syndrome/pathology , MELAS Syndrome/metabolism , Disease Models, Animal
9.
J Inherit Metab Dis ; 47(4): 757-765, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38499449

ABSTRACT

T cells have been shown to maintain a lower percentage (heteroplasmy) of the pathogenic m.3243A>G variant (MT-TL1, associated with maternally inherited diabetes and deafness [MIDD] and mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes [MELAS]). The mechanism(s) underlying this purifying selection, however, remain unknown. Here we report that purified patient memory CD4+ T cells have lower bulk m.3243A>G heteroplasmy compared to naïve CD4+ T cells. In vitro activation of naïve CD4+ m.3243A>G patient T cells results in lower bulk m.3243A>G heteroplasmy after proliferation. Finally, m.3243A>G patient T cell receptor repertoire sequencing reveals relative oligoclonality compared to controls. These data support a role for T cell activation in peripheral, purifying selection against high m.3243A>G heteroplasmy T cells at the level of the cell, in a likely cell-autonomous fashion.


Subject(s)
Lymphocyte Activation , MELAS Syndrome , Humans , MELAS Syndrome/genetics , CD4-Positive T-Lymphocytes/immunology , Heteroplasmy/genetics , RNA, Transfer, Leu/genetics , Male , Female , DNA, Mitochondrial/genetics , Adult
11.
BMJ Case Rep ; 17(2)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38413140

ABSTRACT

Rare causes of stroke-like presentations can be difficult to diagnose. We report a case of a man in his 40s who first presented with stroke symptoms, but whose clinical course was not typical for a stroke. A detailed investigation of the patient's medical history revealed bilateral sensorineural hearing loss which prompted a wider diagnostic assessment.Furthermore, lack of vascular risk factors and a normal angiogram strengthened our suspicion of an unusual underlying condition. Raised lactic acid levels and genetic analysis confirmed a diagnosis of mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes syndrome.


Subject(s)
Acidosis, Lactic , Hearing Loss, Bilateral , MELAS Syndrome , Stroke , Adult , Humans , Male , Acidosis, Lactic/diagnosis , Lactic Acid , MELAS Syndrome/complications , MELAS Syndrome/diagnosis , MELAS Syndrome/genetics , Stroke/diagnosis , Stroke/etiology
14.
J Neurol ; 271(2): 864-876, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37847292

ABSTRACT

OBJECTIVE: Mitochondrial myopathy without extraocular muscles involvement (MiMy) represents a distinct form of mitochondrial disorder predominantly affecting proximal/distal or axial muscles, with its phenotypic, genotypic features, and long-term prognosis poorly understood. METHODS: A cross-sectional study conducted at a national diagnostic center for mitochondrial disease involved 47 MiMy patients, from a cohort of 643 mitochondrial disease cases followed up at Qilu Hospital from January 1, 2000, to January 1, 2021. We compared the clinical, pathological, and genetic features of MiMy to progressive external ophthalmoplegia (PEO) and mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) patients. RESULTS: MiMy patients demonstrated a more pronounced muscle involvement syndrome, with lower 6MWT scores, higher FSS, and lower BMI compared to PEO and MELAS patients. Serum levels of creatinine kinase (CK), lactate, and growth and differentiation factor 15 (GDF15) were substantially elevated in MiMy patients. Nearly a third (31.9%) displayed signs of subclinical peripheral neuropathy, mostly axonal neuropathy. Muscle biopsies revealed that cytochrome c oxidase strong (COX-s) ragged-red fibers (RRFs) were a typical pathological feature in MiMy patients. Genetic analysis predominantly revealed mtDNA point pathogenic variants (59.6%) and less frequently single (12.8%) or multiple (4.2%) mtDNA deletions. During the follow-up, a majority (76.1%) of MiMy patients experienced stabilization or improvement after therapeutic intervention. CONCLUSIONS: This study provides a comprehensive profile of MiMy through a large patient cohort, elucidating its unique clinical, genetic, and pathological features. These findings offer significant insights into the diagnostic and therapeutic management of MiMy, ultimately aiming to ameliorate patient outcomes and enhance the quality of life.


Subject(s)
Acidosis, Lactic , MELAS Syndrome , Ophthalmoplegia, Chronic Progressive External , Stroke , Humans , MELAS Syndrome/genetics , Oculomotor Muscles , Cross-Sectional Studies , Quality of Life , Stroke/pathology , DNA, Mitochondrial/genetics , Ophthalmoplegia, Chronic Progressive External/genetics , Ophthalmoplegia, Chronic Progressive External/pathology
15.
Am J Med Genet A ; 194(3): e63461, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37953071

ABSTRACT

The MT-TL2 m.12315G>A pathogenic variant has previously been reported in five individuals with mild clinical phenotypes. Herein we report the case of a 5-year-old child with heteroplasmy for this variant who developed neurological regression and stroke-like episodes similar to those observed in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Biochemical evaluation revealed depletion of arginine on plasma amino acid analysis and low z-scores for citrulline on untargeted plasma metabolomics analysis. These findings suggested that decreased availability of nitric oxide may have contributed to the stroke-like episodes. The use of intravenous arginine during stroke-like episodes and daily enteral L-citrulline supplementation normalized her biochemical values of arginine and citrulline. Untargeted plasma metabolomics showed the absence of nicotinamide and 1-methylnicotinamide, and plasma total glutathione levels were low; thus, nicotinamide riboside and N-acetylcysteine therapies were initiated. This report expands the phenotype associated with the rare mitochondrial variant MT-TL2 m.12315G>A to include neurological regression and a MELAS-like phenotype. Individuals with this variant should undergo in-depth biochemical analysis to include untargeted plasma metabolomics, plasma amino acids, and glutathione levels to help guide a targeted approach to treatment.


Subject(s)
Acidosis, Lactic , MELAS Syndrome , Mitochondrial Encephalomyopathies , Stroke , Child, Preschool , Female , Humans , Arginine/genetics , Citrulline , Glutathione/metabolism , MELAS Syndrome/diagnosis , MELAS Syndrome/genetics , MELAS Syndrome/complications , Nitric Oxide Donors/metabolism , Stroke/complications , Stroke/drug therapy
16.
Int J Mol Sci ; 24(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38139018

ABSTRACT

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode (MELAS) syndrome, caused by a single base substitution in mitochondrial DNA (m.3243A>G), is one of the most common maternally inherited mitochondrial diseases accompanied by neuronal damage due to defects in the oxidative phosphorylation system. There is no established treatment. Our previous study reported a superior restoration of mitochondrial function and bioenergetics in mitochondria-deficient cells using highly purified mesenchymal stem cells (RECs). However, whether such exogenous mitochondrial donation occurs in mitochondrial disease models and whether it plays a role in the recovery of pathological neuronal functions is unknown. Here, utilizing induced pluripotent stem cells (iPSC), we differentiated neurons with impaired mitochondrial function from patients with MELAS. MELAS neurons and RECs/mesenchymal stem cells (MSCs) were cultured under contact or non-contact conditions. Both RECs and MSCs can donate mitochondria to MELAS neurons, but RECs are more excellent than MSCs for mitochondrial transfer in both systems. In addition, REC-mediated mitochondrial transfer significantly restored mitochondrial function, including mitochondrial membrane potential, ATP/ROS production, intracellular calcium storage, and oxygen consumption rate. Moreover, mitochondrial function was maintained for at least three weeks. Thus, REC-donated exogenous mitochondria might offer a potential therapeutic strategy for treating neurological dysfunction in MELAS.


Subject(s)
Acidosis, Lactic , MELAS Syndrome , Mesenchymal Stem Cells , Mitochondrial Diseases , Humans , MELAS Syndrome/genetics , MELAS Syndrome/therapy , Mitochondria/genetics , Acidosis, Lactic/metabolism , Acidosis, Lactic/pathology , DNA, Mitochondrial/metabolism , Mitochondrial Diseases/metabolism , Neurons/pathology , Mesenchymal Stem Cells/metabolism
18.
Nat Metab ; 5(12): 2169-2183, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38036771

ABSTRACT

Nuclease-mediated editing of heteroplasmic mitochondrial DNA (mtDNA) seeks to preferentially cleave and eliminate mutant mtDNA, leaving wild-type genomes to repopulate the cell and shift mtDNA heteroplasmy. Various technologies are available, but many suffer from limitations based on size and/or specificity. The use of ARCUS nucleases, derived from naturally occurring I-CreI, avoids these pitfalls due to their small size, single-component protein structure and high specificity resulting from a robust protein-engineering process. Here we describe the development of a mitochondrial-targeted ARCUS (mitoARCUS) nuclease designed to target one of the most common pathogenic mtDNA mutations, m.3243A>G. mitoARCUS robustly eliminated mutant mtDNA without cutting wild-type mtDNA, allowing for shifts in heteroplasmy and concomitant improvements in mitochondrial protein steady-state levels and respiration. In vivo efficacy was demonstrated using a m.3243A>G xenograft mouse model with mitoARCUS delivered systemically by adeno-associated virus. Together, these data support the development of mitoARCUS as an in vivo gene-editing therapeutic for m.3243A>G-associated diseases.


Subject(s)
DNA, Mitochondrial , MELAS Syndrome , Humans , Animals , Mice , DNA, Mitochondrial/genetics , MELAS Syndrome/genetics , MELAS Syndrome/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mutation
19.
Medicine (Baltimore) ; 102(47): e36008, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38013338

ABSTRACT

RATIONALE: Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a subset of rare mitochondrial diseases characterized by diverse clinical manifestations, which often complicates its diagnosis. PATIENT CONCERNS: This report chronicles the experiences of a 14-year-old female patient who underwent multiple misdiagnoses before the eventual identification of MELAS syndrome. Her journey began with symptoms that included growth retardation, hypertrophic cardiomyopathy, and epilepsy. DIAGNOSIS: The definitive diagnosis of MELAS syndrome was established through genetic confirmation, revealing a mutation in the MT-TL1 gene (m.3242A > G). INTERVENTIONS: Upon diagnosis, the patient received targeted symptomatic treatment, which led to pronounced improvements in her symptoms. OUTCOMES: The patient's condition stabilized with the administered treatments, and she exhibited significant symptom relief, emphasizing the importance of accurate diagnosis and timely intervention. LESSONS: This case underscores the imperative for heightened clinical vigilance and thorough differential diagnosis in the face of complex clinical presentations, such as those seen in MELAS syndrome, to ensure timely and appropriate interventions.


Subject(s)
Acidosis, Lactic , MELAS Syndrome , Stroke , Humans , Female , Adolescent , MELAS Syndrome/diagnosis , MELAS Syndrome/genetics , MELAS Syndrome/complications , Acidosis, Lactic/complications , Stroke/complications , Mutation , Diagnostic Errors
20.
Am J Med Genet A ; 191(12): 2890-2897, 2023 12.
Article in English | MEDLINE | ID: mdl-37654102

ABSTRACT

Mitochondrial disorders can present with a wide range of clinical and biochemical phenotypes. Mitochondrial DNA variants may be influenced by factors such as degree of heteroplasmy and tissue distribution. We present a four-generation family in which 10 individuals carry a pathogenic mitochondrial variant (m.5537_5538insT, MT-TW gene) with differing levels of heteroplasmy and clinical features. This genetic variant has been documented in two prior reports, both in individuals with Leigh syndrome. In the current family, three individuals have severe mitochondrial symptoms including Leigh syndrome (patient 1, 100% in blood), MELAS (patient 2, 97% heteroplasmy in muscle), and MELAS-like syndrome (patient 3, 50% heteroplasmy in blood and 100% in urine). Two individuals have mild mitochondrial symptoms (patient 4, 50% in blood and 67% in urine and patient 5, 50% heteroplasmy in blood and 30% in urine). We observe that this variant is associated with multiple mitochondrial presentations and phenotypes, including MELAS syndrome for which this variant has not previously been reported. We also demonstrate that the level of heteroplasmy of the mitochondrial DNA variant correlates with the severity of clinical presentation; however, not with the specific mitochondrial syndrome.


Subject(s)
Leigh Disease , MELAS Syndrome , Mitochondrial Diseases , Humans , MELAS Syndrome/diagnosis , MELAS Syndrome/genetics , MELAS Syndrome/complications , Leigh Disease/diagnosis , Leigh Disease/genetics , Leigh Disease/complications , Mitochondria/genetics , DNA, Mitochondrial/genetics , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Mitochondrial Diseases/complications
SELECTION OF CITATIONS
SEARCH DETAIL