Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.238
1.
Eur Phys J E Soft Matter ; 47(6): 39, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38831117

Small-Angle Scattering (SAS), encompassing both X-ray (SAXS) and Neutron (SANS) techniques, is a crucial tool for structural analysis at the nanoscale, particularly in the realm of biological macromolecules. This paper explores the intricacies of SAS, emphasizing its application in studying complex biological systems and the challenges associated with sample preparation and data analysis. We highlight the use of neutron-scattering properties of hydrogen isotopes and isotopic labeling in SANS for probing structures within multi-subunit complexes, employing techniques like contrast variation (CV) for detailed structural analysis. However, traditional SAS analysis methods, such as Guinier and Kratky plots, are limited by their partial use of available data and inability to operate without substantial a priori knowledge of the sample's chemical composition. To overcome these limitations, we introduce a novel approach integrating α -SAS, a computational method for simulating SANS with CV, with machine learning (ML). This approach enables the accurate prediction of scattering contrast in multicomponent macromolecular complexes, reducing the need for extensive sample preparation and computational resources. α -SAS, utilizing Monte Carlo methods, generates comprehensive datasets from which structural invariants can be extracted, enhancing our understanding of the macromolecular form factor in dilute systems. The paper demonstrates the effectiveness of this integrated approach through its application to two case studies: Janus particles, an artificial structure with a known SAS intensity and contrast, and a biological system involving RNA polymerase II in complex with Rtt103. These examples illustrate the method's capability to provide detailed structural insights, showcasing its potential as a powerful tool for advanced SAS analysis in structural biology.


Machine Learning , Scattering, Small Angle , Macromolecular Substances/chemistry , Neutron Diffraction , X-Ray Diffraction , Monte Carlo Method
2.
Anal Chim Acta ; 1306: 342609, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38692788

BACKGROUND: Accurate quantitative analysis of small molecule metabolites in biological samples is of great significance. Hydroxypolycyclic aromatic hydrocarbons (OH-PAHs) are metabolic derivatives of emerging pollutants, reflecting exposure to polycyclic aromatic hydrocarbons (PAHs). Macromolecules such as proteins and enzymes in biological samples will interfere with the accurate quantification of OH-PAHs, making direct analysis impossible, requiring a series of complex treatments such as enzymatic hydrolysis. Therefore, the development of matrix-compatible fiber coatings that can exclude macromolecules is of great significance to improve the ability of solid-phase microextraction (SPME) technology to selectively quantify small molecules in complex matrices and achieve rapid and direct analysis. RESULTS: We have developed an innovative coating with a stable macromolecular barrier using electrospinning and flexible filament winding (FW) technologies. This coating, referred to as the hollow fibrous covalent organic framework@polyionic liquid (F-COF@polyILs), demonstrates outstanding conductivity and stability. It accelerates the adsorption equilibrium time (25 min) for polar OH-PAHs through electrically enhanced solid-phase microextraction (EE-SPME) technology. Compared to the powder form, F-COF@polyILs coating displays effective non-selective large-size molecular sieving. Combining gas chromatography-tandem triple quadrupole mass spectrometry (GC-MS/MS), we have established a simple, efficient quantitative analysis method for OH-PAHs with a low detection limit (0.008-0.05 ng L-1), wide linear range (0.02-1000 ng L-1), and good repeatability (1.0%-7.3 %). Experimental results show that the coated fiber exhibits good resistance to matrix interference (2.5%-16.7 %) in complex biological matrices, and has been successfully used for OH-PAHs analysis in human urine and plasma. SIGNIFICANCE: FW technology realizes the transformation of the traditional powder form of COF in SPME coating to a uniform non-powder coating, giving its ability to exclude large molecules in complex biological matrices. A method for quantitatively detecting OH-PAHs in real biological samples was also developed. Therefore, the filament winding preparation method for F-COF@polyILs coated fibers, along with fibrous COFs' morphology control, has substantial implications for efficiently extracting target compounds from complex matrices.


Solid Phase Microextraction , Solid Phase Microextraction/methods , Metal-Organic Frameworks/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/isolation & purification , Macromolecular Substances/chemistry , Limit of Detection , Adsorption , Electrochemical Techniques/methods
3.
Acta Crystallogr D Struct Biol ; 80(Pt 5): 314-327, 2024 May 01.
Article En | MEDLINE | ID: mdl-38700059

Radiation damage remains one of the major impediments to accurate structure solution in macromolecular crystallography. The artefacts of radiation damage can manifest as structural changes that result in incorrect biological interpretations being drawn from a model, they can reduce the resolution to which data can be collected and they can even prevent structure solution entirely. In this article, we discuss how to identify and mitigate against the effects of radiation damage at each stage in the macromolecular crystal structure-solution pipeline.


Macromolecular Substances , Crystallography, X-Ray/methods , Macromolecular Substances/chemistry , Models, Molecular , Proteins/chemistry
4.
Nat Commun ; 15(1): 4403, 2024 May 23.
Article En | MEDLINE | ID: mdl-38782907

Controlled manipulation of cultured cells by delivery of exogenous macromolecules is a cornerstone of experimental biology. Here we describe a platform that uses nanopipettes to deliver defined numbers of macromolecules into cultured cell lines and primary cells at single molecule resolution. In the nanoinjection platform, the nanopipette is used as both a scanning ion conductance microscope (SICM) probe and an injection probe. The SICM is used to position the nanopipette above the cell surface before the nanopipette is inserted into the cell into a defined location and to a predefined depth. We demonstrate that the nanoinjection platform enables the quantitative delivery of DNA, globular proteins, and protein fibrils into cells with single molecule resolution and that delivery results in a phenotypic change in the cell that depends on the identity of the molecules introduced. Using experiments and computational modeling, we also show that macromolecular crowding in the cell increases the signal-to-noise ratio for the detection of translocation events, thus the cell itself enhances the detection of the molecules delivered.


DNA , Single Molecule Imaging , Humans , Single Molecule Imaging/methods , DNA/metabolism , DNA/chemistry , Animals , Nanotechnology/methods , Proteins/metabolism , Proteins/chemistry , Macromolecular Substances/metabolism , Macromolecular Substances/chemistry , Signal-To-Noise Ratio
5.
Int J Biol Macromol ; 269(Pt 1): 132079, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705338

The global issue of pollution caused by the misuse and indiscriminate application of pesticides has reached critical levels. In this vein, encapsulating pesticides with carriers offers a promising approach that impacts key parameters such as pesticide release kinetics, stability, and biocompatibility, enhancing the safe and effective delivery of agrochemicals. Encapsulated pesticides hold the potential to reduce off-target effects, decrease environmental contamination, and improve overall crop protection. This review highlights the potential benefits and challenges associated with the use of both organic and in-organic carriers in pesticide encapsulation, and the current state of research in this field. Overall, the encapsulation of pesticides with carriers presents a promising approach for the safe and effective delivery of these vital agricultural compounds. By harnessing the advantages of encapsulation, this technique offers a potential solution to mitigate the adverse effects of conventional pesticides and contribute towards sustainable and environmentally conscious farming practices. Further research and development in this field is necessary to optimize the encapsulation process, carrier properties and advance towards sustainable and environmentally friendly pesticide delivery systems.


Drug Carriers , Pesticides , Pesticides/chemistry , Drug Carriers/chemistry , Macromolecular Substances/chemistry , Humans
6.
Int J Mol Sci ; 25(10)2024 May 13.
Article En | MEDLINE | ID: mdl-38791335

Macromolecules exhibit ordered structures and complex functions in an aqueous environment with strong thermodynamic fluctuations [...].


Macromolecular Substances , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism , Thermodynamics , Humans
7.
Int J Biol Macromol ; 268(Pt 2): 131874, 2024 May.
Article En | MEDLINE | ID: mdl-38692547

Serious orthopedic disorders resulting from myriad diseases and impairments continue to pose a considerable challenge to contemporary clinical care. Owing to its limited regenerative capacity, achieving complete bone tissue regeneration and complete functional restoration has proven challenging with existing treatments. By virtue of cellular regenerative and paracrine pathways, stem cells are extensively utilized in the restoration and regeneration of bone tissue; however, low survival and retention after transplantation severely limit their therapeutic effect. Meanwhile, biomolecule materials provide a delivery platform that improves stem cell survival, increases retention, and enhances therapeutic efficacy. In this review, we present the basic concepts of stem cells and extracellular vesicles from different sources, emphasizing the importance of using appropriate expansion methods and modification strategies. We then review different types of biomolecule materials, focusing on their design strategies. Moreover, we summarize several forms of biomaterial preparation and application strategies as well as current research on biomacromolecule materials loaded with stem cells and extracellular vesicles. Finally, we present the challenges currently impeding their clinical application for the treatment of orthopedic diseases. The article aims to provide researchers with new insights for subsequent investigations.


Extracellular Vesicles , Stem Cells , Extracellular Vesicles/chemistry , Humans , Stem Cells/cytology , Animals , Biocompatible Materials/chemistry , Bone Diseases/therapy , Bone Regeneration , Stem Cell Transplantation/methods , Macromolecular Substances/chemistry , Macromolecular Substances/pharmacology
8.
J Am Chem Soc ; 146(21): 14844-14855, 2024 May 29.
Article En | MEDLINE | ID: mdl-38747446

Nature employs sophisticated mechanisms to precisely regulate self-assembly and functions within biological systems, exemplified by the formation of cytoskeletal filaments. Various enzymatic reactions and auxiliary proteins couple with the self-assembly process, meticulously regulating the length and functions of resulting macromolecular structures. In this context, we present a bioinspired, reaction-coupled approach for the controlled supramolecular polymerization in synthetic systems. To achieve this, we employ an enzymatic reaction that interfaces with the adenosine triphosphate (ATP)-templated supramolecular polymerization of naphthalene diimide monomers (NSG). Notably, the enzymatic production of ATP (template) plays a pivotal role in facilitating reaction-controlled, cooperative growth of the NSG monomers. This growth process, in turn, provides positive feedback to the enzymatic production of ATP, creating an ideal reaction-coupled assembly process. The success of this approach is further evident in the living-growth characteristic observed during seeding experiments, marking this method as the pioneering instance where reaction-coupled self-assembly precisely controls the growth kinetics and structural aspects of supramolecular polymers in a predictive manner, akin to biological systems.


Adenosine Triphosphate , Imides , Naphthalenes , Polymerization , Naphthalenes/chemistry , Naphthalenes/metabolism , Naphthalenes/chemical synthesis , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/chemistry , Imides/chemistry , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism , Macromolecular Substances/chemical synthesis , Molecular Structure , Kinetics , Polymers/chemistry
9.
Int J Biol Macromol ; 269(Pt 1): 132001, 2024 Jun.
Article En | MEDLINE | ID: mdl-38702007

Plant-derived bioactive macromolecules (i.e., proteins, lipids, and nucleic acids) were prepared as extracellular vesicles (EVs). Plant-derived EVs are gaining pharmaceutical research interest because of their bioactive components and delivery properties. The spherical nanosized EVs derived from Raphanus sativus L. var. caudatus Alef microgreens previously showed antiproliferative activity in HCT116 colon cancer cells from macromolecular compositions (predominantly proteins). To understand the mechanism of action, the biological activity studies, i.e., antiproliferation, cellular biochemical changes, DNA conformational changes, DNA damage, apoptotic nuclear morphological changes, apoptosis induction, and apoptotic pathways, were determined by neutral red uptake assay, synchrotron radiation-based Fourier transform infrared microspectroscopy, circular dichroism spectroscopy, comet assay, 4',6-diamidino-2-phenylindole (DAPI) staining, flow cytometry, and caspase activity assay, respectively. EVs inhibited HCT116 cell growth in concentration- and time-dependent manners, with a half-maximal inhibitory concentration of 675.4 ± 33.8 µg/ml at 48 h and a selectivity index of 1.5 ± 0.076. HCT116 treated with EVs mainly changed the cellular biochemical compositions in the nucleic acids and carbohydrates region. The DNA damage caused no changes in DNA conformation. The apoptotic nuclear morphological changes were associated with the increased apoptotic cell population. The apoptotic cell death was induced by both extrinsic and intrinsic pathways. EVs have potential as antiproliferative bioparticles.


Apoptosis , Cell Proliferation , DNA Damage , Extracellular Vesicles , Raphanus , Humans , Apoptosis/drug effects , Raphanus/chemistry , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , HCT116 Cells , Cell Proliferation/drug effects , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Protein Structure, Secondary , Macromolecular Substances/chemistry , Macromolecular Substances/pharmacology
11.
J Proteome Res ; 23(6): 2067-2077, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38776430

Engineered macromolecules offer compelling means for the therapy of conventionally undruggable interactions in human disease. However, their efficacy is limited by barriers to tissue and intracellular delivery. Inspired by recent advances in molecular barcoding and evolution, we developed BarcodeBabel, a generalized method for the design of libraries of peptide barcodes suitable for high-throughput mass spectrometry proteomics. Combined with PeptideBabel, a Monte Carlo sampling algorithm for the design of peptides with evolvable physicochemical properties and sequence complexity, we developed a barcoded library of cell penetrating peptides (CPPs) with distinct physicochemical features. Using quantitative targeted mass spectrometry, we identified CPPS with improved nuclear and cytoplasmic delivery exceeding hundreds of millions of molecules per human cell while maintaining minimal membrane disruption and negligible toxicity in vitro. These studies provide a proof of concept for peptide barcoding as a homogeneous high-throughput method for macromolecular screening and delivery. BarcodeBabel and PeptideBabel are available open-source from https://github.com/kentsisresearchgroup/.


Cell-Penetrating Peptides , Proteomics , Humans , Proteomics/methods , Cell-Penetrating Peptides/chemistry , Algorithms , Mass Spectrometry/methods , Peptide Library , High-Throughput Screening Assays/methods , Macromolecular Substances/chemistry , Macromolecular Substances/analysis
12.
Acta Crystallogr D Struct Biol ; 80(Pt 6): 410-420, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38805246

The detection of specific biological macromolecules in cryogenic electron tomography data is frequently approached by applying cross-correlation-based 3D template matching. To reduce computational cost and noise, high binning is used to aggregate voxels before template matching. This remains a prevalent practice in both practical applications and methods development. Here, the relation between template size, shape and angular sampling is systematically evaluated to identify ribosomes in a ground-truth annotated data set. It is shown that at the commonly used binning, a detailed subtomogram average, a sphere and a heart emoji result in near-identical performance. These findings indicate that with current template-matching practices macromolecules can only be detected with high precision if their shape and size are sufficiently different from the background. Using theoretical considerations, the experimental results are rationalized and it is discussed why primarily low-frequency information remains at high binning and that template matching fails to be accurate because similarly shaped and sized macromolecules have similar low-frequency spectra. These challenges are discussed and potential enhancements for future template-matching methodologies are proposed.


Electron Microscope Tomography , Ribosomes , Electron Microscope Tomography/methods , Ribosomes/ultrastructure , Cryoelectron Microscopy/methods , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Algorithms , Macromolecular Substances/chemistry
13.
Colloids Surf B Biointerfaces ; 239: 113956, 2024 Jul.
Article En | MEDLINE | ID: mdl-38733647

The early stages of osteoarthritis (OA) in the joints are typically characterized by two key factors: the dysfunction of articular cartilage lubrication and inflammation resulting from the excessive production of reactive oxygen species (ROS). Synthetic injectable macromolecular materials present great potential for preventing the progression of early OA. In this study, to mimic the excellent lubricity of brush-like aggregates found in natural synovial fluid, we develop a novel macromolecular biolubricant (CS-PS-DA) by integrating adhesion and hydration groups onto backbone of natural biomacromolecules. CS-PS-DA exhibits a strong affinity for cartilage surfaces, enabling the formation of a stable lubrication layer at the sliding interface of degraded cartilages to restore joint lubrication performance. In vitro results from ROS scavenging and anti-inflammatory experiments indicate the great advantage of CS-PS-DA to decrease the levels of proinflammatory cytokines by inhibiting ROS overproduction. Finally, in vivo rats OA model demonstrates that intra-cavitary injection of CS-PS-DA could effectively resist cartilage wear and mitigated inflammation in the joints. This novel biolubricant provides a new and timely strategy for the treatment of OA.


Osteoarthritis , Rats, Sprague-Dawley , Reactive Oxygen Species , Animals , Reactive Oxygen Species/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Rats , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Macromolecular Substances/chemistry , Macromolecular Substances/pharmacology , Lubrication , Male , Cartilage, Articular/metabolism , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemistry , Surface Properties , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
14.
Proc Natl Acad Sci U S A ; 121(19): e2403384121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38691585

Macromolecular complexes are often composed of diverse subunits. The self-assembly of these subunits is inherently nonequilibrium and must avoid kinetic traps to achieve high yield over feasible timescales. We show how the kinetics of self-assembly benefits from diversity in subunits because it generates an expansive parameter space that naturally improves the "expressivity" of self-assembly, much like a deeper neural network. By using automatic differentiation algorithms commonly used in deep learning, we searched the parameter spaces of mass-action kinetic models to identify classes of kinetic protocols that mimic biological solutions for productive self-assembly. Our results reveal how high-yield complexes that easily become kinetically trapped in incomplete intermediates can instead be steered by internal design of rate-constants or external and active control of subunits to efficiently assemble. Internal design of a hierarchy of subunit binding rates generates self-assembly that can robustly avoid kinetic traps for all concentrations and energetics, but it places strict constraints on selection of relative rates. External control via subunit titration is more versatile, avoiding kinetic traps for any system without requiring molecular engineering of binding rates, albeit less efficiently and robustly. We derive theoretical expressions for the timescales of kinetic traps, and we demonstrate our optimization method applies not just for design but inference, extracting intersubunit binding rates from observations of yield-vs.-time for a heterotetramer. Overall, we identify optimal kinetic protocols for self-assembly as a powerful mechanism to achieve efficient and high-yield assembly in synthetic systems whether robustness or ease of "designability" is preferred.


Algorithms , Kinetics , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism
15.
Chem Rev ; 124(8): 4734-4777, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38579177

This comprehensive Review delves into the chemical principles governing RNA-mediated crowding events, commonly referred to as granules or biological condensates. We explore the pivotal role played by RNA sequence, structure, and chemical modifications in these processes, uncovering their correlation with crowding phenomena under physiological conditions. Additionally, we investigate instances where crowding deviates from its intended function, leading to pathological consequences. By deepening our understanding of the delicate balance that governs molecular crowding driven by RNA and its implications for cellular homeostasis, we aim to shed light on this intriguing area of research. Our exploration extends to the methodologies employed to decipher the composition and structural intricacies of RNA granules, offering a comprehensive overview of the techniques used to characterize them, including relevant computational approaches. Through two detailed examples highlighting the significance of noncoding RNAs, NEAT1 and XIST, in the formation of phase-separated assemblies and their influence on the cellular landscape, we emphasize their crucial role in cellular organization and function. By elucidating the chemical underpinnings of RNA-mediated molecular crowding, investigating the role of modifications, structures, and composition of RNA granules, and exploring both physiological and aberrant phase separation phenomena, this Review provides a multifaceted understanding of the intriguing world of RNA-mediated biological condensates.


RNA , RNA/chemistry , RNA/metabolism , Humans , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism , Animals , Nucleic Acid Conformation
16.
Methods Mol Biol ; 2787: 315-332, 2024.
Article En | MEDLINE | ID: mdl-38656500

Structural insights into macromolecular and protein complexes provide key clues about the molecular basis of the function. Cryogenic electron microscopy (cryo-EM) has emerged as a powerful structural biology method for studying protein and macromolecular structures at high resolution in both native and near-native states. Despite the ability to get detailed structural insights into the processes underlying protein function using cryo-EM, there has been hesitancy amongst plant biologists to apply the method for biomolecular interaction studies. This is largely evident from the relatively fewer structural depositions of proteins and protein complexes from plant origin in electron microscopy databank. Even though the progress has been slow, cryo-EM has significantly contributed to our understanding of the molecular biology processes underlying photosynthesis, energy transfer in plants, besides viruses infecting plants. This chapter introduces sample preparation for both negative-staining electron microscopy (NSEM) and cryo-EM for plant proteins and macromolecular complexes and data analysis using single particle analysis for beginners.


Cryoelectron Microscopy , Macromolecular Substances , Cryoelectron Microscopy/methods , Macromolecular Substances/ultrastructure , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism , Plant Proteins/metabolism , Plant Proteins/ultrastructure , Plant Proteins/chemistry , Negative Staining/methods
17.
Mol Cell ; 84(9): 1783-1801.e7, 2024 May 02.
Article En | MEDLINE | ID: mdl-38614097

Liquid-liquid phase separation (LLPS) of putative assembly scaffolds has been proposed to drive the biogenesis of membraneless compartments. LLPS scaffolds are usually identified through in vitro LLPS assays with single macromolecules (homotypic), but the predictive value of these assays remains poorly characterized. Here, we apply a strategy to evaluate the robustness of homotypic LLPS assays. When applied to the chromosomal passenger complex (CPC), which undergoes LLPS in vitro and localizes to centromeres to promote chromosome biorientation, LLPS propensity in vitro emerged as an unreliable predictor of subcellular localization. In vitro CPC LLPS in aqueous buffers was enhanced by commonly used crowding agents. Conversely, diluted cytomimetic media dissolved condensates of the CPC and of several other proteins. We also show that centromeres do not seem to nucleate LLPS, nor do they promote local, spatially restrained LLPS of the CPC. Our strategy can be adapted to purported LLPS scaffolds of other membraneless compartments.


Centromere , Centromere/metabolism , Macromolecular Substances/metabolism , Macromolecular Substances/chemistry , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosome Segregation , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Humans , Phase Separation
18.
Nat Commun ; 15(1): 3413, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649740

The functions of biomolecular condensates are thought to be influenced by their material properties, and these will be determined by the internal organization of molecules within condensates. However, structural characterizations of condensates are challenging, and rarely reported. Here, we deploy a combination of small angle neutron scattering, fluorescence recovery after photobleaching, and coarse-grained molecular dynamics simulations to provide structural descriptions of model condensates that are formed by macromolecules from nucleolar granular components (GCs). We show that these minimal facsimiles of GCs form condensates that are network fluids featuring spatial inhomogeneities across different length scales that reflect the contributions of distinct protein and peptide domains. The network-like inhomogeneous organization is characterized by a coexistence of liquid- and gas-like macromolecular densities that engenders bimodality of internal molecular dynamics. These insights suggest that condensates formed by multivalent proteins share features with network fluids formed by systems such as patchy or hairy colloids.


Biomolecular Condensates , Molecular Dynamics Simulation , Scattering, Small Angle , Biomolecular Condensates/chemistry , Fluorescence Recovery After Photobleaching , Neutron Diffraction , Macromolecular Substances/chemistry , Proteins/chemistry
20.
Int J Biol Macromol ; 267(Pt 2): 131411, 2024 May.
Article En | MEDLINE | ID: mdl-38588841

Skeletal muscle (SM) mass and strength maintenance are important requirements for human well-being. SM regeneration to repair minor injuries depends upon the myogenic activities of muscle satellite (stem) cells. However, losses of regenerative properties following volumetric muscle loss or severe trauma or due to congenital muscular abnormalities are not self-restorable, and thus, these conditions have major healthcare implications and pose clinical challenges. In this context, tissue engineering based on different types of biomaterials and scaffolds provides an encouraging means of structural and functional SM reconstruction. In particular, biomimetic (able to transmit biological signals) and several porous scaffolds are rapidly evolving. Several biological macromolecules/biomaterials (collagen, gelatin, alginate, chitosan, and fibrin etc.) are being widely used for SM regeneration. However, available alternatives for SM regeneration must be redesigned to make them more user-friendly and economically feasible with longer shelf lives. This review aimed to explore the biological aspects of SM regeneration and the roles played by several biological macromolecules and scaffolds in SM regeneration in cases of volumetric muscle loss.


Biocompatible Materials , Muscle, Skeletal , Regeneration , Tissue Engineering , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Muscle, Skeletal/physiology , Tissue Engineering/methods , Animals , Biocompatible Materials/chemistry , Macromolecular Substances/chemistry
...