Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.183
1.
Front Immunol ; 15: 1380628, 2024.
Article En | MEDLINE | ID: mdl-38774866

Introduction: TAM receptor-mediated efferocytosis plays an important function in immune regulation and may contribute to antigen tolerance in the lungs, a site with continuous cellular turnover and generation of apoptotic cells. Some studies have identified failures in efferocytosis as a common driver of inflammation and tissue destruction in lung diseases. Our study is the first to characterize the in vivo function of the TAM receptors, Axl and MerTk, in the innate immune cell compartment, cytokine and chemokine production, as well as the alveolar macrophage (AM) phenotype in different settings in the airways and lung parenchyma. Methods: We employed MerTk and Axl defective mice to induce acute silicosis by a single exposure to crystalline silica particles (20 mg/50 µL). Although both mRNA levels of Axl and MerTk receptors were constitutively expressed by lung cells and isolated AMs, we found that MerTk was critical for maintaining lung homeostasis, whereas Axl played a role in the regulation of silica-induced inflammation. Our findings imply that MerTk and Axl differently modulated inflammatory tone via AM and neutrophil recruitment, phenotype and function by flow cytometry, and TGF-ß and CXCL1 protein levels, respectively. Finally, Axl expression was upregulated in both MerTk-/- and WT AMs, confirming its importance during inflammation. Conclusion: This study provides strong evidence that MerTk and Axl are specialized to orchestrate apoptotic cell clearance across different circumstances and may have important implications for the understanding of pulmonary inflammatory disorders as well as for the development of new approaches to therapy.


Axl Receptor Tyrosine Kinase , Homeostasis , Lung , Macrophages, Alveolar , Mice, Knockout , Proto-Oncogene Proteins , Receptor Protein-Tyrosine Kinases , Silicosis , c-Mer Tyrosine Kinase , Animals , c-Mer Tyrosine Kinase/metabolism , c-Mer Tyrosine Kinase/genetics , Silicosis/metabolism , Silicosis/immunology , Silicosis/pathology , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Mice , Lung/immunology , Lung/metabolism , Lung/pathology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Mice, Inbred C57BL , Cytokines/metabolism , Disease Models, Animal
2.
PLoS Pathog ; 20(5): e1012148, 2024 May.
Article En | MEDLINE | ID: mdl-38728367

Previously, we found that Mycobacterium tuberculosis (Mtb) infection in type 2 diabetes mellitus (T2DM) mice enhances inflammatory cytokine production which drives pathological immune responses and mortality. In the current study, using a T2DM Mtb infection mice model, we determined the mechanisms that make T2DM mice alveolar macrophages (AMs) more inflammatory upon Mtb infection. Among various cell death pathways, necroptosis is a major pathway involved in inflammatory cytokine production by T2DM mice AMs. Anti-TNFR1 antibody treatment of Mtb-infected AMs from T2DM mice significantly reduced expression of receptor interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) (necroptosis markers) and IL-6 production. Metabolic profile comparison of Mtb-infected AMs from T2DM mice and Mtb-infected AMs of nondiabetic control mice indicated that 2-ketohexanoic acid and deoxyadenosine monophosphate were significantly abundant, and acetylcholine and pyridoxine (Vitamin B6) were significantly less abundant in T2DM mice AMs infected with Mtb. 2-Ketohexanoic acid enhanced expression of TNFR1, RIPK3, MLKL and inflammatory cytokine production in the lungs of Mtb-infected nondiabetic mice. In contrast, pyridoxine inhibited RIPK3, MLKL and enhanced expression of Caspase 3 (apoptosis marker) in the lungs of Mtb-infected T2DM mice. Our findings demonstrate that metabolic changes in Mtb-infected T2DM mice enhance TNFR1-mediated necroptosis of AMs, which leads to excess inflammation and lung pathology.


Diabetes Mellitus, Type 2 , Mycobacterium tuberculosis , Necroptosis , Animals , Mice , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/microbiology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/immunology , Macrophages, Alveolar/microbiology , Mice, Inbred C57BL , Tuberculosis/immunology , Tuberculosis/metabolism , Tuberculosis/microbiology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/microbiology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Male , Cytokines/metabolism
3.
Front Immunol ; 15: 1372959, 2024.
Article En | MEDLINE | ID: mdl-38690277

Introduction: Hypoxia is a common pathological driver contributing to various forms of pulmonary vascular diseases leading to pulmonary hypertension (PH). Pulmonary interstitial macrophages (IMs) play pivotal roles in immune and vascular dysfunction, leading to inflammation, abnormal remodeling, and fibrosis in PH. However, IMs' response to hypoxia and their role in PH progression remain largely unknown. We utilized a murine model of hypoxia-induced PH to investigate the repertoire and functional profiles of IMs in response to acute and prolonged hypoxia, aiming to elucidate their contributions to PH development. Methods: We conducted single-cell transcriptomic analyses to characterize the repertoire and functional profiles of murine pulmonary IMs following exposure to hypobaric hypoxia for varying durations (0, 1, 3, 7, and 21 days). Hallmark pathways from the mouse Molecular Signatures Database were utilized to characterize the molecular function of the IM subpopulation in response to hypoxia. Results: Our analysis revealed an early acute inflammatory phase during acute hypoxia exposure (Days 1-3), which was resolved by Day 7, followed by a pro-remodeling phase during prolonged hypoxia (Days 7-21). These phases were marked by distinct subpopulations of IMs: MHCIIhiCCR2+EAR2+ cells characterized the acute inflammatory phase, while TLF+VCAM1hi cells dominated the pro-remodeling phase. The acute inflammatory phase exhibited enrichment in interferon-gamma, IL-2, and IL-6 pathways, while the pro-remodeling phase showed dysregulated chemokine production, hemoglobin clearance, and tissue repair profiles, along with activation of distinct complement pathways. Discussion: Our findings demonstrate the existence of distinct populations of pulmonary interstitial macrophages corresponding to acute and prolonged hypoxia exposure, pivotal in regulating the inflammatory and remodeling phases of PH pathogenesis. This understanding offers potential avenues for targeted interventions, tailored to specific populations and distinct phases of the disease. Moreover, further identification of triggers for pro-remodeling IMs holds promise in unveiling novel therapeutic strategies for pulmonary hypertension.


Gene Expression Profiling , Hypertension, Pulmonary , Hypoxia , Single-Cell Analysis , Transcriptome , Animals , Mice , Hypoxia/metabolism , Hypoxia/immunology , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/immunology , Hypertension, Pulmonary/genetics , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Male , Lung/immunology , Lung/pathology , Lung/metabolism
4.
Nat Commun ; 15(1): 4326, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773113

Resolving inflammation is thought to return the affected tissue back to homoeostasis but recent evidence supports a non-linear model of resolution involving a phase of prolonged immune activity. Here we show that within days following resolution of Streptococcus pneumoniae-triggered lung inflammation, there is an influx of antigen specific lymphocytes with a memory and tissue-resident phenotype as well as macrophages bearing alveolar or interstitial phenotype. The transcriptome of these macrophages shows enrichment of genes associated with prostaglandin biosynthesis and genes that drive T cell chemotaxis and differentiation. Therapeutic depletion of post-resolution macrophages, inhibition of prostaglandin E2 (PGE2) synthesis or treatment with an EP4 antagonist, MF498, reduce numbers of lung CD4+/CD44+/CD62L+ and CD4+/CD44+/CD62L-/CD27+ T cells as well as their expression of the α-integrin, CD103. The T cells fail to reappear and reactivate upon secondary challenge for up to six weeks following primary infection. Concomitantly, EP4 antagonism through MF498 causes accumulation of lung macrophages and marked tissue fibrosis. Our study thus shows that PGE2 signalling, predominantly via EP4, plays an important role during the second wave of immune activity following resolution of inflammation. This secondary immune activation drives local tissue-resident T cell development while limiting tissue injury.


Dinoprostone , Disease Models, Animal , Lung , Macrophages , Mice, Inbred C57BL , Pneumonia, Pneumococcal , Receptors, Prostaglandin E, EP4 Subtype , Streptococcus pneumoniae , Animals , Pneumonia, Pneumococcal/immunology , Pneumonia, Pneumococcal/pathology , Pneumonia, Pneumococcal/microbiology , Pneumonia, Pneumococcal/metabolism , Mice , Dinoprostone/metabolism , Streptococcus pneumoniae/immunology , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/genetics , Macrophages/immunology , Macrophages/metabolism , Lung/immunology , Lung/pathology , Lung/microbiology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Integrin alpha Chains/metabolism , Integrin alpha Chains/genetics , Female , Antigens, CD/metabolism , Antigens, CD/genetics , T-Lymphocytes/immunology
5.
Cell Mol Biol Lett ; 29(1): 83, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822277

BACKGROUND: Senecavirus A (SVA) caused porcine idiopathic vesicular disease (PIVD) showing worldwide spread with economic losses in swine industry. Although some progress has been made on host factors regulating the replication of SVA, the role of Z-DNA binding protein 1 (ZBP1) remains unclear. METHODS: The expression of ZBP1 in SVA-infected 3D/421 cells was analyzed by quantitative real-time PCR (qRT-PCR) and western blot. Western blot and qRT-PCR were used to detect the effects of over and interference expression of ZBP1 on SVA VP2 gene and protein. Viral growth curves were prepared to measure the viral proliferation. The effect on type I interferons (IFNs), interferon-stimulated genes (ISGs), and pro-inflammatory cytokines in SVA infection was analyzed by qRT-PCR. Western blot was used to analysis the effect of ZBP1 on NF-κB signaling pathway and inhibitor are used to confirm. RESULTS: ZBP1 is shown to inhibit the replication of SVA by enhancing NF-κB signaling pathway mediated antiviral response. SVA infection significantly up-regulated the expression of ZBP1 in 3D4/21 cells. Infection of cells with overexpression of ZBP1 showed that the replication of SVA was inhibited with the enhanced expression of IFNs (IFN-α, IFN-ß), ISGs (ISG15, PKR, and IFIT1) and pro-inflammatory cytokines (IL-6, IL-8, and TNF-α), while, infected-cells with interference expression of ZBP1 showed opposite effects. Further results showed that antiviral effect of ZBP1 is achieved by activation the NF-κB signaling pathway and specific inhibitor of NF-κB also confirmed this. CONCLUSIONS: ZBP1 is an important host antiviral factor in SVA infection and indicates that ZBP1 may be a novel target against SVA.


Macrophages, Alveolar , NF-kappa B , Picornaviridae , Signal Transduction , Virus Replication , Animals , Swine , NF-kappa B/metabolism , Macrophages, Alveolar/virology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/immunology , Picornaviridae/physiology , Cell Line , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cytokines/metabolism , Cytokines/genetics
6.
Clin Transl Sci ; 17(6): e13850, 2024 Jun.
Article En | MEDLINE | ID: mdl-38807464

Cold-inducible RNA-binding protein (CIRP) is a damage-associated molecular pattern that plays a critical role in triggering inflammatory responses. It remains unknown whether CIRP is strongly associated with bacterial load, inflammatory response, and mortality in sepsis model. Pneumonia was induced in specific pathogen-free 8-9-week old male rats by injecting bacteria via puncture of the tracheal cartilage. The expressions of CIRP and proinflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1ß] in lung tissues, alveolar macrophages (AMs), plasma, and bronchoalveolar lavage fluid (BALF) were determined by reverse transcription-polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. The numbers of bacteria recovered from the lungs were correlated with the bacterial loads injected and mortality. The expressions of CIRP increased sharply as the bacterial loads increased in the lung tissues and AMs. The amounts of TNF-α, IL-6 and IL-1ß proteins synthesized were dependent on the bacterial load in the lung tissues. Releases of CIRP, TNF-α, IL-6, and IL-1ß increased with the bacterial load in the blood plasma. The proteins confirmed similar patterns in the BALF. CIRP was strongly associated with the releases of TNF-α, IL-6, and IL-1ß in the lung tissues, blood plasma, and BALF, and showed a close correlation with mortality. CIRP demonstrated a strong association with bacterial load, which is new evidence, and close correlations with proinflammatory cytokines and mortality of pneumonia in rats, suggesting that it might be an interesting pneumonic biomarker for monitoring host response and predicting mortality, and a promising target for immunotherapy.


Bacterial Load , Cytokines , RNA-Binding Proteins , Animals , Male , RNA-Binding Proteins/metabolism , Cytokines/metabolism , Cytokines/blood , Rats , Lung/microbiology , Lung/immunology , Lung/pathology , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/microbiology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/microbiology , Pneumonia/microbiology , Pneumonia/immunology , Pneumonia/metabolism , Pneumonia/mortality , Rats, Sprague-Dawley , Interleukin-1beta/metabolism , Interleukin-1beta/blood , Disease Models, Animal , Inflammation Mediators/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/blood , Pneumonia, Bacterial/immunology , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/mortality
7.
Eur Respir Rev ; 33(172)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38811033

Recent breakthroughs in single-cell sequencing, advancements in cellular and tissue imaging techniques, innovations in cell lineage tracing, and insights into the epigenome collectively illuminate the enigmatic landscape of alveolar macrophages in the lung under homeostasis and disease conditions. Our current knowledge reveals the cellular and functional diversity of alveolar macrophages within the respiratory system, emphasising their remarkable adaptability. By synthesising insights from classical cell and developmental biology studies, we provide a comprehensive perspective on alveolar macrophage functional plasticity. This includes an examination of their ontology-related features, their role in maintaining tissue homeostasis under steady-state conditions and the distinct contribution of bone marrow-derived macrophages (BMDMs) in promoting tissue regeneration and restoring respiratory system homeostasis in response to injuries. Elucidating the signalling pathways within inflammatory conditions, the impact of various triggers on tissue-resident alveolar macrophages (TR-AMs), as well as the recruitment and polarisation of macrophages originating from the bone marrow, presents an opportunity to propose innovative therapeutic approaches aimed at modulating the equilibrium between phenotypes to induce programmes associated with a pro-regenerative or homeostasis phenotype of BMDMs or TR-AMs. This, in turn, can lead to the amelioration of disease outcomes and the attenuation of detrimental inflammation. This review comprehensively addresses the pivotal role of macrophages in the orchestration of inflammation and resolution phases after lung injury, as well as ageing-related shifts and the influence of clonal haematopoiesis of indeterminate potential mutations on alveolar macrophages, exploring altered signalling pathways and transcriptional profiles, with implications for respiratory homeostasis.


Homeostasis , Lung , Macrophages, Alveolar , Phenotype , Signal Transduction , Humans , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/immunology , Animals , Lung/metabolism , Lung/pathology , Lung/immunology , Pneumonia/metabolism , Pneumonia/genetics , Pneumonia/pathology , Pneumonia/immunology , Regeneration , Cell Plasticity , Inflammation Mediators/metabolism
8.
Immunohorizons ; 8(5): 384-396, 2024 May 01.
Article En | MEDLINE | ID: mdl-38809232

The mammalian Siglec receptor sialoadhesin (Siglec1, CD169) confers innate immunity against the encapsulated pathogen group B Streptococcus (GBS). Newborn lung macrophages have lower expression levels of sialoadhesin at birth compared with the postnatal period, increasing their susceptibility to GBS infection. In this study, we investigate the mechanisms regulating sialoadhesin expression in the newborn mouse lung. In both neonatal and adult mice, GBS lung infection reduced Siglec1 expression, potentially delaying acquisition of immunity in neonates. Suppression of Siglec1 expression required interactions between sialic acid on the GBS capsule and the inhibitory host receptor Siglec-E. The Siglec1 gene contains multiple STAT binding motifs, which could regulate expression of sialoadhesin downstream of innate immune signals. Although GBS infection reduced STAT1 expression in the lungs of wild-type newborn mice, we observed increased numbers of STAT1+ cells in Siglece-/- lungs. To test if innate immune activation could increase sialoadhesin at birth, we first demonstrated that treatment of neonatal lung macrophages ex vivo with inflammatory activators increased sialoadhesin expression. However, overcoming the low sialoadhesin expression at birth using in vivo prenatal exposures or treatments with inflammatory stimuli were not successful. The suppression of sialoadhesin expression by GBS-Siglec-E engagement may therefore contribute to disease pathogenesis in newborns and represent a challenging but potentially appealing therapeutic opportunity to augment immunity at birth.


Animals, Newborn , Mice, Knockout , N-Acetylneuraminic Acid , STAT1 Transcription Factor , Sialic Acid Binding Ig-like Lectin 1 , Streptococcal Infections , Streptococcus agalactiae , Animals , Mice , Streptococcus agalactiae/immunology , N-Acetylneuraminic Acid/metabolism , Sialic Acid Binding Ig-like Lectin 1/metabolism , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Immunity, Innate , Mice, Inbred C57BL , Lung/immunology , Lung/microbiology , Lung/metabolism , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Female , Macrophages/immunology , Macrophages/metabolism , Lectins/metabolism , Lectins/genetics , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Antigens, Differentiation, B-Lymphocyte
9.
Biochem Biophys Res Commun ; 715: 150007, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38678783

Smad4, a critical mediator of TGF-ß signaling, plays a pivotal role in regulating various cellular functions, including immune responses. In this study, we investigated the impact of Smad4 knockout specifically in macrophages on anti-tumor immunity, focusing on lung metastasis of B16 melanoma cells. Using a mouse model with Smad4 knockout in macrophages established via Lyz2-cre mice and Smad4 flox/flox mice, we demonstrated a significant inhibition of B16 metastasis in the lungs. Interestingly, the inhibition of tumor growth was found to be independent of adaptive immunity, as no significant changes were observed in the numbers or activities of T cells, B cells, or NK cells. Instead, Smad4 knockout led to the emergence of an MCHIIlow CD206high subset of lung interstitial macrophages, characterized by enhanced phagocytosis function. Our findings highlight the crucial role of Smad4 in modulating the innate immune response against tumors and provide insights into potential therapeutic strategies targeting lung interstitial macrophages to enhance anti-tumor immunity.


Lung Neoplasms , Melanoma, Experimental , Mice, Inbred C57BL , Mice, Knockout , Phagocytosis , Smad4 Protein , Animals , Smad4 Protein/deficiency , Smad4 Protein/genetics , Smad4 Protein/metabolism , Lung Neoplasms/secondary , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Melanoma, Experimental/pathology , Melanoma, Experimental/immunology , Mice , Macrophages/immunology , Macrophages/metabolism , Lung/pathology , Lung/immunology , Lung/metabolism , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/immunology , Macrophages, Alveolar/pathology , Cell Line, Tumor
10.
Int Immunopharmacol ; 132: 111991, 2024 May 10.
Article En | MEDLINE | ID: mdl-38581996

OBJECTIVES: Acute lung injury (ALI) is a highly inflammatory condition with the involvement of M1 alveolar macrophages (AMs) polarization, eventually leading to the development of non-cardiogenic edema in alveolar and interstitial regions, accompanied by persistent hypoxemia. Given the significant mortality rate associated with ALI, it is imperative to investigate the underlying mechanisms of this condition so as to identify potential therapeutic targets. The therapeutic effects of the inhibition of bromodomain containing protein 4 (BRD4), an epigenetic reader, has been proven with high efficacy in ameliorating various inflammatory diseases through mediating immune cell activation. However, little is known about the therapeutic potential of BRD4 degradation in acute lung injury. METHODS: This study aimed to assess the protective efficacy of ARV-825, a novel BRD4-targeted proteolysis targeting chimera (PROTAC), against ALI through histopathological examination in lung tissues and biochemical analysis in bronchoalveolar lavage fluid (BALF). Additionally, the underlying mechanism by which BRD4 regulated M1 AMs was elucidated by using CUT & Tag assay. RESULTS: In this study, we found the upregulation of BRD4 in a lipopolysaccharide (LPS)-induced ALI model. Furthermore, we observed that intraperitoneal administration of ARV-825, significantly alleviated LPS-induced pulmonary pathological changes and inflammatory responses. These effects were accompanied by the suppression of M1 AMs. In addition, our findings revealed that the administration of ARV-825 effectively suppressed M1 AMs by inhibiting the expression of IRF7, a crucial transcriptional factor involved in M1 macrophages. CONCLUSION: Our study suggested that targeting BRD4 using ARV-825 is a potential therapeutic approach for ALI.


Acute Lung Injury , Bromodomain Containing Proteins , Lipopolysaccharides , Macrophages, Alveolar , Transcription Factors , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Acute Lung Injury/immunology , Transcription Factors/metabolism , Transcription Factors/genetics , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Mice , Male , Mice, Inbred C57BL , Humans , Proteolysis/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Lung/pathology , Lung/drug effects , Lung/immunology , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Disease Models, Animal , Macrophage Activation/drug effects
11.
Infect Immun ; 92(5): e0006024, 2024 May 07.
Article En | MEDLINE | ID: mdl-38619302

Melioidosis is an emerging tropical infection caused by inhalation, inoculation, or ingestion of the flagellated, facultatively intracellular pathogen Burkholderia pseudomallei. The melioidosis case fatality rate is often high, and pneumonia, the most common presentation, doubles the risk of death. The alveolar macrophage is a sentinel pulmonary host defense cell, but the human alveolar macrophage in B. pseudomallei infection has never been studied. The objective of this study was to investigate the host-pathogen interaction of B. pseudomallei infection with the human alveolar macrophage and to determine the role of flagellin in modulating inflammasome-mediated pathways. We found that B. pseudomallei infects primary human alveolar macrophages but is gradually restricted in the setting of concurrent cell death. Electron microscopy revealed cytosolic bacteria undergoing division, indicating that B. pseudomallei likely escapes the alveolar macrophage phagosome and may replicate in the cytosol, where it triggers immune responses. In paired human blood monocytes, uptake and intracellular restriction of B. pseudomallei are similar to those observed in alveolar macrophages, but cell death is reduced. The alveolar macrophage cytokine response to B. pseudomallei is characterized by marked interleukin (IL)-18 secretion compared to monocytes. Both cytotoxicity and IL-18 secretion in alveolar macrophages are partially flagellin dependent. However, the proportion of IL-18 release that is driven by flagellin is greater in alveolar macrophages than in monocytes. These findings suggest differential flagellin-mediated inflammasome pathway activation in the human alveolar macrophage response to B. pseudomallei infection and expand our understanding of intracellular pathogen recognition by this unique innate immune lung cell.


Burkholderia pseudomallei , Flagellin , Host-Pathogen Interactions , Inflammasomes , Macrophages, Alveolar , Humans , Macrophages, Alveolar/immunology , Macrophages, Alveolar/microbiology , Inflammasomes/immunology , Inflammasomes/metabolism , Burkholderia pseudomallei/immunology , Flagellin/immunology , Flagellin/metabolism , Host-Pathogen Interactions/immunology , Melioidosis/immunology , Melioidosis/microbiology , Cells, Cultured
12.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L672-L686, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38530936

Alveolar macrophages (AMs) in patients with chronic obstructive pulmonary disease (COPD) orchestrate persistent inflammation in the airway. However, subpopulations of AMs participating in chronic inflammation have been poorly characterized. We previously reported that Siglec-1 expression on AMs, which is important for bacteria engulfment, was decreased in COPD. Here, we show that Siglec-1-negative AMs isolated from COPD lung tissues exhibit a proinflammatory phenotype and are associated with poor clinical outcomes in patients with COPD. Using flow cytometry, we segregated three subsets of AMs based on the expression of Siglec-1 and their side scattergram (SSC) and forward scattergram (FSC) properties: Siglec-1+SSChiFSChi, Siglec-1-SSChiFSChi, and Siglec-1-SSCloFSClo subsets. The Siglec-1-SSCloFSClo subset number was increased in COPD. RNA sequencing revealed upregulation of multiple proinflammatory signaling pathways and emphysema-associated matrix metalloproteases in the Siglec-1-SSCloFSClo subset. Gene set enrichment analysis indicated that the Siglec-1-SSCloFSClo subset adopted intermediate phenotypes between monocytes and mature alveolar macrophages. Functionally, these cells produced TNF-α, IL-6, and IL-8 at baseline, and these cytokines were significantly increased in response to viral RNA. The increase in Siglec-1-negative AMs in induced sputum is associated with future exacerbation risk and lung function decline in patients with COPD. Collectively, the novel Siglec-1-SSCloFSClo subset of AMs displays proinflammatory properties, and their emergence in COPD airways may be associated with poor clinical outcomes.NEW & NOTEWORTHY Alveolar macrophages (AMs) in patients with chronic obstructive pulmonary disease (COPD) orchestrate persistent inflammation in the airway. We find that Siglec-1-negative alveolar macrophages have a wide range of proinflammatory landscapes and a protease-expressing phenotype. Moreover, this subset is associated with the pathogenesis of COPD and responds to viral stimuli.


Macrophages, Alveolar , Phenotype , Pulmonary Disease, Chronic Obstructive , Sialic Acid Binding Ig-like Lectin 1 , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Macrophages, Alveolar/immunology , Humans , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/immunology , Sialic Acid Binding Ig-like Lectin 1/metabolism , Male , Female , Aged , Middle Aged , Inflammation/metabolism , Inflammation/pathology , Cytokines/metabolism
13.
Microbiol Spectr ; 12(5): e0390523, 2024 May 02.
Article En | MEDLINE | ID: mdl-38501823

Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative facultative anaerobe that has become an important cause of severe infections in humans, particularly in patients with cystic fibrosis. The development of efficacious methods or mendicants against P. aeruginosa is still needed. We previously reported that regenerating islet-derived family member 4 (Reg4) has bactericidal activity against Salmonella Typhimurium, a Gram-negative flagellated bacterium. We herein explore whether Reg4 has bactericidal activity against P. aeruginosa. In the P. aeruginosa PAO1-chronic infection model, Reg4 significantly inhibits the colonization of PAO1 in the lung and subsequently ameliorates pulmonary inflammation and fibrosis. Reg4 recombinant protein suppresses the growth motility and biofilm formation capability of PAO1 in vitro. Mechanistically, Reg4 not only exerts bactericidal action via direct binding to the P. aeruginosa cell wall but also enhances the phagocytosis of alveolar macrophages in the host. Taken together, our study demonstrates that Reg4 may provide protection against P. aeruginosa-induced pulmonary inflammation and fibrosis via its antibacterial activity.IMPORTANCEChronic lung infection with Pseudomonas aeruginosa is a leading cause of morbidity and mortality in patients with cystic fibrosis. Due to the antibiotic resistance of Pseudomonas aeruginosa, antimicrobial peptides appear to be a potential alternative to combat its infection. In this study, we report an antimicrobial peptide, regenerating islet-derived 4 (Reg4), that showed killing activity against clinical strains of Pseudomonas aeruginosa PAO1 and ameliorated PAO1-induced pulmonary inflammation and fibrosis. Experimental data also showed Reg4 directly bound to the bacterial cell membrane and enhanced the phagocytosis of host alveolar macrophages. Our presented study will be a helpful resource in searching for novel antimicrobial peptides that could have the potential to replace conventional antibiotics.


Anti-Bacterial Agents , Pancreatitis-Associated Proteins , Pseudomonas Infections , Pseudomonas aeruginosa , Pseudomonas aeruginosa/drug effects , Animals , Pseudomonas Infections/microbiology , Pseudomonas Infections/drug therapy , Mice , Pancreatitis-Associated Proteins/metabolism , Pancreatitis-Associated Proteins/genetics , Anti-Bacterial Agents/pharmacology , Humans , Macrophages, Alveolar/microbiology , Macrophages, Alveolar/immunology , Biofilms/drug effects , Biofilms/growth & development , Mice, Inbred C57BL , Pneumonia/microbiology , Antimicrobial Peptides/pharmacology , Phagocytosis/drug effects , Lung/microbiology , Lung/pathology , Cystic Fibrosis/microbiology , Cystic Fibrosis/complications , Pulmonary Fibrosis/microbiology , Disease Models, Animal
14.
J Biol Chem ; 300(4): 107199, 2024 Apr.
Article En | MEDLINE | ID: mdl-38508309

Porcine reproductive and respiratory syndrome virus (PRRSV), a highly infectious virus, causes severe losses in the swine industry by regulating the inflammatory response, inducing tissue damage, suppressing the innate immune response, and promoting persistent infection in hosts. Interleukin-13 (IL-13) is a cytokine that plays a critical role in regulating immune responses and inflammation, particularly in immune-related disorders, certain types of cancer, and numerous bacterial and viral infections; however, the underlying mechanisms of IL-13 regulation during PRRSV infection are not well understood. In this study, we demonstrated that PRRSV infection elevates IL-13 levels in porcine alveolar macrophages. PRRSV enhances m6A-methylated RNA levels while reducing the expression of fat mass and obesity associated protein (FTO, an m6A demethylase), thereby augmenting IL-13 production. PRRSV nonstructural protein 9 (nsp9) was a key factor for this modulation. Furthermore, we found that the residues Asp567, Tyr586, Leu593, and Asp595 were essential for nsp9 to induce IL-13 production via attenuation of FTO expression. These insights delineate PRRSV nsp9's role in FTO-mediated IL-13 release, advancing our understanding of PRRSV's impact on host immune and inflammatory responses.


Interleukin-13 , Macrophages, Alveolar , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Nonstructural Proteins , Animals , Porcine respiratory and reproductive syndrome virus/genetics , Swine , Interleukin-13/metabolism , Interleukin-13/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/virology , Macrophages, Alveolar/immunology , Porcine Reproductive and Respiratory Syndrome/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Up-Regulation
18.
Science ; 383(6685): eadi3808, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38386728

Cancer risk is influenced by inherited mutations, DNA replication errors, and environmental factors. However, the influence of genetic variation in immunosurveillance on cancer risk is not well understood. Leveraging population-level data from the UK Biobank and FinnGen, we show that heterozygosity at the human leukocyte antigen (HLA)-II loci is associated with reduced lung cancer risk in smokers. Fine-mapping implicated amino acid heterozygosity in the HLA-II peptide binding groove in reduced lung cancer risk, and single-cell analyses showed that smoking drives enrichment of proinflammatory lung macrophages and HLA-II+ epithelial cells. In lung cancer, widespread loss of HLA-II heterozygosity (LOH) favored loss of alleles with larger neopeptide repertoires. Thus, our findings nominate genetic variation in immunosurveillance as a critical risk factor for lung cancer.


Genetic Predisposition to Disease , Histocompatibility Antigens Class II , Immunologic Surveillance , Loss of Heterozygosity , Lung Neoplasms , Humans , Histocompatibility Antigens Class II/genetics , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Macrophages, Alveolar/immunology , Risk Factors , Smoking/immunology , Immunologic Surveillance/genetics , Middle Aged , Aged , Aged, 80 and over , Chromosome Mapping , Polymorphism, Single Nucleotide
19.
Am J Respir Cell Mol Biol ; 70(6): 446-456, 2024 Jun.
Article En | MEDLINE | ID: mdl-38329817

Lung macrophages constitute a sophisticated surveillance and defense system that contributes to tissue homeostasis and host defense and allows the host to cope with the myriad of insults and antigens to which the lung mucosa is exposed. As opposed to alveolar macrophages, lung interstitial macrophages (IMs) express high levels of Type 2 major histocompatibility complex (MHC-II), a hallmark of antigen-presenting cells. Here, we showed that lung IMs, like dendritic cells, possess the machinery to present soluble antigens in an MHC-II-restricted way. Using ex vivo ovalbumin (OVA)-specific T cell proliferation assays, we found that OVA-pulsed IMs could trigger OVA-specific CD4+ T cell proliferation and Foxp3 expression through MHC-II-, IL-10-, and transforming growth factor ß-dependent mechanisms. Moreover, we showed that IMs efficiently captured locally instilled antigens in vivo, did not migrate to the draining lymph nodes, and enhanced local interactions with CD4+ T cells in a model of OVA-induced allergic asthma. These results support that IMs can present antigens to CD4+ T cells and trigger regulatory T cells, which might attenuate lung immune responses and have functional consequences for lung immunity and T cell-mediated disorders.


Antigen Presentation , Asthma , Forkhead Transcription Factors , Lung , Ovalbumin , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/immunology , Ovalbumin/immunology , Lung/immunology , Antigen Presentation/immunology , Asthma/immunology , Mice, Inbred C57BL , Mice , Cell Proliferation , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Antigens/immunology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/immunology , Interleukin-10/metabolism , Interleukin-10/immunology , Macrophages/immunology , Macrophages/metabolism , Lymphocyte Activation/immunology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Mice, Inbred BALB C
20.
J Biol Chem ; 300(1): 105518, 2024 Jan.
Article En | MEDLINE | ID: mdl-38042489

Bacillus Calmette-Guérin (BCG) vaccination induces a type of immune memory known as "trained immunity", characterized by the immunometabolic and epigenetic changes in innate immune cells. However, the molecular mechanism underlying the strategies for inducing and/or boosting trained immunity in alveolar macrophages remains unknown. Here, we found that mucosal vaccination with the recombinant strain rBCGPPE27 significantly augmented the trained immune response in mice, facilitating a superior protective response against Mycobacterium tuberculosis and non-related bacterial reinfection in mice when compared to BCG. Mucosal immunization with rBCGPPE27 enhanced innate cytokine production by alveolar macrophages associated with promoted glycolytic metabolism, typical of trained immunity. Deficiency of the mammalian target of rapamycin complex 2 and hexokinase 1 abolished the immunometabolic and epigenetic rewiring in mouse alveolar macrophages after mucosal rBCGPPE27 vaccination. Most noteworthy, utilizing rBCGPPE27's higher-up trained effects: The single mucosal immunization with rBCGPPE27-adjuvanted coronavirus disease (CoV-2) vaccine raised the rapid development of virus-specific immunoglobulin G antibodies, boosted pseudovirus neutralizing antibodies, and augmented T helper type 1-biased cytokine release by vaccine-specific T cells, compared to BCG/CoV-2 vaccine. These findings revealed that mucosal recombinant BCG vaccine induces lung-resident memory macrophages and enhances trained immunity via reprogramming mTORC2- and HK-1-mediated aerobic glycolysis, providing new vaccine strategies for improving tuberculosis (TB) or coronavirus variant vaccinations, and targeting innate immunity via mucosal surfaces.


BCG Vaccine , Hexokinase , Immunologic Memory , Lung , Macrophages, Alveolar , Mechanistic Target of Rapamycin Complex 2 , Mycobacterium tuberculosis , Trained Immunity , Animals , Mice , BCG Vaccine/immunology , Cytokines/metabolism , Lung/immunology , Macrophages, Alveolar/immunology , Mycobacterium tuberculosis/immunology , Vaccines, Synthetic/immunology , Mechanistic Target of Rapamycin Complex 2/metabolism , Hexokinase/metabolism
...