Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.749
1.
PLoS Negl Trop Dis ; 18(6): e0012197, 2024 Jun.
Article En | MEDLINE | ID: mdl-38837977

Effective radical cure of Plasmodium vivax malaria is essential for malaria elimination in Brazil. P. vivax radical cure requires administration of a schizonticide, such as chloroquine, plus an 8-aminoquinoline. However, 8-aminoquinolines cause hemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency, requiring prior screening to exclude those at risk. Brazil is pioneering the implementation of tafenoquine, a single-dose 8-aminoquinoline indicated for P. vivax patients with >70% of normal G6PD activity. Tafenoquine implementation in Manaus and Porto Velho, two municipalities located in the western Brazilian Amazon, included comprehensive training of healthcare professionals (HCPs) on point-of-care quantitative G6PD testing and a new treatment algorithm for P. vivax radical cure incorporating tafenoquine. Training was initially provided to higher-level facilities (phase one) and later adapted for primary care units (phase two). This study analyzed HCP experiences during training and implementation and identified barriers and facilitators. In-depth interviews and focus discussion groups were conducted 30 days after each training for a purposive random sample of 115 HCPs. Thematic analysis was employed using MAXQDA software, analyzing data through inductive and deductive coding. Analysis showed that following the initial training for higher-level facilities, some HCPs did not feel confident performing quantitative G6PD testing and prescribing the tafenoquine regimen. Modifications to the training in phase two resulted in an improvement in understanding the implementation process of the G6PD test and tafenoquine, as well as in the knowledge acquired by HCPs. Additionally, knowledge gaps were addressed through in situ training, peer communication via a messaging app, and educational materials. Training supported effective deployment of the new tools in Manaus and Porto Velho and increased awareness of the need for pharmacovigilance. A training approach for nationwide implementation of these tools was devised. Implementing quantitative G6PD testing and tafenoquine represents a significant shift in P. vivax malaria case management. Consistent engagement with HCPs is needed to overcome challenges in fully integrating these tools within the Brazilian health system.


Aminoquinolines , Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Health Personnel , Malaria, Vivax , Humans , Brazil , Malaria, Vivax/drug therapy , Malaria, Vivax/prevention & control , Antimalarials/therapeutic use , Aminoquinolines/therapeutic use , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Health Personnel/education , Female , Glucosephosphate Dehydrogenase , Male , Plasmodium vivax/drug effects , Adult
2.
Front Cell Infect Microbiol ; 14: 1408451, 2024.
Article En | MEDLINE | ID: mdl-38828264

Recent studies indicate that human spleen contains over 95% of the total parasite biomass during chronic asymptomatic infections caused by Plasmodium vivax. Previous studies have demonstrated that extracellular vesicles (EVs) secreted from infected reticulocytes facilitate binding to human spleen fibroblasts (hSFs) and identified parasite genes whose expression was dependent on an intact spleen. Here, we characterize the P. vivax spleen-dependent hypothetical gene (PVX_114580). Using CRISPR/Cas9, PVX_114580 was integrated into P. falciparum 3D7 genome and expressed during asexual stages. Immunofluorescence analysis demonstrated that the protein, which we named P. vivax Spleen-Dependent Protein 1 (PvSDP1), was located at the surface of infected red blood cells in the transgenic line and this localization was later confirmed in natural infections. Plasma-derived EVs from P. vivax-infected individuals (PvEVs) significantly increased cytoadherence of 3D7_PvSDP1 transgenic line to hSFs and this binding was inhibited by anti-PvSDP1 antibodies. Single-cell RNAseq of PvEVs-treated hSFs revealed increased expression of adhesion-related genes. These findings demonstrate the importance of parasite spleen-dependent genes and EVs from natural infections in the formation of intrasplenic niches in P. vivax, a major challenge for malaria elimination.


Extracellular Vesicles , Malaria, Vivax , Plasmodium vivax , Protozoan Proteins , Spleen , Extracellular Vesicles/metabolism , Plasmodium vivax/genetics , Plasmodium vivax/metabolism , Humans , Spleen/metabolism , Spleen/parasitology , Malaria, Vivax/parasitology , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Erythrocytes/parasitology , Erythrocytes/metabolism , Fibroblasts/parasitology , Fibroblasts/metabolism , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Plasmodium falciparum/physiology , Cell Adhesion , Host-Parasite Interactions
3.
Vaccine ; 42(16): 3621-3629, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38704253

Recent data indicate increasing disease burden and importance of Plasmodium vivax (Pv) malaria. A robust assay will be essential for blood-stage Pv vaccine development. Results of the in vitro growth inhibition assay (GIA) with transgenic P. knowlesi (Pk) parasites expressing the Pv Duffy-binding protein region II (PvDBPII) correlate with in vivo protection in the first PvDBPII controlled human malaria infection (CHMI) trials, making the PkGIA an ideal selection tool once the precision of the assay is defined. To determine the precision in percentage of inhibition in GIA (%GIA) and in GIA50 (antibody concentration that gave 50 %GIA), ten GIAs with transgenic Pk parasites were conducted with four different anti-PvDBPII human monoclonal antibodies (mAbs) at concentrations of 0.016 to 2 mg/mL, and three GIAs with eighty anti-PvDBPII human polyclonal antibodies (pAbs) at 10 mg/mL. A significant assay-to-assay variation was observed, and the analysis revealed a standard deviation (SD) of 13.1 in the mAb and 5.94 in the pAb dataset for %GIA, with a LogGIA50 SD of 0.299 (for mAbs). Moreover, the ninety-five percent confidence interval (95 %CI) for %GIA or GIA50 in repeat assays was calculated in this investigation. The error range determined in this study will help researchers to compare PkGIA results from different assays and studies appropriately, thus supporting the development of future blood-stage malaria vaccine candidates, specifically second-generation PvDBPII-based formulations.


Antibodies, Protozoan , Antigens, Protozoan , Malaria Vaccines , Plasmodium knowlesi , Plasmodium vivax , Protozoan Proteins , Receptors, Cell Surface , Malaria Vaccines/immunology , Plasmodium knowlesi/immunology , Plasmodium knowlesi/genetics , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Plasmodium vivax/immunology , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Humans , Receptors, Cell Surface/immunology , Receptors, Cell Surface/genetics , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Malaria, Vivax/prevention & control , Malaria, Vivax/immunology , Antibodies, Monoclonal/immunology , Vaccine Development/methods , Animals
4.
Parasit Vectors ; 17(1): 239, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802961

BACKGROUND: The spleen plays a critical role in the immune response against malaria parasite infection, where splenic fibroblasts (SFs) are abundantly present and contribute to immune function by secreting type I collagen (collagen I). The protein family is characterized by Plasmodium vivax tryptophan-rich antigens (PvTRAgs), comprising 40 members. PvTRAg23 has been reported to bind to human SFs (HSFs) and affect collagen I levels. Given the role of type I collagen in splenic immune function, it is important to investigate the functions of the other members within the PvTRAg protein family. METHODS: Protein structural prediction was conducted utilizing bioinformatics analysis tools and software. A total of 23 PvTRAgs were successfully expressed and purified using an Escherichia coli prokaryotic expression system, and the purified proteins were used for co-culture with HSFs. The collagen I levels and collagen-related signaling pathway protein levels were detected by immunoblotting, and the relative expression levels of inflammatory factors were determined by quantitative real-time PCR. RESULTS: In silico analysis showed that P. vivax has 40 genes encoding the TRAg family. The C-terminal region of all PvTRAgs is characterized by the presence of a domain rich in tryptophan residues. A total of 23 recombinant PvTRAgs were successfully expressed and purified. Only five PvTRAgs (PvTRAg5, PvTRAg16, PvTRAg23, PvTRAg30, and PvTRAg32) mediated the activation of the NF-κBp65 signaling pathway, which resulted in the production of inflammatory molecules and ultimately a significant reduction in collagen I levels in HSFs. CONCLUSIONS: Our research contributes to the expansion of knowledge regarding the functional role of PvTRAgs, while it also enhances our understanding of the immune evasion mechanisms utilized by parasites.


Antigens, Protozoan , Collagen Type I , Fibroblasts , Plasmodium vivax , Signal Transduction , Spleen , Plasmodium vivax/genetics , Plasmodium vivax/immunology , Fibroblasts/parasitology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Animals , Collagen Type I/metabolism , Collagen Type I/genetics , Spleen/immunology , Spleen/parasitology , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Mice , Humans , Malaria, Vivax/parasitology , Malaria, Vivax/immunology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/immunology , Tryptophan/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Computational Biology
5.
PLoS One ; 19(5): e0297918, 2024.
Article En | MEDLINE | ID: mdl-38728310

Quantitative diagnosis of glucose-6-phosphate dehydrogenase (G6PD) deficiency is essential for the safe administration of 8-aminoquinoline based radical cure for the treatment of Plasmodium vivax infections. Here, we present the PreQuine Platform (IVDS, USA), a quantitative biosensor that uses a dual-analyte assay for the simultaneous measurement of Hemoglobin (Hgb) levels and G6PD enzyme activity within the same sample. The platform relies on a downloadable mobile application. The device requires 10µl of whole blood and works with a reflectance-based meter. Comparing the G6PD measurement normalized by Hgb of 12 samples from the PreQuine Platform with reference measurements methods (spectrophotometry, Pointe Scientific, USA and hemoglobin meter, HemoCue, Sweden) showed a positive and significant agreement with a slope of 1.0091 and an intercept of -0.0379 under laboratory conditions. Next steps will be to conduct field trials in Bangladesh, Cambodia, and the USA to assess diagnostic performance, user friendliness and acceptance.


Glucosephosphate Dehydrogenase Deficiency , Glucosephosphate Dehydrogenase , Hemoglobins , Humans , Glucosephosphate Dehydrogenase/metabolism , Glucosephosphate Dehydrogenase/blood , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Glucosephosphate Dehydrogenase Deficiency/blood , Hemoglobins/analysis , Hemoglobins/metabolism , Biosensing Techniques/methods , Malaria, Vivax/diagnosis , Malaria, Vivax/blood , Aminoquinolines
6.
Malar J ; 23(1): 145, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741094

A single 300 mg dose of tafenoquine (an 8-aminoquinoline), in combination with a standard 3-day course of chloroquine, is approved in several countries for the radical cure (prevention of relapse) of Plasmodium vivax malaria in patients aged ≥ 16 years. Despite this, questions have arisen on the optimal dose of tafenoquine. Before the availability of tafenoquine, a 3-day course of chloroquine in combination with the 8-aminoquinoline primaquine was the only effective radical cure for vivax malaria. The World Health Organization (WHO)-recommended standard regimen is 14 days of primaquine 0.25 mg/kg/day or 7 days of primaquine 0.5 mg/kg/day in most regions, or 14 days of primaquine 0.5 mg/kg/day in East Asia and Oceania, however the long treatment courses of 7 or 14 days may result in poor adherence and, therefore, low treatment efficacy. A single dose of tafenoquine 300 mg in combination with a 3-day course of chloroquine is an important advancement for the radical cure of vivax malaria in patients without glucose-6-phosphate dehydrogenase (G6PD) deficiency, as the use of a single-dose treatment will improve adherence. Selection of a single 300 mg dose of tafenoquine for the radical cure of P. vivax malaria was based on collective efficacy and safety data from 33 studies involving more than 4000 trial participants who received tafenoquine, including over 800 subjects who received the 300 mg single dose. The safety profile of single-dose tafenoquine 300 mg is similar to that of standard-dosage primaquine 0.25 mg/kg/day for 14 days. Both primaquine and tafenoquine can cause acute haemolytic anaemia in individuals with G6PD deficiency; severe haemolysis can lead to anaemia, kidney damage, and, in some cases, death. Therefore, relapse prevention using an 8-aminoquinoline must be balanced with the need to avoid clinical haemolysis associated with G6PD deficiency. To minimize this risk, the WHO recommends G6PD testing for all individuals before the administration of curative doses of 8-aminoquinolines. In this article, the authors review key efficacy and safety data from the pivotal trials of tafenoquine and argue that the currently approved dose represents a favourable benefit-risk profile.


Aminoquinolines , Antimalarials , Malaria, Vivax , Malaria, Vivax/drug therapy , Aminoquinolines/administration & dosage , Aminoquinolines/adverse effects , Aminoquinolines/therapeutic use , Humans , Antimalarials/therapeutic use , Antimalarials/administration & dosage , Antimalarials/adverse effects , Primaquine/administration & dosage , Primaquine/therapeutic use , Primaquine/adverse effects , Risk Assessment , Treatment Outcome , Drug Therapy, Combination , Plasmodium vivax/drug effects , Chloroquine/therapeutic use , Chloroquine/adverse effects , Chloroquine/administration & dosage
7.
Front Immunol ; 15: 1372584, 2024.
Article En | MEDLINE | ID: mdl-38745665

Among Plasmodium spp. responsible for human malaria, Plasmodium vivax ranks as the second most prevalent and has the widest geographical range; however, vaccine development has lagged behind that of Plasmodium falciparum, the deadliest Plasmodium species. Recently, we developed a multistage vaccine for P. falciparum based on a heterologous prime-boost immunization regimen utilizing the attenuated vaccinia virus strain LC16m8Δ (m8Δ)-prime and adeno-associated virus type 1 (AAV1)-boost, and demonstrated 100% protection and more than 95% transmission-blocking (TB) activity in the mouse model. In this study, we report the feasibility and versatility of this vaccine platform as a P. vivax multistage vaccine, which can provide 100% sterile protection against sporozoite challenge and >95% TB efficacy in the mouse model. Our vaccine comprises m8Δ and AAV1 viral vectors, both harboring the gene encoding two P. vivax circumsporozoite (PvCSP) protein alleles (VK210; PvCSP-Sal and VK247; -PNG) and P25 (Pvs25) expressed as a Pvs25-PvCSP fusion protein. For protective efficacy, the heterologous m8Δ-prime/AAV1-boost immunization regimen showed 100% (short-term; Day 28) and 60% (long-term; Day 242) protection against PvCSP VK210 transgenic Plasmodium berghei sporozoites. For TB efficacy, mouse sera immunized with the vaccine formulation showed >75% TB activity and >95% transmission reduction activity by a direct membrane feeding assay using P. vivax isolates in blood from an infected patient from the Brazilian Amazon region. These findings provide proof-of-concept that the m8Δ/AAV1 vaccine platform is sufficiently versatile for P. vivax vaccine development. Future studies are needed to evaluate the safety, immunogenicity, vaccine efficacy, and synergistic effects on protection and transmission blockade in a non-human primate model for Phase I trials.


Dependovirus , Genetic Vectors , Malaria Vaccines , Malaria, Vivax , Plasmodium vivax , Animals , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Plasmodium vivax/immunology , Plasmodium vivax/genetics , Malaria, Vivax/prevention & control , Malaria, Vivax/transmission , Malaria, Vivax/immunology , Mice , Dependovirus/genetics , Dependovirus/immunology , Female , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Disease Models, Animal , Vaccinia virus/genetics , Vaccinia virus/immunology , Humans , Mice, Inbred BALB C , Immunization, Secondary , Vaccine Efficacy
8.
Malar J ; 23(1): 149, 2024 May 16.
Article En | MEDLINE | ID: mdl-38750583

BACKGROUND: Malaria elimination in Senegal requires accurate diagnosis of all Plasmodium species. Plasmodium falciparum is the most prevalent species in Senegal, although Plasmodium malariae, Plasmodium ovale, and recently Plasmodium vivax have also been reported. Nonetheless, most malaria control tools, such as Histidine Rich Protein 2 rapid diagnosis test (PfHRP2-RDT,) can only diagnose P. falciparum. Thus, PfHRP2-RDT misses non-falciparum species and P. falciparum infections that fall below the limit of detection. These limitations can be addressed using highly sensitive Next Generation Sequencing (NGS). This study assesses the burden of the four different Plasmodium species in western and eastern regions of Senegal using targeted PCR amplicon sequencing. METHODS: Three thousand samples from symptomatic and asymptomatic individuals in 2021 from three sites in Senegal (Sessene, Diourbel region; Parcelles Assainies, Kaolack region; Gabou, Tambacounda region) were collected. All samples were tested using PfHRP2-RDT and photoinduced electron transfer polymerase chain reaction (PET-PCR), which detects all Plasmodium species. Targeted sequencing of the nuclear 18S rRNA and the mitochondrial cytochrome B genes was performed on PET-PCR positive samples. RESULTS: Malaria prevalence by PfHRP2-RDT showed 9.4% (94/1000) and 0.2% (2/1000) in Diourbel (DBL) and Kaolack (KL), respectively. In Tambacounda (TAM) patients who had malaria symptoms and had a negative PfHRP2-RDT were enrolled. The PET-PCR had a positivity rate of 23.5% (295/1255) overall. The PET-PCR positivity rate was 37.6%, 12.3%, and 22.8% in Diourbel, Kaolack, and Tambacounda, respectively. Successful sequencing of 121/295 positive samples detected P. falciparum (93%), P. vivax (2.6%), P. malariae (4.4%), and P. ovale wallikeri (0.9%). Plasmodium vivax was co-identified with P. falciparum in thirteen samples. Sequencing also detected two PfHRP2-RDT-negative mono-infections of P. vivax in Tambacounda and Kaolack. CONCLUSION: The findings demonstrate the circulation of P. vivax in western and eastern Senegal, highlighting the need for improved malaria control strategies and accurate diagnostic tools to better understand the prevalence of non-falciparum species countrywide.


Malaria, Vivax , Plasmodium vivax , Senegal/epidemiology , Humans , Adolescent , Adult , Young Adult , Child , Middle Aged , Male , Female , Plasmodium vivax/genetics , Plasmodium vivax/isolation & purification , Child, Preschool , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Prevalence , Aged , Infant , Polymerase Chain Reaction , Plasmodium ovale/genetics , Plasmodium ovale/isolation & purification
9.
Malar J ; 23(1): 152, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755638

BACKGROUND: Malaria is a major public health concern in Ethiopia, where more than half of the population lives in malaria risk areas. While several studies have been conducted in different eco-epidemiological settings in Ethiopia, there is a notable scarcity of data on the prevalence of malaria in the Gindabarat district. Therefore, this study aimed to analyse 10-year trend of malaria prevalence in Gindabarat district, West Shawa Zone of Oromia, Western Ethiopia. METHODS: A retrospective laboratory record review was conducted at Gindabarat General Hospital and Gindabarat District Health Office from September 2011 to August 2020. The retrieved data included the date of examination, age, sex and laboratory results of the blood smears, including the Plasmodium species identified. Data were summarized and presented in the form of tables, figures, and frequencies to present the results. The data were analysed using SPSS (version 25.0) and Microsoft Excel. RESULTS: Over the course of 10 years, a total of 11,478 blood smears were examined in the public health facilities in the district. Of the total blood smears examined, 1372 (11.95%) were microscopically confirmed malaria. Plasmodium falciparum, Plasmodium vivax and mixed infections (P. falciparum and P. vivax) accounted for 70.77%, 20.55% and 8.67% of the cases, respectively. Malaria prevalence was significantly higher among individuals aged ≥ 15 years (12.60%, x2 = 13.6, df = 2, p = 0.001) and males (14.21%, x2 = 59.7, df = 1, p = 0.001). The highest number of malaria cases was recorded from September to November. CONCLUSION: Malaria remains a public health problem in the district. P. falciparum was the most predominant parasite species in the area. Malaria prevalence was significantly higher among individuals aged ≥ 15 years and males. There was a remarkable fluctuation in the number of malaria cases in different months and years. In the study area malaria cases peaked in 2015 and 2017 then decreasing from 2017 to 2019, with sharp increase in 2020. Moreover, this study showed malaria cases were reported in all seasons and months, but the highest was observed from September to November. Strengthening malaria control activities is essential to further reduce the burden of malaria and pave the way for the anticipated elimination.


Malaria, Falciparum , Malaria, Vivax , Plasmodium falciparum , Plasmodium vivax , Ethiopia/epidemiology , Prevalence , Male , Humans , Female , Retrospective Studies , Adolescent , Adult , Young Adult , Child , Child, Preschool , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Middle Aged , Infant , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Plasmodium falciparum/isolation & purification , Aged , Infant, Newborn , Aged, 80 and over
10.
Malar J ; 23(1): 143, 2024 May 12.
Article En | MEDLINE | ID: mdl-38735957

BACKGROUND: Despite continuous prevention and control strategies in place, malaria remains a major public health problem in sub-Saharan Africa including Ethiopia. Moreover, prevalence of malaria differs in different geographical settings and epidemiological data were inadequate to assure disease status in the study area. This study was aimed to determine the prevalence of malaria and associated risk factors in selected rural kebeles in South Ethiopia. METHODS: A community-based cross-sectional study was conducted between February to June 2019 in eight malaria-endemic kebeles situated in four zones in South Ethiopia. Mult-stage sampling techniques were employed to select the study zones, districts, kebeles and households. Blood sample were collected from 1674 participants in 345 households by finger prick and smears were examined by microscopy. Sociodemographic data as well as risk factors for Plasmodium infection were collected using questionnaires. Bivariate and multivariate logistic regressions were used to analyse the data. RESULTS: The overall prevalence of malaria in the study localities was 4.5% (76/1674). The prevalence was varied among the study localities with high prevalence in Bashilo (14.6%; 33/226) followed by Mehal Korga (12.1%; 26/214). Plasmodium falciparum was the dominant parasite accounted for 65.8% (50/76), while Plasmodium vivax accounted 18.4% (14/76). Co-infection of P. falciparum and P. vivax was 15.8% (12/76). Among the three age groups prevalence was 7.8% (27/346) in age less than 5 years and 7.5% (40/531) in 5-14 years. The age groups > 14years were less likely infected with Plasmodium parasite (AOR = 0.14, 95% CI 0.02-0.82) than under five children. Non-febrile individuals 1638 (97.8%) were more likely to had Plasmodium infection (AOR = 28.4, 95% CI 011.4-70.6) than febrile 36 (2.2%). Individuals living proximity to mosquito breeding sites have higher Plasmodium infection (AOR = 6.17, 95% CI 2.66-14.3) than those at distant of breeding sites. CONCLUSIONS: Malaria remains a public health problem in the study localities. Thus, malaria prevention and control strategies targeting children, non-febrile cases and individuals living proximity to breeding sites are crucial to reduce malaria related morbidity and mortality.


Family Characteristics , Malaria, Falciparum , Malaria, Vivax , Ethiopia/epidemiology , Cross-Sectional Studies , Prevalence , Humans , Risk Factors , Female , Male , Adolescent , Adult , Child, Preschool , Young Adult , Child , Middle Aged , Infant , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Plasmodium vivax/physiology , Plasmodium falciparum/isolation & purification , Aged , Rural Population/statistics & numerical data , Malaria/epidemiology , Malaria/parasitology
11.
Malar J ; 23(1): 140, 2024 May 09.
Article En | MEDLINE | ID: mdl-38725027

BACKGROUND: Plasmodium vivax relapses due to dormant liver hypnozoites can be prevented with primaquine. However, the dose must be adjusted in individuals with glucose-6-phosphate-dehydrogenase (G6PD) deficiency. In French Guiana, assessment of G6PD activity is typically delayed until day (D)14 to avoid the risk if misclassification. This study assessed the kinetics of G6PD activity throughout P. vivax infection to inform the timing of treatment. METHODS: For this retrospective monocentric study, data on G6PD activity between D1 and D28 after treatment initiation with chloroquine or artemisinin-based combination therapy were collected for patients followed at Cayenne Hospital, French Guiana, between January 2018 and December 2020. Patients were divided into three groups based on the number of available G6PD activity assessments: (i) at least two measurements during the P. vivax malaria infection; (ii) two measurements: one during the current infection and one previously; (iii) only one measurement during the malaria infection. RESULTS: In total, 210 patients were included (80, 20 and 110 in groups 1, 2 and 3, respectively). Data from group 1 showed that G6PD activity remained stable in each patient over time (D1, D3, D7, D14, D21, D28). None of the patients with normal G6PD activity during the initial phase (D1-D3) of the malaria episode (n = 44) was categorized as G6PD-deficient at D14. Patients with G6PD activity < 80% at D1 or D3 showed normal activity at D14. Sex and reticulocyte count were statistically associated with G6PD activity variation. In the whole sample (n = 210), no patient had severe G6PD deficiency (< 10%) and only three between 10 and 30%, giving a G6PD deficiency prevalence of 1.4%. Among the 100 patients from group 1 and 2, 30 patients (26.5%) were lost to follow-up before primaquine initiation. CONCLUSIONS: In patients treated for P. vivax infection, G6PD activity did not vary over time. Therefore, G6PD activity on D1 instead of D14 could be used for primaquine dose-adjustment. This could allow earlier radical treatment with primaquine, that could have a public health impact by decreasing early recurrences and patients lost to follow-up before primaquine initiation. This hypothesis needs to be confirmed in larger prospective studies.


Antimalarials , Glucosephosphate Dehydrogenase , Malaria, Vivax , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Chloroquine/therapeutic use , French Guiana/epidemiology , Glucosephosphate Dehydrogenase/metabolism , Glucosephosphate Dehydrogenase Deficiency/epidemiology , Glucosephosphate Dehydrogenase Deficiency/complications , Kinetics , Malaria, Vivax/drug therapy , Plasmodium vivax/drug effects , Plasmodium vivax/physiology , Primaquine/therapeutic use , Retrospective Studies , Aged, 80 and over
12.
J Math Biol ; 89(1): 7, 2024 May 21.
Article En | MEDLINE | ID: mdl-38772937

Malaria is a vector-borne disease that exacts a grave toll in the Global South. The epidemiology of Plasmodium vivax, the most geographically expansive agent of human malaria, is characterised by the accrual of a reservoir of dormant parasites known as hypnozoites. Relapses, arising from hypnozoite activation events, comprise the majority of the blood-stage infection burden, with implications for the acquisition of immunity and the distribution of superinfection. Here, we construct a novel model for the transmission of P. vivax that concurrently accounts for the accrual of the hypnozoite reservoir, (blood-stage) superinfection and the acquisition of immunity. We begin by using an infinite-server queueing network model to characterise the within-host dynamics as a function of mosquito-to-human transmission intensity, extending our previous model to capture a discretised immunity level. To model transmission-blocking and antidisease immunity, we allow for geometric decay in the respective probabilities of successful human-to-mosquito transmission and symptomatic blood-stage infection as a function of this immunity level. Under a hybrid approximation-whereby probabilistic within-host distributions are cast as expected population-level proportions-we couple host and vector dynamics to recover a deterministic compartmental model in line with Ross-Macdonald theory. We then perform a steady-state analysis for this compartmental model, informed by the (analytic) distributions derived at the within-host level. To characterise transient dynamics, we derive a reduced system of integrodifferential equations, likewise informed by our within-host queueing network, allowing us to recover population-level distributions for various quantities of epidemiological interest. In capturing the interplay between hypnozoite accrual, superinfection and acquired immunity-and providing, to the best of our knowledge, the most complete population-level distributions for a range of epidemiological values-our model provides insights into important, but poorly understood, epidemiological features of P. vivax.


Malaria, Vivax , Mathematical Concepts , Mosquito Vectors , Plasmodium vivax , Superinfection , Humans , Plasmodium vivax/immunology , Plasmodium vivax/physiology , Superinfection/immunology , Superinfection/transmission , Superinfection/parasitology , Malaria, Vivax/transmission , Malaria, Vivax/immunology , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Animals , Mosquito Vectors/parasitology , Mosquito Vectors/immunology , Disease Reservoirs/parasitology , Models, Biological , Computer Simulation , Anopheles/parasitology , Anopheles/immunology
13.
Infect Dis Poverty ; 13(1): 35, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783374

BACKGROUND: Lao PDR has made significant progress in malaria control. The National Strategic Plans outline ambitious targets, aiming for the elimination of Plasmodium falciparum and P. vivax malaria from all northern provinces by 2025 and national elimination by 2030. This article presents an overview of malaria epidemiology, surveillance, and response systems in Lao PDR, emphasizing experiences and achievements in transmission reduction. METHODS: Data on surveillance, monitoring and evaluation systems, human resources, infrastructure, and community malaria knowledge during 2010-2020 were systematically gathered from the national program and relevant documents. The collected information was synthesized, and discussions on challenges and future prospects were provided. RESULTS: Malaria control and elimination activities in Lao PDR were implemented at various levels, with a focus on health facility catchment areas. There has been significant progress in reducing malaria transmission throughout the country. Targeted interventions, such as case management, vector control, and community engagement, using stratification of control interventions by catchment areas have contributed to the decline in malaria cases. In elimination areas, active surveillance strategies, including case and foci investigation, are implemented to identify and stop transmission. The surveillance system has facilitated timely detection and response to malaria cases, enabling these targeted interventions in higher-risk areas. CONCLUSIONS: The malaria surveillance and response system in Lao PDR has played a crucial role in reducing transmission and advancing the country towards elimination. Challenges such as importation, drug resistance, and sustaining support require ongoing efforts. Further strengthening surveillance, improving access to services, and addressing transmission determinants are key areas of focus to achieve malaria elimination and enhance population health in Lao PDR.


Disease Eradication , Laos/epidemiology , Humans , Disease Eradication/methods , Malaria/epidemiology , Malaria/prevention & control , Malaria/transmission , Epidemiological Monitoring , Malaria, Vivax/epidemiology , Malaria, Vivax/prevention & control , Population Surveillance , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control
14.
Sci Rep ; 14(1): 9816, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698102

Malaria infection leads to hematological abnormalities, including deranged prothrombin time (PT). Given the inconsistent findings regarding PT in malaria across different severities and between Plasmodium falciparum and P. vivax, this study aimed to synthesize available evidence on PT variations in clinical malaria. A systematic literature search was performed in PubMed, Embase, Scopus, Ovid, and Medline from 27 November 2021 to 2 March 2023 to obtain studies documenting PT in malaria. Study quality was evaluated using the Joanna Briggs Institute checklist, with data synthesized through both qualitative and quantitative methods, including meta-regression and subgroup analyses, to explore heterogeneity and publication bias. From 2767 articles, 21 studies were included. Most studies reported prolonged or increased PT in malaria patients compared to controls, a finding substantiated by the meta-analysis (P < 0.01, Mean difference: 8.86 s, 95% CI 5.32-12.40 s, I2: 87.88%, 4 studies). Severe malaria cases also showed significantly higher PT than non-severe ones (P = 0.03, Hedges's g: 1.65, 95% CI 0.20-3.10, I2: 97.91%, 7 studies). No significant PT difference was observed between P. falciparum and P. vivax infections (P = 0.88, Mean difference: 0.06, 95% CI - 0.691-0.8, I2: 65.09%, 2 studies). The relationship between PT and malaria-related mortality remains unclear, underscoring the need for further studies. PT is typically prolonged or increased in malaria, particularly in severe cases, with no notable difference between P. falciparum and P. vivax infections. The inconsistency in PT findings between fatal and non-fatal cases highlights a gap in current understanding, emphasizing the need for future studies to inform therapeutic strategies.


Malaria, Falciparum , Malaria, Vivax , Plasmodium falciparum , Plasmodium vivax , Prothrombin Time , Humans , Malaria, Vivax/parasitology , Malaria, Vivax/blood , Malaria, Falciparum/parasitology , Malaria, Falciparum/blood , Plasmodium vivax/pathogenicity , Severity of Illness Index
15.
Malar J ; 23(1): 163, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783317

BACKGROUND: Plasmodium vivax represents the most geographically widespread human malaria parasite affecting civilian and military populations in endemic areas. Targeting the pre-erythrocytic (PE) stage of the parasite life cycle is especially appealing for developing P. vivax vaccines as it would prevent disease and transmission. Here, naturally acquired immunity to a panel of P. vivax PE antigens was explored, which may facilitate vaccine development and lead to a better understanding of naturally acquired PE immunity. METHODS: Twelve P. vivax PE antigens orthologous to a panel of P. falciparum antigens previously identified as highly immunogenic in protected subjects after immunization with radiation attenuated sporozoites (RAS) were used for evaluation of humoral and cellular immunity by ELISA and IFN-γ ELISpot. Samples from P. vivax infected individuals (n = 76) from a low endemic malaria region in the Peruvian Amazon Basin were used. RESULTS: In those clinical samples, all PE antigens evaluated showed positive IgG antibody reactivity with a variable prevalence of 58-99% in recently P. vivax diagnosed patients. The magnitude of the IgG antibody response against PE antigens was lower compared with blood stage antigens MSP1 and DBP-II, although antibody levels persisted better for PE antigens (average decrease of 6% for PE antigens and 43% for MSP1, p < 0.05). Higher IgG antibodies was associated with one or more previous malaria episodes only for blood stage antigens (p < 0.001). High IgG responders across PE and blood stage antigens showed significantly lower parasitaemia compared to low IgG responders (median 1,921 vs 4,663 par/µl, p < 0.05). In a subgroup of volunteers (n = 17),positive IFN-γ T cell response by ELISPOT was observed in 35% vs 9-35% against blood stage MSP1 and PE antigens, respectively, but no correlation with IgG responses. CONCLUSIONS: These results demonstrate clear humoral and T cell responses against P. vivax PE antigens in individuals naturally infected with P. vivax. These data identify novel attractive PE antigens suitable for use in the potential development and selection of new malaria vaccine candidates which can be used as a part of malaria prevention strategies in civilian and military populations living in P. vivax endemic areas.


Antigens, Protozoan , Malaria, Vivax , Plasmodium vivax , Protozoan Proteins , Plasmodium vivax/immunology , Peru/epidemiology , Humans , Malaria, Vivax/immunology , Malaria, Vivax/epidemiology , Adult , Male , Young Adult , Adolescent , Female , Middle Aged , Protozoan Proteins/immunology , Antigens, Protozoan/immunology , Immunoglobulin G/blood , Antibodies, Protozoan/blood , Enzyme-Linked Immunosorbent Assay , Child , Aged , Enzyme-Linked Immunospot Assay
16.
Parasit Vectors ; 17(1): 166, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38556881

BACKGROUND: Malaria is a major public health concern in Ethiopia, and its incidence could worsen with the spread of the invasive mosquito species Anopheles stephensi in the country. This study aimed to provide updates on the distribution of An. stephensi and likely household exposure in Ethiopia. METHODS: Entomological surveillance was performed in 26 urban settings in Ethiopia from 2021 to 2023. A kilometer-by-kilometer quadrant was established per town, and approximately 20 structures per quadrant were surveyed every 3 months. Additional extensive sampling was conducted in 50 randomly selected structures in four urban centers in 2022 and 2023 to assess households' exposure to An. stephensi. Prokopack aspirators and CDC light traps were used to collect adult mosquitoes, and standard dippers were used to collect immature stages. The collected mosquitoes were identified to species level by morphological keys and molecular methods. PCR assays were used to assess Plasmodium infection and mosquito blood meal source. RESULTS: Catches of adult An. stephensi were generally low (mean: 0.15 per trap), with eight positive sites among the 26 surveyed. This mosquito species was reported for the first time in Assosa, western Ethiopia. Anopheles stephensi was the predominant species in four of the eight positive sites, accounting for 75-100% relative abundance of the adult Anopheles catches. Household-level exposure, defined as the percentage of households with a peridomestic presence of An. stephensi, ranged from 18% in Metehara to 30% in Danan. Anopheles arabiensis was the predominant species in 20 of the 26 sites, accounting for 42.9-100% of the Anopheles catches. Bovine blood index, ovine blood index and human blood index values were 69.2%, 32.3% and 24.6%, respectively, for An. stephensi, and 65.4%, 46.7% and 35.8%, respectively, for An. arabiensis. None of the 197 An. stephensi mosquitoes assayed tested positive for Plasmodium sporozoite, while of the 1434 An. arabiensis mosquitoes assayed, 62 were positive for Plasmodium (10 for P. falciparum and 52 for P. vivax). CONCLUSIONS: This study shows that the geographical range of An. stephensi has expanded to western Ethiopia. Strongly zoophagic behavior coupled with low adult catches might explain the absence of Plasmodium infection. The level of household exposure to An. stephensi in this study varied across positive sites. Further research is needed to better understand the bionomics and contribution of An. stephensi to malaria transmission.


Anopheles , Malaria, Falciparum , Malaria, Vivax , Malaria , Animals , Cattle , Ecology , Ethiopia/epidemiology , Malaria/epidemiology , Malaria, Falciparum/epidemiology , Mosquito Vectors
17.
Sci Adv ; 10(16): eadk4492, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38640243

Approximately 3.3 billion people live with the threat of Plasmodium vivax malaria. Infection can result in liver-localized hypnozoites, which when reactivated cause relapsing malaria. This work demonstrates that an enzyme-cleavable polymeric prodrug of tafenoquine addresses key requirements for a mass administration, eradication campaign: excellent subcutaneous bioavailability, complete parasite control after a single dose, improved therapeutic window compared to the parent oral drug, and low cost of goods sold (COGS) at less than $1.50 per dose. Liver targeting and subcutaneous dosing resulted in improved liver:plasma exposure profiles, with increased efficacy and reduced glucose 6-phosphate dehydrogenase-dependent hemotoxicity in validated preclinical models. A COGS and manufacturability analysis demonstrated global scalability, affordability, and the ability to redesign this fully synthetic polymeric prodrug specifically to increase global equity and access. Together, this polymer prodrug platform is a candidate for evaluation in human patients and shows potential for P. vivax eradication campaigns.


Antimalarials , Malaria, Vivax , Malaria , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Aminoquinolines/adverse effects , Malaria/drug therapy , Malaria, Vivax/drug therapy , Malaria, Vivax/chemically induced , Liver
18.
Malar J ; 23(1): 116, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664687

BACKGROUND: Pregnancy Associated Malaria (PAM) include malaria in pregnancy (MiP), placental malaria (PM), and congenital malaria (CM). The evidence available in Colombia on PAM focuses on one of the presentations (MiP, PM or CM), and no study longitudinally analyses the infection from the pregnant woman, passing through the placenta, until culminating in the newborn. This study determined the frequency of MiP, PM, and CM caused by Plasmodium vivax, Plasmodium falciparum, or mixed infections, according to Thick Blood Smear (TBS) and quantitative Polymerase Chain Reaction (qPCR). Identifying associated factors of PAM and clinical-epidemiological outcomes in northwestern Colombia. METHODS: Prospective study of 431 pregnant women, their placenta, and newborns registered in the data bank of the research Group "Salud y Comunidad César Uribe Piedrahíta" which collected information between 2014 and 2020 in endemic municipalities of the departments of Córdoba and Antioquia. The frequency of infection was determined with 95% confidence intervals. Comparisons were made with the Chi-square test, Student t-test, prevalence ratios, and control for confounding variables by log-binomial regression. RESULTS: The frequency of MiP was 22.3% (4.6% using TBS), PM 24.8% (1.4% using TBS), and CM 11.8% (0% using TBS). Using TBS predominated P. vivax. Using qPCR the proportions of P. vivax and P. falciparum were similar for MiP and PM, but P. falciparum predominated in CM. The frequency was higher in nulliparous, and women with previous malaria. The main clinical effects of PAM were anaemia, low birth weight, and abnormal APGAR score. CONCLUSIONS: The magnitude of infections was not detected with TBS because most cases were submicroscopic (TBS-negative, qPCR-positive). This confirmed the importance of improving the molecular detection of cases. PAM continue being underestimated in the country due to that in Colombia the control programme is based on TBS, despite its outcomes on maternal, and congenital health.


Malaria, Falciparum , Malaria, Vivax , Pregnancy Complications, Parasitic , Humans , Female , Pregnancy , Colombia/epidemiology , Prospective Studies , Adult , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Young Adult , Infant, Newborn , Pregnancy Complications, Parasitic/epidemiology , Pregnancy Complications, Parasitic/parasitology , Adolescent , Plasmodium falciparum/isolation & purification , Prevalence , Plasmodium vivax/isolation & purification , Plasmodium vivax/physiology , Placenta/parasitology , Placenta Diseases/epidemiology , Placenta Diseases/parasitology
19.
Article En | MEDLINE | ID: mdl-38656041

Quilombo remnant communities are areas officially recognized by the Brazilian government as historical communities founded by formerly enslaved individuals. These communities are mostly located in the endemic areas of malaria in the Brazilian Amazon. We retrospectively described the prevalence of malaria among individuals living in 32 recognized quilombo remnant communities in the Baiao and Oriximina municipalities located in the Para State. The number of malaria cases and the Annual Parasitic Incidence (API) recorded by the Brazilian malaria surveillance system (SIVEP-Malaria) from January 2005 to December 2020 were analyzed. We found that all communities registered at least one case over the 16-year period, the most frequent parasitic species being Plasmodium vivax (76.1%). During this period, 0.44% (4,470/1,008,714) of the malaria cases registered in Para State were reported in these quilombo remnant communities, with frequencies of 10.9% (856/7,859) in Baiao municipality and 39.1% (3,614/9,238) in Oriximina municipality, showing that individuals living in these rural communities are exposed to malaria. These data indicate that effective surveillance requires improved measures to identify malaria transmission among vulnerable populations living in quilombo remnant communities in the Brazilian Amazon.


Malaria, Vivax , Vulnerable Populations , Humans , Brazil/epidemiology , Cross-Sectional Studies , Retrospective Studies , Prevalence , Malaria, Vivax/epidemiology , Incidence , Female , Male , Adult , Rural Population , Adolescent , Malaria/epidemiology , Malaria/transmission , Young Adult , Child , Middle Aged , Malaria, Falciparum/epidemiology , Child, Preschool
20.
Front Immunol ; 15: 1331474, 2024.
Article En | MEDLINE | ID: mdl-38650939

Malaria remains a global health challenge, necessitating the development of effective vaccines. The RTS,S vaccination prevents Plasmodium falciparum (Pf) malaria but is ineffective against Plasmodium vivax (Pv) disease. Herein, we evaluated the murine immunogenicity of a recombinant PvCSP incorporating prevalent polymorphisms, adjuvanted with Alhydrogel or Poly I:C. Both formulations induced prolonged IgG responses, with IgG1 dominance by the Alhydrogel group and high titers of all IgG isotypes by the Poly I:C counterpart. Poly I:C-adjuvanted vaccination increased splenic plasma cells, terminally-differentiated memory cells (MBCs), and precursors relative to the Alhydrogel-combined immunization. Splenic B-cells from Poly I:C-vaccinated mice revealed an antibody-secreting cell- and MBC-differentiating gene expression profile. Biological processes such as antibody folding and secretion were highlighted by the Poly I:C-adjuvanted vaccination. These findings underscore the potential of Poly I:C to strengthen immune responses against Pv malaria.


Aluminum Hydroxide , Antibodies, Protozoan , Immunoglobulin G , Malaria Vaccines , Malaria, Vivax , Plasmodium vivax , Poly I-C , Protozoan Proteins , Animals , Malaria Vaccines/immunology , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Mice , Plasmodium vivax/immunology , Antibodies, Protozoan/immunology , Poly I-C/immunology , Malaria, Vivax/immunology , Malaria, Vivax/prevention & control , Aluminum Hydroxide/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Female , Adjuvants, Immunologic , Immunity, Humoral , Immunity, Cellular , Mice, Inbred BALB C
...