Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 588
Filter
1.
Front Immunol ; 15: 1392043, 2024.
Article in English | MEDLINE | ID: mdl-38962015

ABSTRACT

In the Americas, P. vivax is the predominant causative species of malaria, a debilitating and economically significant disease. Due to the complexity of the malaria parasite life cycle, a vaccine formulation with multiple antigens expressed in various parasite stages may represent an effective approach. Based on this, we previously designed and constructed a chimeric recombinant protein, PvRMC-1, composed by PvCyRPA, PvCelTOS, and Pvs25 epitopes. This chimeric protein was strongly recognized by naturally acquired antibodies from exposed population in the Brazilian Amazon. However, there was no investigation about the induced immune response of PvRMC-1. Therefore, in this work, we evaluated the immunogenicity of this chimeric antigen formulated in three distinct adjuvants: Stimune, AddaVax or Aluminum hydroxide (Al(OH)3) in BALB/c mice. Our results suggested that the chimeric protein PvRMC-1 were capable to generate humoral and cellular responses across all three formulations. Antibodies recognized full-length PvRMC-1 and linear B-cell epitopes from PvCyRPA, PvCelTOS, and Pvs25 individually. Moreover, mice's splenocytes were activated, producing IFN-γ in response to PvCelTOS and PvCyRPA peptide epitopes, affirming T-cell epitopes in the antigen. While aluminum hydroxide showed notable cellular response, Stimune and Addavax induced a more comprehensive immune response, encompassing both cellular and humoral components. Thus, our findings indicate that PvRMC-1 would be a promising multistage vaccine candidate that could advance to further preclinical studies.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Malaria Vaccines , Malaria, Vivax , Mice, Inbred BALB C , Plasmodium vivax , Protozoan Proteins , Animals , Plasmodium vivax/immunology , Plasmodium vivax/genetics , Mice , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Malaria, Vivax/immunology , Malaria, Vivax/prevention & control , Antibodies, Protozoan/immunology , Malaria Vaccines/immunology , Female , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Disease Models, Animal , Adjuvants, Immunologic , Immunogenicity, Vaccine , Antigens, Surface
2.
PeerJ ; 12: e17632, 2024.
Article in English | MEDLINE | ID: mdl-38948214

ABSTRACT

Background: The integration of diagnostic methods holds promise for advancing the surveillance of malaria transmission in both endemic and non-endemic regions. Serological assays emerge as valuable tools to identify and delimit malaria transmission, serving as a complementary method to rapid diagnostic tests (RDT) and thick smear microscopy. Here, we evaluate the potential of antibodies directed against peptides encompassing the entire amino acid sequence of the PvMSP-1 Sal-I strain as viable serological biomarkers for P. vivax exposure. Methods: We screened peptides encompassing the complete amino acid sequence of the Plasmodium vivax Merozoite Surface Protein 1 (PvMSP-1) Sal-I strain as potential biomarkers for P. vivax exposure. Here, immunodominant peptides specifically recognized by antibodies from individuals infected with P. vivax were identified using the SPOT-synthesis technique followed by immunoblotting. Two 15-mer peptides were selected based on their higher and specific reactivity in immunoblotting assays. Subsequently, peptides p70 and p314 were synthesized in soluble form using SPPS (Solid Phase Peptide Synthesis) and tested by ELISA (IgG, and subclasses). Results: This study unveils the presence of IgG antibodies against the peptide p314 in most P. vivax-infected individuals from the Brazilian Amazon region. In silico B-cell epitope prediction further supports the utilization of p314 as a potential biomarker for evaluating malaria transmission, strengthened by its amino acid sequence being part of a conserved block of PvMSP-1. Indeed, compared to patients infected with P. falciparum and uninfected individuals never exposed to malaria, P. vivax-infected patients have a notably higher recognition of p314 by IgG1 and IgG3.


Subject(s)
Antibodies, Protozoan , Biomarkers , Malaria, Vivax , Merozoite Surface Protein 1 , Plasmodium vivax , Humans , Malaria, Vivax/immunology , Malaria, Vivax/blood , Malaria, Vivax/parasitology , Malaria, Vivax/transmission , Malaria, Vivax/diagnosis , Merozoite Surface Protein 1/immunology , Plasmodium vivax/immunology , Biomarkers/blood , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Immunoglobulin G/immunology , Immunoglobulin G/blood , Adult , Female , Male , Middle Aged , Peptides/immunology , Enzyme-Linked Immunosorbent Assay/methods , Young Adult , Adolescent , Amino Acid Sequence
3.
PLoS Negl Trop Dis ; 18(6): e0012231, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38865344

ABSTRACT

BACKGROUND: Malaria transmission-blocking vaccines (TBVs) aim to inhibit malaria parasite development in mosquitoes and prevent further transmission to the human host. The putative-secreted ookinete protein 25 (PSOP25), highly conserved in Plasmodium spp., is a promising TBV target. Here, we investigated PvPSOP25 from P. vivax as a TBV candidate using transgenic murine parasite P. berghei and clinical P. vivax isolates. METHODS AND FINDINGS: A transgenic P. berghei line expressing PvPSOP25 (TrPvPSOP25Pb) was generated. Full-length PvPSOP25 was expressed in the yeast Pichia pastoris and used to immunize mice to obtain anti-rPvPSOP25 sera. The transmission-blocking activity of the anti-rPvPSOP25 sera was evaluated through in vitro assays and mosquito-feeding experiments. The antisera generated by immunization with rPvPSOP25 specifically recognized the native PvPSOP25 antigen expressed in TrPvPSOP25Pb ookinetes. In vitro assays showed that the immune sera significantly inhibited exflagellation and ookinete formation of the TrPvPSOP25Pb parasite. Mosquitoes feeding on mice infected with the transgenic parasite and passively transferred with the anti-rPvPSOP25 sera showed a 70.7% reduction in oocyst density compared to the control group. In a direct membrane feeding assay conducted with five clinical P. vivax isolates, the mouse anti-rPvPSOP25 antibodies significantly reduced the oocyst density while showing a negligible influence on mosquito infection prevalence. CONCLUSIONS: This study supported the feasibility of transgenic murine malaria parasites expressing P. vivax antigens as a useful tool for evaluating P. vivax TBV candidates. Meanwhile, the moderate transmission-reducing activity of the generated anti-rPvPSOP25 sera necessitates further research to optimize its efficacy.


Subject(s)
Malaria Vaccines , Malaria, Vivax , Plasmodium berghei , Plasmodium vivax , Protozoan Proteins , Animals , Mice , Plasmodium vivax/genetics , Plasmodium vivax/immunology , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Plasmodium berghei/genetics , Plasmodium berghei/immunology , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Humans , Malaria, Vivax/transmission , Malaria, Vivax/parasitology , Malaria, Vivax/prevention & control , Malaria, Vivax/immunology , Female , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Malaria/transmission , Malaria/prevention & control , Malaria/parasitology , Malaria/immunology , Mice, Inbred BALB C
4.
J Math Biol ; 89(1): 7, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772937

ABSTRACT

Malaria is a vector-borne disease that exacts a grave toll in the Global South. The epidemiology of Plasmodium vivax, the most geographically expansive agent of human malaria, is characterised by the accrual of a reservoir of dormant parasites known as hypnozoites. Relapses, arising from hypnozoite activation events, comprise the majority of the blood-stage infection burden, with implications for the acquisition of immunity and the distribution of superinfection. Here, we construct a novel model for the transmission of P. vivax that concurrently accounts for the accrual of the hypnozoite reservoir, (blood-stage) superinfection and the acquisition of immunity. We begin by using an infinite-server queueing network model to characterise the within-host dynamics as a function of mosquito-to-human transmission intensity, extending our previous model to capture a discretised immunity level. To model transmission-blocking and antidisease immunity, we allow for geometric decay in the respective probabilities of successful human-to-mosquito transmission and symptomatic blood-stage infection as a function of this immunity level. Under a hybrid approximation-whereby probabilistic within-host distributions are cast as expected population-level proportions-we couple host and vector dynamics to recover a deterministic compartmental model in line with Ross-Macdonald theory. We then perform a steady-state analysis for this compartmental model, informed by the (analytic) distributions derived at the within-host level. To characterise transient dynamics, we derive a reduced system of integrodifferential equations, likewise informed by our within-host queueing network, allowing us to recover population-level distributions for various quantities of epidemiological interest. In capturing the interplay between hypnozoite accrual, superinfection and acquired immunity-and providing, to the best of our knowledge, the most complete population-level distributions for a range of epidemiological values-our model provides insights into important, but poorly understood, epidemiological features of P. vivax.


Subject(s)
Malaria, Vivax , Mathematical Concepts , Mosquito Vectors , Plasmodium vivax , Superinfection , Humans , Plasmodium vivax/immunology , Plasmodium vivax/physiology , Superinfection/immunology , Superinfection/transmission , Superinfection/parasitology , Malaria, Vivax/transmission , Malaria, Vivax/immunology , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Animals , Mosquito Vectors/parasitology , Mosquito Vectors/immunology , Disease Reservoirs/parasitology , Models, Biological , Computer Simulation , Anopheles/parasitology , Anopheles/immunology
5.
Trends Parasitol ; 40(7): 573-590, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749866

ABSTRACT

Plasmodium vivax contributes significantly to global malaria morbidity. Key advances include the discovery of pathways facilitating invasion by P. vivax merozoites of nascent reticulocytes, crucial for vaccine development. Humanized mouse models and hepatocyte culture systems have enhanced understanding of hypnozoite biology. The spleen has emerged as a major reservoir for asexual vivax parasites, replicating in an endosplenic life cycle, and contributing to recurrent and chronic infections, systemic inflammation, and anemia. Splenic accumulation of uninfected red cells is the predominant cause of anemia. Recurring and chronic infections cause progressive anemia, malnutrition, and death in young children in high-transmission regions. Endothelial activation likely contributes to vivax-associated organ dysfunction. The many recent advances in vivax pathobiology should help guide new approaches to prevention and management.


Subject(s)
Malaria, Vivax , Plasmodium vivax , Humans , Malaria, Vivax/parasitology , Malaria, Vivax/immunology , Malaria, Vivax/physiopathology , Animals , Plasmodium vivax/physiology , Plasmodium vivax/pathogenicity , Spleen/parasitology , Spleen/physiopathology , Spleen/immunology
6.
Parasit Vectors ; 17(1): 239, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802961

ABSTRACT

BACKGROUND: The spleen plays a critical role in the immune response against malaria parasite infection, where splenic fibroblasts (SFs) are abundantly present and contribute to immune function by secreting type I collagen (collagen I). The protein family is characterized by Plasmodium vivax tryptophan-rich antigens (PvTRAgs), comprising 40 members. PvTRAg23 has been reported to bind to human SFs (HSFs) and affect collagen I levels. Given the role of type I collagen in splenic immune function, it is important to investigate the functions of the other members within the PvTRAg protein family. METHODS: Protein structural prediction was conducted utilizing bioinformatics analysis tools and software. A total of 23 PvTRAgs were successfully expressed and purified using an Escherichia coli prokaryotic expression system, and the purified proteins were used for co-culture with HSFs. The collagen I levels and collagen-related signaling pathway protein levels were detected by immunoblotting, and the relative expression levels of inflammatory factors were determined by quantitative real-time PCR. RESULTS: In silico analysis showed that P. vivax has 40 genes encoding the TRAg family. The C-terminal region of all PvTRAgs is characterized by the presence of a domain rich in tryptophan residues. A total of 23 recombinant PvTRAgs were successfully expressed and purified. Only five PvTRAgs (PvTRAg5, PvTRAg16, PvTRAg23, PvTRAg30, and PvTRAg32) mediated the activation of the NF-κBp65 signaling pathway, which resulted in the production of inflammatory molecules and ultimately a significant reduction in collagen I levels in HSFs. CONCLUSIONS: Our research contributes to the expansion of knowledge regarding the functional role of PvTRAgs, while it also enhances our understanding of the immune evasion mechanisms utilized by parasites.


Subject(s)
Antigens, Protozoan , Collagen Type I , Fibroblasts , Plasmodium vivax , Signal Transduction , Spleen , Plasmodium vivax/genetics , Plasmodium vivax/immunology , Fibroblasts/parasitology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Animals , Collagen Type I/metabolism , Collagen Type I/genetics , Spleen/immunology , Spleen/parasitology , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Mice , Humans , Malaria, Vivax/parasitology , Malaria, Vivax/immunology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/immunology , Tryptophan/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Computational Biology
7.
Vaccine ; 42(16): 3621-3629, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38704253

ABSTRACT

Recent data indicate increasing disease burden and importance of Plasmodium vivax (Pv) malaria. A robust assay will be essential for blood-stage Pv vaccine development. Results of the in vitro growth inhibition assay (GIA) with transgenic P. knowlesi (Pk) parasites expressing the Pv Duffy-binding protein region II (PvDBPII) correlate with in vivo protection in the first PvDBPII controlled human malaria infection (CHMI) trials, making the PkGIA an ideal selection tool once the precision of the assay is defined. To determine the precision in percentage of inhibition in GIA (%GIA) and in GIA50 (antibody concentration that gave 50 %GIA), ten GIAs with transgenic Pk parasites were conducted with four different anti-PvDBPII human monoclonal antibodies (mAbs) at concentrations of 0.016 to 2 mg/mL, and three GIAs with eighty anti-PvDBPII human polyclonal antibodies (pAbs) at 10 mg/mL. A significant assay-to-assay variation was observed, and the analysis revealed a standard deviation (SD) of 13.1 in the mAb and 5.94 in the pAb dataset for %GIA, with a LogGIA50 SD of 0.299 (for mAbs). Moreover, the ninety-five percent confidence interval (95 %CI) for %GIA or GIA50 in repeat assays was calculated in this investigation. The error range determined in this study will help researchers to compare PkGIA results from different assays and studies appropriately, thus supporting the development of future blood-stage malaria vaccine candidates, specifically second-generation PvDBPII-based formulations.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Malaria Vaccines , Plasmodium knowlesi , Plasmodium vivax , Protozoan Proteins , Receptors, Cell Surface , Malaria Vaccines/immunology , Plasmodium knowlesi/immunology , Plasmodium knowlesi/genetics , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Plasmodium vivax/immunology , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Humans , Receptors, Cell Surface/immunology , Receptors, Cell Surface/genetics , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Malaria, Vivax/prevention & control , Malaria, Vivax/immunology , Antibodies, Monoclonal/immunology , Vaccine Development/methods , Animals
8.
Front Immunol ; 15: 1372584, 2024.
Article in English | MEDLINE | ID: mdl-38745665

ABSTRACT

Among Plasmodium spp. responsible for human malaria, Plasmodium vivax ranks as the second most prevalent and has the widest geographical range; however, vaccine development has lagged behind that of Plasmodium falciparum, the deadliest Plasmodium species. Recently, we developed a multistage vaccine for P. falciparum based on a heterologous prime-boost immunization regimen utilizing the attenuated vaccinia virus strain LC16m8Δ (m8Δ)-prime and adeno-associated virus type 1 (AAV1)-boost, and demonstrated 100% protection and more than 95% transmission-blocking (TB) activity in the mouse model. In this study, we report the feasibility and versatility of this vaccine platform as a P. vivax multistage vaccine, which can provide 100% sterile protection against sporozoite challenge and >95% TB efficacy in the mouse model. Our vaccine comprises m8Δ and AAV1 viral vectors, both harboring the gene encoding two P. vivax circumsporozoite (PvCSP) protein alleles (VK210; PvCSP-Sal and VK247; -PNG) and P25 (Pvs25) expressed as a Pvs25-PvCSP fusion protein. For protective efficacy, the heterologous m8Δ-prime/AAV1-boost immunization regimen showed 100% (short-term; Day 28) and 60% (long-term; Day 242) protection against PvCSP VK210 transgenic Plasmodium berghei sporozoites. For TB efficacy, mouse sera immunized with the vaccine formulation showed >75% TB activity and >95% transmission reduction activity by a direct membrane feeding assay using P. vivax isolates in blood from an infected patient from the Brazilian Amazon region. These findings provide proof-of-concept that the m8Δ/AAV1 vaccine platform is sufficiently versatile for P. vivax vaccine development. Future studies are needed to evaluate the safety, immunogenicity, vaccine efficacy, and synergistic effects on protection and transmission blockade in a non-human primate model for Phase I trials.


Subject(s)
Dependovirus , Genetic Vectors , Malaria Vaccines , Malaria, Vivax , Plasmodium vivax , Animals , Malaria Vaccines/immunology , Malaria Vaccines/administration & dosage , Plasmodium vivax/immunology , Plasmodium vivax/genetics , Malaria, Vivax/prevention & control , Malaria, Vivax/transmission , Malaria, Vivax/immunology , Mice , Dependovirus/genetics , Dependovirus/immunology , Female , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Disease Models, Animal , Vaccinia virus/genetics , Vaccinia virus/immunology , Humans , Mice, Inbred BALB C , Immunization, Secondary , Vaccine Efficacy
9.
Malar J ; 23(1): 163, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783317

ABSTRACT

BACKGROUND: Plasmodium vivax represents the most geographically widespread human malaria parasite affecting civilian and military populations in endemic areas. Targeting the pre-erythrocytic (PE) stage of the parasite life cycle is especially appealing for developing P. vivax vaccines as it would prevent disease and transmission. Here, naturally acquired immunity to a panel of P. vivax PE antigens was explored, which may facilitate vaccine development and lead to a better understanding of naturally acquired PE immunity. METHODS: Twelve P. vivax PE antigens orthologous to a panel of P. falciparum antigens previously identified as highly immunogenic in protected subjects after immunization with radiation attenuated sporozoites (RAS) were used for evaluation of humoral and cellular immunity by ELISA and IFN-γ ELISpot. Samples from P. vivax infected individuals (n = 76) from a low endemic malaria region in the Peruvian Amazon Basin were used. RESULTS: In those clinical samples, all PE antigens evaluated showed positive IgG antibody reactivity with a variable prevalence of 58-99% in recently P. vivax diagnosed patients. The magnitude of the IgG antibody response against PE antigens was lower compared with blood stage antigens MSP1 and DBP-II, although antibody levels persisted better for PE antigens (average decrease of 6% for PE antigens and 43% for MSP1, p < 0.05). Higher IgG antibodies was associated with one or more previous malaria episodes only for blood stage antigens (p < 0.001). High IgG responders across PE and blood stage antigens showed significantly lower parasitaemia compared to low IgG responders (median 1,921 vs 4,663 par/µl, p < 0.05). In a subgroup of volunteers (n = 17),positive IFN-γ T cell response by ELISPOT was observed in 35% vs 9-35% against blood stage MSP1 and PE antigens, respectively, but no correlation with IgG responses. CONCLUSIONS: These results demonstrate clear humoral and T cell responses against P. vivax PE antigens in individuals naturally infected with P. vivax. These data identify novel attractive PE antigens suitable for use in the potential development and selection of new malaria vaccine candidates which can be used as a part of malaria prevention strategies in civilian and military populations living in P. vivax endemic areas.


Subject(s)
Antigens, Protozoan , Malaria, Vivax , Plasmodium vivax , Protozoan Proteins , Plasmodium vivax/immunology , Peru/epidemiology , Humans , Malaria, Vivax/immunology , Malaria, Vivax/epidemiology , Adult , Male , Young Adult , Adolescent , Female , Middle Aged , Protozoan Proteins/immunology , Antigens, Protozoan/immunology , Immunoglobulin G/blood , Antibodies, Protozoan/blood , Enzyme-Linked Immunosorbent Assay , Child , Aged , Enzyme-Linked Immunospot Assay
10.
Sci Rep ; 14(1): 9595, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671033

ABSTRACT

Merozoite surface protein 3 of Plasmodium vivax (PvMSP3) contains a repertoire of protein members with unique sequence organization. While the biological functions of these proteins await elucidation, PvMSP3 has been suggested to be potential vaccine targets. To date, studies on natural immune responses to this protein family have been confined to two members, PvMSP3α and PvMSP3ß. This study analyzed natural IgG antibody responses to PvMSP3γ recombinant proteins derived from two variants: one containing insert blocks (CT1230nF) and the other without insert domain (NR25nF). The former variant was also expressed as two subfragment proteins: one encompassing variable domain I and insert block A (CT1230N) and the other spanning from insert block B to conserved block III (CT1230C). Serum samples were obtained from 246 symptomatic vivax malaria patients in Tak (n = 50) and Ubon Ratchathani (n = 196) Provinces. In total, 176 (71.5%) patients could mount antibodies to at least one recombinant PvMSP3γ antigen. IgG antibodies directed against antigens CT1230nF, CT1230N, CT1230C and NR25nF occurred in 96.6%, 61.4%, 71.6% and 68.2% of samples, respectively, suggesting the widespread occurrence of B-cell epitopes across PvMSP3γ. The rates of seropositivity seemed to correlate with the number of previous malaria episodes. Isotype analysis of anti-PvMSP3γ antibodies has shown predominant cytophilic subclass responses, accounting for 75.4-81.7% for IgG1 and 63.6-77.5% for IgG3. Comparing with previous studies in the same cohort, the numbers of serum samples reactive to antigens derived from P. vivax merozoite surface protein 9 (PvMSP9) and thrombospondin-related anonymous protein (PvTRAP) were higher than those to PvMSP3γ, being 92.7% and 87.0% versus 71.5%, respectively. Three (1.22%) serum samples were nonresponsive to all these malarial proteins. Nevertheless, the relevance of naturally acquired antibodies to PvMSP3γ in host protection requires further studies.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Immunoglobulin G , Malaria, Vivax , Plasmodium vivax , Protozoan Proteins , Plasmodium vivax/immunology , Humans , Malaria, Vivax/immunology , Malaria, Vivax/parasitology , Protozoan Proteins/immunology , Antigens, Protozoan/immunology , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Immunoglobulin G/immunology , Immunoglobulin G/blood , Male , Adult , Female , Middle Aged , Adolescent , Young Adult , Recombinant Proteins/immunology , Child
11.
PLoS Negl Trop Dis ; 17(1): e0011020, 2023 01.
Article in English | MEDLINE | ID: mdl-36634044

ABSTRACT

Extensive research has examined why some people have frequent Plasmodium falciparum malaria episodes in sub-Saharan Africa while others remain free of disease most of the time. In contrast, malaria risk heterogeneity remains little studied in regions where P. vivax is the dominant species. Are repeatedly infected people in vivax malaria settings such as the Amazon just unlucky? Here, we briefly review evidence that human genetic polymorphism and acquired immunity after repeated exposure to parasites can modulate the risk of P. vivax infection and disease in predictable ways. One-fifth of the hosts account for 80% or more of the community-wide vivax malaria burden and contribute disproportionally to onward transmission, representing a priority target of more intensive interventions to achieve malaria elimination. Importantly, high-risk individuals eventually develop clinical immunity, even in areas with very low or residual malaria transmission, and may constitute a large but silent parasite reservoir.


Subject(s)
Malaria, Vivax , Humans , Malaria, Vivax/genetics , Malaria, Vivax/immunology , Plasmodium vivax , Prevalence , Recurrence
12.
Parasitol Int ; 87: 102497, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34748969

ABSTRACT

Malaria elimination means cessation of parasite transmission. At present, the declining malaria incidence in many countries has made elimination a feasible goal. Transmission control has thus been placed at the center of the national malaria control programs. The efficient transmission of Plasmodium vivax from humans to mosquitoes is a key factor that helps perpetuate malaria in endemic areas. A better understanding of transmission is crucial to the success of elimination efforts. Biological delineation of the parasite transmission process is important for identifying and prioritizing new targets of intervention. Identification of the infectious parasite reservoir in the community is key to devising an effective elimination strategy. Here we describe the fundamental characteristics of P. vivax gametocytes - the dynamics of their production, longevity, and the relationship with the total parasitemia - as well as recent advances in the molecular understanding of parasite sexual development. In relation to malaria elimination, factors influencing the human infectivity and the current evidence for a role of asymptomatic carriers in transmission are presented.


Subject(s)
Malaria, Vivax/transmission , Plasmodium vivax/physiology , Animals , Anopheles/parasitology , Female , Humans , Malaria, Vivax/immunology , Malaria, Vivax/parasitology , Male , Mosquito Vectors/parasitology , Parasitemia/parasitology , Parasitemia/transmission
13.
PLoS One ; 16(11): e0258637, 2021.
Article in English | MEDLINE | ID: mdl-34727117

ABSTRACT

Peptide-based vaccines have demonstrated to be an important way to induce long-lived immune responses and, therefore, a promising strategy in the rational of vaccine development. As to malaria, among the classic vaccine targets, the Apical membrane antigen (AMA-1) was proven to have important B cell epitopes that can induce specific immune response and, hence, became key players for a vaccine approach. The peptides selection was carried out using a bioinformatic approach based on Hidden Markov Models profiles of known antigens and propensity scale methods based on hydrophilicity and secondary structure prediction. The antigenicity of the selected B-cell peptides was assessed by multiple serological assays using sera from acute P.vivax infected subjects. The synthetic peptides were recognized by 45.5%, 48.7% and 32.2% of infected subjects for peptides I, II and III respectively. Moreover, when synthetized together (tripeptide), the reactivity increases up to 62%, which is comparable to the reactivity found against the whole protein PvAMA-1 (57%). Furthermore, IgG reactivity against the tripeptide after depletion was reduced by 42%, indicating that these epitopes may be responsible for a considerable part of the protein immunogenicity. These results represent an excellent perspective regarding future chimeric vaccine constructions that may come to contemplate several targets with the potential to generate the robust and protective immune response that a vivax malaria vaccine needs to succeed.


Subject(s)
Antigens, Protozoan/immunology , Epitopes, B-Lymphocyte/immunology , Malaria Vaccines/immunology , Membrane Proteins/immunology , Peptides/immunology , Plasmodium vivax/immunology , Protozoan Proteins/immunology , Adult , Amino Acid Sequence , Antibody Formation/immunology , Case-Control Studies , Female , Humans , Immunodominant Epitopes/immunology , Immunoglobulin G/immunology , Malaria, Vivax/epidemiology , Malaria, Vivax/immunology , Male , Middle Aged , Peptides/chemistry , Protein Structure, Secondary
14.
PLoS Negl Trop Dis ; 15(11): e0009886, 2021 11.
Article in English | MEDLINE | ID: mdl-34727121

ABSTRACT

Homeostatic perturbation caused by infection fosters two major defense strategies, resistance and tolerance, which promote the host's survival. Resistance relates to the ability of the host to restrict the pathogen load. Tolerance minimizes collateral tissue damage without directly affecting pathogen fitness. These concepts have been explored mechanistically in murine models of malaria but only superficially in human disease. Indeed, individuals infected with Plasmodium vivax may present with asymptomatic malaria, only mild symptoms, or be severely ill. We and others have reported a diverse repertoire of immunopathological events that potentially underly susceptibility to disease severity in vivax malaria. Nevertheless, the combined epidemiologic, clinical, parasitological, and immunologic features associated with defining the disease outcomes are still not fully understood. In the present study, we perform an extensive outlining of cytokines and inflammatory proteins in plasma samples from a cohort of individuals from the Brazilian Amazon infected with P. vivax and presenting with asymptomatic (n = 108) or symptomatic (n = 134) disease (106 with mild presentation and 28 with severe malaria), as well as from uninfected endemic controls (n = 128) to elucidate these gaps further. We employ highly multidimensional Systems Immunology analyses using the molecular degree of perturbation to reveal nuances of a unique profile of systemic inflammation and imbalanced immune activation directly linked to disease severity as well as with other clinical and epidemiologic characteristics. Additionally, our findings reveal that the main factor associated with severe cases of P. vivax infection was the number of symptoms, despite of a lower global inflammatory perturbation and parasitemia. In these participants, the number of symptoms directly correlated with perturbation of markers of inflammation and tissue damage. On the other hand, the main factor associated with non-severe infections was the parasitemia values, that correlated only with perturbation of inflammatory markers, such as IL-4 and IL-1ß, with a relatively lower number of symptoms. These observations suggest that some persons present severe vivax regardless of pathogen burden and global inflammatory perturbation. Such patients are thus little tolerant to P. vivax infection and show higher susceptibility to disrupt homeostasis and consequently exhibit more clinical manifestations. Other persons are capable to tolerate higher parasitemia with lower inflammatory perturbation and fewer symptoms, developing non-severe malaria. The analytical approach presented here has capability to define in more details the determinants of disease tolerance in vivax malaria.


Subject(s)
Malaria, Vivax/immunology , Plasmodium vivax/physiology , Adult , Brazil , Female , Humans , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-4/genetics , Interleukin-4/immunology , Malaria, Vivax/genetics , Malaria, Vivax/parasitology , Male , Middle Aged , Plasmodium vivax/genetics , Retrospective Studies , Severity of Illness Index , Young Adult
15.
Eur J Med Res ; 26(1): 134, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34823591

ABSTRACT

BACKGROUND: Circumsporozoite protein (CSP) has a central immune domain that includes short regions of repeating amino acid sequences. This immunodynamic region is an epitope of B cells that can elicit an immune response in human and laboratory animals. The aim of the present study was to express the recombinant PvCSP-VK210 antigen and evaluate it for assaying antibodies obtained during human P. vivax infection by Western blotting and indirect ELISA (enzyme-linked immunosorbent assay). METHOD: Genomic DNA of P. vivax was isolated from a blood sample of an Iranian person with vivax malaria, and by PCR, the fragment of the PvCSP-VK210 gene was amplified. The gene fragment was cut after gel purification by BamHI and HindIII enzymes and then cloned into pET28a expression vector. Finally, the recombinant pET28a was transformed into the E. coli BL21 (DE3) as the expression host. In order to produce His-tagged protein, the expression host was cultured in LB medium. The protein was purified by Ni-NTA columns and immobilized metal affinity chromatography, and after confirmation by Western blotting technique, was used as the antigen in the indirect ELISA test. RESULTS: The recombinant protein was expressed and purified as a 32-kDa protein. The sensitivity and specificity of the indirect ELISA test with the recombinant PvCSP-VK210 antigen were 61.42% and 97.14%, respectively, based on OD = 0.313. Between the results of the microscopic test and the indirect ELISA test with the recombinant PvCSP-VK210 antigen there was a Kappa coefficient of 0.586. The positive and negative predictive value and validity of the ELISA test with the recombinant PvCSP-VK210 antigen were 95.55%, 71.57%, 79.28%, respectively. CONCLUSION: The sensitivity of the indirect ELISA method with the recombinant PvCSP-VK210 antigen was 61.42%, which is the first report from Iran.


Subject(s)
Antibodies, Protozoan/immunology , Malaria, Vivax/immunology , Plasmodium vivax/immunology , Protozoan Proteins/immunology , Recombinant Proteins/immunology , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Host-Parasite Interactions/immunology , Humans , Iran , Malaria, Vivax/parasitology , Plasmodium vivax/genetics , Plasmodium vivax/physiology , Protozoan Proteins/genetics
16.
Front Immunol ; 12: 704653, 2021.
Article in English | MEDLINE | ID: mdl-34675915

ABSTRACT

Malaria remains a major public health problem worldwide, and Plasmodium vivax is the most widely distributed malaria parasite. Naturally acquired binding inhibitory antibodies (BIAbs) to region II of the Duffy binding protein (DBPII), a P. vivax ligand that is critical for reticulocyte invasion, are associated with a reduced risk of clinical malaria. Owing to methodological issues in evaluating antibodies that inhibit the DBPII-DARC interaction, a limited number of studies have investigated DBPII BIAbs in P. vivax-exposed populations. Based on the assumption that individuals with a consistent BIAb response are characterized by strain-transcending immune responses, we hypothesized that detecting broadly reactive DBPII antibodies would indicate the presence of BIAb response. By taking advantage of an engineered DBPII immunogen targeting conserved DBPII neutralizing epitopes (DEKnull-2), we standardized a multiplex flow cytometry-based serological assay to detect broadly neutralizing IgG antibodies. For this study, a standard in vitro cytoadherence assay with COS-7 cells expressing DBPII was used to test for DBPII BIAb response in long-term P. vivax-exposed Amazonian individuals. Taken together, the results demonstrate that this DBPII-based multiplex assay facilitates identifying DBPII BIAb carriers. Of relevance, the ability of the multiplex assay to identify BIAb responders was highly accurate when the positivity for all antigens was considered. In conclusion, the standardized DBPII-based flow cytometric assay confirmed that DBPII-BIAb activity was associated with the breadth rather than the magnitude of anti-DBPII antibodies. Altogether, our results suggest that multiplex detection of broadly DBPII-reactive antibodies facilitates preliminary screening of BIAb responders.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Protozoan , Antigens, Protozoan/immunology , Flow Cytometry , Malaria, Vivax/immunology , Plasmodium vivax/immunology , Protozoan Proteins/immunology , Receptors, Cell Surface/immunology , Antibodies, Protozoan/immunology , Humans , Malaria, Vivax/diagnosis
17.
mBio ; 12(4): e0124721, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34311577

ABSTRACT

Monocytes play an important role in the host defense against Plasmodium vivax as the main source of inflammatory cytokines and mitochondrial reactive oxygen species (mROS). Here, we show that monocyte metabolism is altered during human P. vivax malaria, with mitochondria playing a major function in this switch. The process involves a reprograming in which the cells increase glucose uptake and produce ATP via glycolysis instead of oxidative phosphorylation. P. vivax infection results in dysregulated mitochondrial gene expression and in altered membrane potential leading to mROS increase rather than ATP production. When monocytes were incubated with P. vivax-infected reticulocytes, mitochondria colocalized with phagolysosomes containing parasites representing an important source mROS. Importantly, the mitochondrial enzyme superoxide dismutase 2 (SOD2) is simultaneously induced in monocytes from malaria patients. Taken together, the monocyte metabolic reprograming with an increased mROS production may contribute to protective responses against P. vivax while triggering immunomodulatory mechanisms to circumvent tissue damage. IMPORTANCE Plasmodium vivax is the most widely distributed causative agent of human malaria. To achieve parasite control, the human immune system develops a substantial inflammatory response that is also responsible for the symptoms of the disease. Among the cells involved in this response, monocytes play an important role. Here, we show that monocyte metabolism is altered during malaria, with its mitochondria playing a major function in this switch. This change involves a reprograming process in which the cells increase glucose uptake and produce ATP via glycolysis instead of oxidative phosphorylation. The resulting altered mitochondrial membrane potential leads to an increase in mitochondrial reactive oxygen species rather than ATP. These data suggest that agents that change metabolism should be investigated and used with caution during malaria.


Subject(s)
Mitochondria/metabolism , Mitochondria/pathology , Monocytes/metabolism , Monocytes/pathology , Plasmodium vivax/immunology , Reticulocytes/parasitology , Adenosine Triphosphate/metabolism , Adolescent , Adult , Aged , Female , Gene Expression , Glycolysis , Humans , Malaria, Vivax/immunology , Malaria, Vivax/physiopathology , Male , Middle Aged , Mitochondria/genetics , Monocytes/cytology , Monocytes/immunology , Phagosomes/immunology , Phagosomes/parasitology , Plasmodium vivax/genetics , Plasmodium vivax/pathogenicity , Reactive Oxygen Species/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Young Adult
18.
Front Immunol ; 12: 634738, 2021.
Article in English | MEDLINE | ID: mdl-34248932

ABSTRACT

P48/45 is a conserved gametocyte antigen involved in Plasmodium parasite fertilization. A recombinant Plasmodium vivax P48/45 (Pvs48/45) protein expressed in Escherichia coli (E. coli) was highly antigenic and immunogenic in experimental animals and elicited specific transmission-blocking (TB) antibodies in a previous pilot study. Here, a similar Pvs48/45 gene was expressed in Chinese Hamster Ovary (CHO) cells and we compared its immunoreactivity with the E. coli product. Specific antibody titers were determined using plasma from Colombian individuals (n=227) living in endemic areas where both P. vivax and P. falciparum are prevalent and from Guatemala (n=54) where P. vivax is highly prevalent. In Colombia, plasma seroprevalence to CHO-rPvs48/45 protein was 46.3%, while for E. coli-rPvs48/45 protein was 36.1% (p<0.001). In Guatemala, the sero prevalence was 24.1% and 14.8% (p<0.001), respectively. Reactivity index (RI) against both proteins showed an age-dependent increase. IgG2 was the predominant subclass and the antibody avidity index evaluated by ELISA ranged between 4-6 mol/L. Ex vivo P. vivax mosquito direct membrane feeding assays (DMFA) performed in presence of study plasmas, displayed significant parasite transmission-blocking (TB), however, there was no direct correlation between antibody titers and oocysts transmission reduction activity (%TRA). Nevertheless, DMFA with CHO rPvs48/45 affinity purified IgG showed a dose response; 90.2% TRA at 100 µg/mL and 71.8% inhibition at 10 µg/mL. In conclusion, the CHO-rPvs48/45 protein was more immunoreactive in most of the malaria endemic places studied, and CHO-rPvs48/45 specific IgG showed functional activity, supporting further testing of the protein vaccine potential.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , Endemic Diseases , Escherichia coli/metabolism , Immunoglobulin G/blood , Malaria, Vivax/diagnosis , Plasmodium vivax/immunology , Serologic Tests , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Antibody Specificity , Antigens, Protozoan/genetics , Antigens, Protozoan/metabolism , CHO Cells , Child , Colombia/epidemiology , Cricetulus , Escherichia coli/genetics , Female , Guatemala/epidemiology , Humans , Malaria, Vivax/blood , Malaria, Vivax/epidemiology , Malaria, Vivax/immunology , Male , Middle Aged , Plasmodium vivax/pathogenicity , Predictive Value of Tests , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Seroepidemiologic Studies , Young Adult
19.
Malar J ; 20(1): 246, 2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34082763

ABSTRACT

BACKGROUND: Plasmodium vivax is the most prevalent malaria parasite in many countries. A better understanding of human immunity to this parasite can provide new insights for vaccine development. Plasmodium vivax Reticulocyte Binding Proteins (RBPs) are key parasite proteins that interact with human proteins during erythrocyte invasion and are targets of the human immune response. The aim of this study is to characterize the human antibody response to RBP2P1, the most recently described member of the RBP family. METHODS: The levels of total IgG and IgM against RBP2P1 were measured using plasmas from 68 P. vivax malaria patients and 525 villagers in a malarious village of western Thailand. The latter group comprises asymptomatic carriers and healthy uninfected individuals. Subsets of plasma samples were evaluated for anti-RBP2P1 IgG subtypes and complement-fixing activity. RESULTS: As age increased, it was found that the level of anti-RBP2P1 IgG increased while the level of IgM decreased. The main anti-RBP2P1 IgG subtypes were IgG1 and IgG3. The IgG3-seropositive rate was higher in asymptomatic carriers than in patients. The higher level of IgG3 was correlated with higher in vitro RBP2P1-mediated complement fixing activity. CONCLUSIONS: In natural infection, the primary IgG response to RBP2P1 was IgG1 and IgG3. The predominance of these cytophilic subtypes and the elevated level of IgG3 correlating with complement fixing activity, suggest a possible role of anti-RBP2P1 antibodies in immunity against P. vivax.


Subject(s)
Immunity, Humoral , Malaria, Vivax/immunology , Membrane Proteins/immunology , Plasmodium vivax/physiology , Protozoan Proteins/immunology , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Young Adult
20.
JCI Insight ; 6(14)2021 07 22.
Article in English | MEDLINE | ID: mdl-34128836

ABSTRACT

IFN-γ-driven responses to malaria have been shown to modulate the development and function of T follicular helper (TFH) cells and memory B cells (MBCs), with conflicting evidence of their involvement in the induction of antibody responses required to achieve clinical immunity and their association with disease outcomes. Using high-dimensional single-cell mass cytometry, we identified distinct populations of TH1-polarized CD4+ T cells and MBCs expressing the TH1-defining transcription factor T-bet, associated with either increased or reduced risk of Plasmodium vivax (P. vivax) malaria, demonstrating that inflammatory responses to malaria are not universally detrimental for infection. Furthermore, we found that, whereas class-switched but not IgM+ MBCs were associated with a reduced risk of symptomatic malaria, populations of TH1 cells with a stem central memory phenotype, TH17 cells, and T regulatory cells were associated with protection from asymptomatic infection, suggesting that activation of cell-mediated immunity might also be required to control persistent P. vivax infection with low parasite burden.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Malaria, Vivax/immunology , Memory B Cells/immunology , Persistent Infection/immunology , Plasmodium vivax/immunology , Antimalarials/therapeutic use , Asymptomatic Infections , CD4-Positive T-Lymphocytes/metabolism , Cross-Sectional Studies , Healthy Volunteers , Humans , Immunity, Cellular , Immunophenotyping/methods , Indonesia , Malaria, Vivax/blood , Malaria, Vivax/drug therapy , Malaria, Vivax/parasitology , Memory B Cells/metabolism , Persistent Infection/blood , Persistent Infection/parasitology , Plasmodium vivax/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...