Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 10.420
1.
Narra J ; 4(1): e653, 2024 Apr.
Article En | MEDLINE | ID: mdl-38798832

In Indonesia, malaria remains a problem, with 94,610 active cases in 2021 and its current therapy includes chloroquine and artemisinin; however, resistance has been commonly reported. To overcome this problem, studies about potential medicinal plants that can be used as antimalaria, such as moringa (Moringa oleifera) started to receive more attention. The aim of this study was to investigate the effects of moringa in parasitemia, monocyte activation, and organomegaly on animal model malaria. This experimental study used male Mus musculus, infected by Plasmodium berghei ANKA, as an animal malaria model. The extract was made by maceration of dry moringa leaves, which were then divided into three concentrations: 25%, 50%, and 75%. Dihydroartemisinin-piperazine was used as a positive control treatment, and distilled water as a negative control treatment. The animals were observed for six days to assess the parasitemia count and the number of monocyte activation. On day 7, the animals were terminated, and the liver, spleen, and kidney were weighed. The results showed that the effective concentrations in reducing parasitemia and inducing monocyte activation were 50% and 25% of moringa leaf extract, respectively. The smallest liver and spleen enlargement was observed among animals within the group treated with a 50% concentration of M. oleifera extract. In contrast, the smallest kidney enlargement was observed in the group treated with 25% of M. oleifera extract. Further analysis is recommended to isolate compounds with antimalarial properties in moringa leaves.


Disease Models, Animal , Malaria , Monocytes , Parasitemia , Plant Extracts , Plasmodium berghei , Animals , Mice , Plasmodium berghei/drug effects , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Male , Malaria/drug therapy , Malaria/parasitology , Malaria/immunology , Monocytes/drug effects , Monocytes/parasitology , Monocytes/immunology , Parasitemia/drug therapy , Antimalarials/pharmacology , Antimalarials/therapeutic use , Moringa/chemistry , Moringa oleifera/chemistry , Plant Leaves/chemistry , Spleen/drug effects , Spleen/parasitology , Spleen/pathology , Spleen/immunology , Organ Size/drug effects
2.
J Ethnopharmacol ; 331: 118269, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38697409

ETHNOPHARMACOLOGICAL RELEVANCE: Malaria, caused by Plasmodium parasites, remains a significant global health challenge, particularly in tropical and subtropical regions. At the same time, the prevalence of toxoplasmosis has been reported to be 30% worldwide. Traditional medicines have long played a vital role in discovering and developing novel drugs, and this approach is essential in the face of increasing resistance to current antimalarial and anti-Toxoplasma drugs. In Indonesian traditional medicine, various plants are used for their therapeutic properties. This study focuses on eleven medicinal plants from which nineteen extracts were obtained and screened for their potential medicinal benefits against malaria and toxoplasmosis. AIMS OF THE STUDY: The aim of this study was to evaluate the efficacy of extracts from Indonesian medicinal plants to inhibit Plasmodium falciparum, a parasite responsible for malaria, and Toxoplasma gondii, an opportunistic parasite responsible for toxoplasmosis. METHODS: Nineteen extracts from eleven plants were subjected to in vitro screening against P. falciparum 3D7 (a chloroquine-sensitive strain) and the T. gondii RH strain. In vitro treatments were conducted on P. falciparum 3D7 and K1 (multidrug-resistant strains) using the potent extracts, and in vivo assessments were carried out with mice infected with P. yoelii 17XNL. LCMS analysis was also conducted to identify the main components of the most effective extract. RESULTS: Seven extracts showed significant antiplasmodial activity (>80% inhibition) at a concentration of 100 µg/ml. These extracts were obtained from Dysoxylum parasiticum (Osbeck) Kosterm., Elaeocarpus glaber (Bl.) Bijdr., Eleutherine americana Merr., Kleinhovia hospita L., Peronema canescens Jack, and Plectranthus scutellarioides (L.) R.Br. Notably, the D. parasiticum ethyl acetate extract exhibited high selectivity and efficacy both in vitro and in vivo. Herein, the key active compounds oleamide and erucamide were identified, which had IC50 values (P. falciparum 3D7/K1) of 17.49/23.63 µM and 32.49/51.59 µM, respectively. CONCLUSIONS: The results of this study highlight the antimalarial potential of plant extracts collected from Indonesia. Particularly, extracts from D. parasiticum EtOH and EtOAc stood out for their low toxicity and strong antiplasmodial properties, with the EtOAc extract emerging as a notably promising antimalarial candidate. Key compounds identified within this extract demonstrate the complexity of extracts' action against malaria, potentially targeting both the parasite and the host. This suggests a promising approach for developing new antimalarial strategies that tackle the multifaceted challenges of drug resistance and disease management. Future investigations are necessary to unlock the full therapeutic potential of these extracts.


Antimalarials , Plant Extracts , Plants, Medicinal , Plasmodium falciparum , Toxoplasma , Plant Extracts/pharmacology , Plant Extracts/chemistry , Animals , Plants, Medicinal/chemistry , Plasmodium falciparum/drug effects , Indonesia , Toxoplasma/drug effects , Antimalarials/pharmacology , Antimalarials/isolation & purification , Mice , Female , Malaria/drug therapy , Malaria/parasitology
3.
PLoS One ; 19(5): e0297416, 2024.
Article En | MEDLINE | ID: mdl-38758832

BACKGROUND: Malaria treatment is faced with the challenge of access, affordability, availability, and quality of antimalarial medicines. Affordable medicines facility-malaria (AMFm) program and subsequently Co-payment mechanism were developed to help increase access to quality assured Artemisinin-based combination therapies (ACTs) in seven countries in sub-Saharan Africa. We explored through a qualitative study, experience of healthcare personnel on Co-payment mechanism and the implication on its use in private drug outlets in Uganda. METHOD: Private drug outlets that reported stocking antimalarial agents in moderate-to-high and low malaria transmission settings were purposively selected for inclusion in the study. In each drug outlet, data was collected from a pharmacist/dispenser through key informant interview. The interview was done using a key informant interview guide which covered the following areas, (i) sociodemographic characteristics, ii) awareness of healthcare personnel on the co-payment mechanism, (iii) awareness of healthcare personnel on quality assured artemisinin combination therapies (QAACT), (iv) antimalarial stocking in private drug outlets, (v) antimalarial dispensing prices, (vi) considerations made while stocking, and pricing antimalarial agents, vii) challenges in antimalarial dispensing, and (viii) access to antimalarial agents in private drug outlets. Data was managed using Atlas.ti and analyzed using framework methodology. RESULTS: Data was collected from 25 key informants (12 pharmacists and 13 dispensers). Five themes emerged following data analysis, (i) antimalarial stocking influenced by price and client demand, (ii) access and purchasing behavior of drug outlet clients, (iii) basis of dispensing antimalarial agents in private drug outlets, (iv) awareness of QAACT, and (v) awareness of Co-payment mechanism. None of the study participants was aware of the existence of Co-payment mechanism and QAACT in the private sector. Duocotecin brand of ACTs was the most mentioned and dispensed ACT among the study participants in private drug outlets. Nearly all the pharmacists/dispensers said that many clients who request to purchase ACTs don't come with a prescription and prefer buying cheaper antimalarial agents. Study participants reported stocking and selling both ACTs and non-ACT antimalarial agents in the drug outlets. Pharmacists/dispensers in the drug outlets reported that most clients could not afford buying a full dose of an ACT. None of the study participants considered using Co-payment mechanism while stocking ACTs in the drug outlets. CONCLUSION: There is lack of awareness and utilization of Co-payment mechanism in stocking, pricing, and dispensing of ACTs among pharmacists/dispensers in private drug outlets in Uganda. The antimalarial dispensing in drug outlets was mostly based on prescriptions, clients' preferences, and medicine affordability. The Ministry of Health needs to create demand for Co-payment mechanism through public awareness campaigns, training of healthcare personnel and behavior change communication in the private sector.


Antimalarials , Health Personnel , Malaria , Uganda , Humans , Antimalarials/economics , Antimalarials/supply & distribution , Antimalarials/therapeutic use , Malaria/drug therapy , Malaria/economics , Health Personnel/economics , Artemisinins/economics , Artemisinins/supply & distribution , Private Sector/economics , Female , Health Services Accessibility/economics , Male
4.
Malar J ; 23(1): 147, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750488

BACKGROUND: In Uganda, village health workers (VHWs) manage childhood illness under the integrated community case management (iCCM) strategy. Care is provided for malaria, pneumonia, and diarrhoea in a community setting. Currently, there is limited evidence on the cost-effectiveness of iCCM in comparison to health facility-based management for childhood illnesses. This study examined the cost-effectiveness of the management of childhood illness using the VHW-led iCCM against health facility-based services in rural south-western Uganda. METHODS: Data on the costs and effectiveness of VHW-led iCCM versus health facility-based services for the management of childhood illness was collected in one sub-county in rural southwestern Uganda. Costing was performed using the ingredients approach. Effectiveness was measured as the number of under-five children appropriately treated. The Incremental Cost-Effectiveness Ratio (ICER) was calculated from the provider perspective. RESULTS: Based on the decision model for this study, the cost for 100 children treated was US$628.27 under the VHW led iCCM and US$87.19 for the health facility based services, while the effectiveness was 77 and 71 children treated for VHW led iCCM and health facility-based services, respectively. An ICER of US$6.67 per under five-year child treated appropriately for malaria, pneumonia and diarrhoea was derived for the provider perspective. CONCLUSION: The health facility based services are less costly when compared to the VHW led iCCM per child treated appropriately. The VHW led iCCM was however more effective with regard to the number of children treated appropriately for malaria, pneumonia and diarrhoea. Considering the public health expenditure per capita for Uganda as the willingness to pay threshold, VHW led iCCM is a cost-effective strategy. VHW led iCCM should, therefore, be enhanced and sustained as an option to complement the health facility-based services for treatment of childhood illness in rural contexts.


Case Management , Community Health Workers , Cost-Benefit Analysis , Rural Population , Uganda , Humans , Community Health Workers/economics , Case Management/economics , Child, Preschool , Infant , Malaria/economics , Malaria/drug therapy , Diarrhea/therapy , Diarrhea/economics , Pneumonia/economics , Pneumonia/therapy , Health Facilities/economics , Health Facilities/statistics & numerical data , Infant, Newborn , Male , Female , Community Health Services/economics
5.
Malar J ; 23(1): 146, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750517

BACKGROUND: In 2020, during the COVID-19 pandemic, Médecins Sans Frontières (MSF) initiated three cycles of dihydroartemisin-piperaquine (DHA-PQ) mass drug administration (MDA) for children aged three months to 15 years within Bossangoa sub-prefecture, Central African Republic. Coverage, clinical impact, and community members perspectives were evaluated to inform the use of MDAs in humanitarian emergencies. METHODS: A household survey was undertaken after the MDA focusing on participation, recent illness among eligible children, and household satisfaction. Using routine surveillance data, the reduction during the MDA period compared to the same period of preceding two years in consultations, malaria diagnoses, malaria rapid diagnostic test (RDT) positivity in three MSF community healthcare facilities (HFs), and the reduction in severe malaria admissions at the regional hospital were estimated. Twenty-seven focus groups discussions (FGDs) with community members were conducted. RESULTS: Overall coverage based on the MDA card or verbal report was 94.3% (95% confidence interval (CI): 86.3-97.8%). Among participants of the household survey, 2.6% (95% CI 1.6-40.3%) of round 3 MDA participants experienced illness in the preceding four weeks compared to 30.6% (95% CI 22.1-40.8%) of MDA non-participants. One community HF experienced a 54.5% (95% CI 50.8-57.9) reduction in consultations, a 73.7% (95% CI 70.5-76.5) reduction in malaria diagnoses, and 42.9% (95% CI 36.0-49.0) reduction in the proportion of positive RDTs among children under five. A second community HF experienced an increase in consultations (+ 15.1% (- 23.3 to 7.5)) and stable malaria diagnoses (4.2% (3.9-11.6)). A third community HF experienced an increase in consultations (+ 41.1% (95% CI 51.2-31.8) and malaria diagnoses (+ 37.3% (95% CI 47.4-27.9)). There were a 25.2% (95% CI 2.0-42.8) reduction in hospital admissions with severe malaria among children under five from the MDA area. FGDs revealed community members perceived less illness among children because of the MDA, as well as fewer hospitalizations. Other indirect benefits such as reduced household expenditure on healthcare were also described. CONCLUSION: The MDA achieved high coverage and community acceptance. While some positive health impact was observed, it was resource intensive, particularly in this rural context. The priority for malaria control in humanitarian contexts should remain diagnosis and treatment. MDA may be additional tool where the context supports its implementation.


Antimalarials , Artemisinins , COVID-19 , Malaria , Mass Drug Administration , Humans , Antimalarials/therapeutic use , Antimalarials/administration & dosage , Child, Preschool , Infant , Child , Adolescent , COVID-19/epidemiology , Central African Republic/epidemiology , Artemisinins/therapeutic use , Artemisinins/administration & dosage , Mass Drug Administration/statistics & numerical data , Female , Male , Malaria/drug therapy , SARS-CoV-2 , Quinolines/administration & dosage , Quinolines/therapeutic use
6.
Malar J ; 23(1): 170, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816778

BACKGROUND: Nonadherence to national standards for malaria diagnosis and treatment has been reported in Sudan. In this study, qualitative research examined the clinical domains of nonadherence, factors influencing nonadherent practices and health workers' views on how to improve adherence. METHODS: In September 2023, five Focus Group Discussions (FGDs) were undertaken with 104 health workers from 42 health facilities in Sudan's Northern State. The participants included medical assistants, doctors, nurses, laboratory personnel, pharmacists and public health officers. The FGDs followed a semi-structured guide reflecting the national malaria case management protocol. Qualitative thematic analysis was performed. RESULTS: Nonadherent practices included disregarding parasitological test results, suboptimal paediatric artemether-lumefantrine (AL) dosing, lack of counselling, use of prohibited artemether injections for uncomplicated and severe malaria, artesunate dose approximations and suboptimal preparations, lack of AL follow on treatment for severe malaria; and rare use of primaquine for radical Plasmodium vivax treatment and dihydroartemisinin-piperaquine as the second-line treatment for uncomplicated malaria. Factors influencing nonadherence included stock-outs of anti-malarials and RDTs; staff shortages; lack of training, job aids and supervision; malpractice by specialists; distrust of malaria microscopy and RDTs; and patient pressure for diagnosis and treatment. Health workers recommended strengthening the supply chain; hiring personnel; providing in-service protocol training including specialists; establishing external quality assurance for malaria diagnosis; and providing onsite supportive supervision and public health campaigns. CONCLUSIONS: This study revealed a broad spectrum of behavioural and systemic challenges in malaria management among frontline health workers in Northern Sudan, including nonadherence to protocols due to resource shortages, training gaps, a lack of supportive supervision and patient pressure. These insights, including health workers' views about improvements, will inform evidence-based interventions by Sudan's National Malaria Control Programme to improve health systems readiness and the quality of malaria case management.


Antimalarials , Case Management , Health Personnel , Malaria , Sudan , Malaria/drug therapy , Malaria/diagnosis , Humans , Antimalarials/therapeutic use , Qualitative Research , Guideline Adherence/statistics & numerical data , Male , Focus Groups , Female , Adult
7.
PLoS One ; 19(5): e0299517, 2024.
Article En | MEDLINE | ID: mdl-38713730

Artemisinin-based combination therapies (ACTs) represent one of the mainstays of malaria control. Despite evidence of the risk of ACTs resistant infections in resource-limited countries, studies on the rational use of ACTs to inform interventions and prevent their emergence and/or spread are limited. The aim of this study was designed to analyze practices toward ACTs use for treating the treatment of uncomplicated malaria (UM) in an urban community. Between November 2015 and April 2016, a cross-sectional and prospective study was conducted in the 6 health facilities and all pharmacies in the Douala 5e subdivision, Cameroon. Anonymous interviews including both open- and closed-ended questions were conducted with selected participants among drug prescribers, patients attending the health facilities, and customers visiting the pharmacies. Data analysis was performed using StataSE11 software (version 11 SE). A total of 41 prescribers were included in the study. All were aware of national treatment guidelines, but 37.7% reported not waiting for test results before prescribing an antimalarial drug, and the main reason being stock-outs at health facilities. Likewise, artemether+lumefantrine/AL (81%) and dihydroartemisinin+piperaquine (63.5%) were the most commonly used first- and second-line drugs respectively. Biological tests were requested in 99.2% (128/129) of patients in health facilities, 60.0% (74) were performed and 6.2% were rationally managed. Overall 266 (35%) of 760 customers purchased antimalarial drugs, of these, 261 (98.1%) agreed to participate and of these, 69.4% purchased antimalarial drugs without a prescription. ACTs accounted for 90.0% of antimalarials purchased from pharmacies, of which AL was the most commonly prescribed antimalarial drug (67.1%), and only 19.5% of patients were appropriately dispensed. The current data suggest a gap between the knowledge and practices of prescribers as well as patients and customers misconceptions regarding the use of ACTs in Douala 5e subdivision. Despite government efforts to increase public awareness regarding the use of ACTs as first-line treatment for UM, our findings point out a critical need for the development, implementation and scaling-up of control strategies and continuing health education for better use of ACTs (prescription and dispensing) in Cameroon.


Antimalarials , Artemisinins , Health Facilities , Malaria , Pharmacies , Humans , Artemisinins/therapeutic use , Cameroon , Antimalarials/therapeutic use , Malaria/drug therapy , Cross-Sectional Studies , Female , Male , Adult , Prospective Studies , Drug Therapy, Combination , Middle Aged , Young Adult , Adolescent
8.
Nat Commun ; 15(1): 3817, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714692

Standard diagnostics used in longitudinal antimalarial studies are unable to characterize the complexity of submicroscopic parasite dynamics, particularly in high transmission settings. We use molecular markers and amplicon sequencing to characterize post-treatment stage-specific malaria parasite dynamics during a 42 day randomized trial of 3- versus 5 day artemether-lumefantrine in 303 children with and without HIV (ClinicalTrials.gov number NCT03453840). The prevalence of parasite-derived 18S rRNA is >70% in children throughout follow-up, and the ring-stage marker SBP1 is detectable in over 15% of children on day 14 despite effective treatment. We find that the extended regimen significantly lowers the risk of recurrent ring-stage parasitemia compared to the standard 3 day regimen, and that higher day 7 lumefantrine concentrations decrease the probability of ring-stage parasites in the early post-treatment period. Longitudinal amplicon sequencing reveals remarkably dynamic patterns of multiclonal infections that include new and persistent clones in both the early post-treatment and later time periods. Our data indicate that post-treatment parasite dynamics are highly complex despite efficacious therapy, findings that will inform strategies to optimize regimens in the face of emerging partial artemisinin resistance in Africa.


Antimalarials , Artemether, Lumefantrine Drug Combination , Plasmodium falciparum , Humans , Artemether, Lumefantrine Drug Combination/therapeutic use , Antimalarials/therapeutic use , Antimalarials/administration & dosage , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Child, Preschool , Child , Male , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Female , Parasitemia/drug therapy , Parasitemia/parasitology , RNA, Ribosomal, 18S/genetics , Malaria/drug therapy , Malaria/parasitology , Infant , HIV Infections/drug therapy , Artemisinins/therapeutic use , Artemisinins/administration & dosage
9.
PLoS One ; 19(5): e0303289, 2024.
Article En | MEDLINE | ID: mdl-38722891

Malaria and Human Immunodeficiency Virus infections are among the top 10 causes of death in low income countries. Furthermore, many medicines used in these treatment areas are substandard, which contributes to the high death rate. Using a monitoring system to identify substandard and falsified medicines, the study aims to evaluate the quality of antimalarial and antiretroviral medicines in Sahel countries, assessing site conditions, compliance of medicines with pharmacopoeia tests, formulation equivalence with a reference medicine, and the influence of climate on quality attributes. Ultra Performance Liquid Chromatography methods for eight active pharmaceutical ingredients were validated following the International Conference for Harmonization guideline for its detection and quantification. Quality control consists of visual inspections to detect any misinformation or imperfections and pharmacopeial testing to determine the quality of pharmaceutical products. Medicines which complied with uniformity dosage units and dissolution tests were stored under accelerated conditions for 6 months. Artemether/Lumefantrine and Lopinavir/Ritonavir formulations failed uniformity dosage units and disintegration tests respectively, detecting a total of 28.6% substandard medicines. After 6 months stored under accelerated conditions (40 °C // 75% relative humidity) simulating climatic conditions in Sahel countries, some medicines failed pharmacopeia tests. It demonstrated the influence of these two factors in their quality attributes. This study emphasizes the need of certified quality control laboratories as well as the need for regulatory systems to maintain standards in pharmaceutical manufacturing and distribution in these countries, especially when medicines are transported to rural areas where these climatic conditions are harsher.


Antimalarials , Quality Control , Antimalarials/analysis , Antimalarials/standards , Humans , Anti-Retroviral Agents/analysis , Public Health , Ritonavir/analysis , Ritonavir/therapeutic use , Administration, Oral , Substandard Drugs/analysis , HIV Infections/drug therapy , Malaria/drug therapy , Lopinavir/analysis , Lopinavir/therapeutic use
10.
Eur J Pharm Sci ; 198: 106795, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38729224

The overarching premise of this investigation is that injectable, long-acting antimalarial medication would encourage adherence to a dosage regimen for populations at risk of contracting the disease. To advance support for this goal, we have developed oil-based formulations of ELQ-331 (a prodrug of ELQ-300) that perform as long-acting, injectable chemoprophylactics with drug loading as high as 160 mg/ml of ELQ-331. In a pharmacokinetic study performed with rats, a single intramuscular injection of 12.14 mg/kg maintained higher plasma levels than the previously established minimum fully protective plasma concentration (33.25 ng/ml) of ELQ-300 for more than 4 weeks. The formulations were well tolerated by the rats and the tested dose produced no adverse reactions. We believe that by extending the length of time between subsequent injections, these injectable oil-based solutions of ELQ-331 can offer a more accessible, low-cost option for long-acting disease prevention and reduced transmission in malaria-endemic regions and may also be of use to travelers.


Antimalarials , Animals , Antimalarials/administration & dosage , Antimalarials/pharmacokinetics , Injections, Intramuscular , Male , Rats , Rats, Sprague-Dawley , Delayed-Action Preparations/administration & dosage , Prodrugs/administration & dosage , Prodrugs/pharmacokinetics , Malaria/drug therapy
11.
Phytomedicine ; 129: 155644, 2024 Jul.
Article En | MEDLINE | ID: mdl-38761524

BACKGROUND: A global death toll of 608,000 in 2022 and emerging parasite resistance to artemisinin, the mainstay of antimalarial chemotherapy derived from the Chinese herb Artemisia annua, urge the development of novel antimalarials. A clinical trial has found high antimalarial potency for aqueous extracts of A. annua as well as its African counterpart Artemisia afra, which contains only trace amounts of artemisinin. The artemisinin-independent antimalarial activity of A. afra points to the existence of other antimalarials present in the plant. However, the publication was retracted due to ethical and methodological concerns in the trial, so the only evidence for antimalarial activity of A. afra is built on in vitro studies reporting efficacy only in the microgram per milliliter range. HYPOTHESIS: Our study aims to shed more light on the controversy around the antimalarial activity of A. afra by assessing its efficacy in mice. In particular, we are testing the hypothesis that A. afra contains a pro-drug that is inactive in vitro but active in vivo after metabolization by the mammalian host. METHODS: Plasmodium berghei-infected mice were treated once or thrice (on three consecutive days) with various doses of A. afra, A. annua, or pure artemisinin. RESULTS: Aqueous powder suspensions of A. annua but not A. afra showed antimalarial activity in mice. CONCLUSION: Our experiments conducted in mice do not support the pro-drug hypothesis.


Antimalarials , Artemisia , Artemisinins , Malaria , Plant Extracts , Plasmodium berghei , Powders , Antimalarials/pharmacology , Animals , Artemisia/chemistry , Malaria/drug therapy , Plasmodium berghei/drug effects , Artemisinins/pharmacology , Mice , Plant Extracts/pharmacology , Plant Extracts/chemistry , Artemisia annua/chemistry , Suspensions , Male
12.
Parasitol Res ; 123(5): 209, 2024 May 14.
Article En | MEDLINE | ID: mdl-38740597

Artemisinin (ART) combination therapy is the main treatment for malaria. Pfk13 mutations (or K13 mutations, Kelch 13) are associated with ART resistance. This study aims to conduct a systematic review and meta-analysis of the prevalence of K13 mutations with ART resistance in malaria-endemic countries. An electronic search of studies in 2018 and a manual search in 2020 were performed to identify relevant studies. The risk of bias was assessed using the National Institutes of Health (NIH) quality assessment tool for observational cohort and cross-sectional studies. Data analysis was performed using R 4.1.0. Heterogeneity was estimated using the statistic I2 and Cochran Q test. A total of 170 studies were included in our review. Of these, 55 studies investigated the prevalence of K13 mutations in Southeast Asia. The meta-analysis showed that Southeast Asia had the highest prevalence of K13 mutations, whereas Africa, South America, Oceania, and other Asian countries outside Southeast Asia had a low prevalence of K13 mutations. The C580Y mutation was the most common in Southeast Asia with 35.5% (95%CI: 25.4-46.4%), whereas the dominant mutation in Africa was K189T (22.8%, 95%CI: 7.6-43.2%). This study revealed the emergence of ART resistance associated with K13 mutations in Southeast Asia. The diversity of each type of K13 mutation in other regions was also reported.


Antimalarials , Artemisinins , Polymorphism, Genetic , Artemisinins/therapeutic use , Humans , Antimalarials/therapeutic use , Prevalence , Drug Resistance/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Malaria/drug therapy , Malaria/epidemiology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Mutation , Protozoan Proteins/genetics , Asia, Southeastern/epidemiology
13.
J Pharm Biomed Anal ; 245: 116154, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38657367

Malaria remains a major health concern, aggravated by emerging resistance of the parasite to existing treatments. The World Health Organization recently endorsed the use of artesunate-pyronaridine to treat uncomplicated malaria. However, there is a lack of clinical pharmacokinetic (PK) data of pyronaridine, particularly in special populations such as children and pregnant women. Existing methods for the quantification of pyronaridine in biological matrices to support PK studies exhibit several drawbacks. These include limited sensitivity, a large sample volume required, and extensive analysis time. To overcome these limitations, an ultra-performance reversed-phase liquid chromatography tandem-mass spectrometry method to determine pyronaridine was developed and validated according to international guidelines. The method enabled fast and accurate quantification of pyronaridine in whole blood across a clinically relevant concentration range of 0.500-500 ng/mL (r2 ≥ 0.9963), with a required sample volume of 50 µL. Pyronaridine was extracted from whole blood using liquid-liquid extraction, effectively eliminating the matrix effect and preventing ion enhancement or suppression. The method achieved a satisfactory reproducible sample preparation recovery of 77%, accuracy (as bias) and precision were within ±8.2% and ≤5.3%, respectively. Stability experiments demonstrated that pyronaridine was stable for up to 315 days when stored at -70°C. Adjustments to the chromatographic system substantially reduced carry-over and improved sensitivity compared to prior methods. The method was successfully applied to quantify pyronaridine in whole blood samples from a selection of pregnant malaria patients participating in the PYRAPREG clinical trial (PACTR202011812241529) in the Democratic Republic of the Congo, demonstrating its suitability to support future PK studies. Furthermore, the enhanced sensitivity allows for the determination of pyronaridine up to 42 days post-treatment initiation, enabling assessment of the terminal elimination half-life.


Antimalarials , Naphthyridines , Tandem Mass Spectrometry , Humans , Antimalarials/blood , Antimalarials/pharmacokinetics , Antimalarials/analysis , Tandem Mass Spectrometry/methods , Naphthyridines/blood , Naphthyridines/pharmacokinetics , Naphthyridines/analysis , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Female , Liquid-Liquid Extraction/methods , Pregnancy , Malaria/drug therapy , Malaria/blood , Chromatography, Reverse-Phase/methods
14.
Malar J ; 23(1): 92, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38570791

BACKGROUND: Artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) are the currently recommended first- and second-line therapies for uncomplicated Plasmodium falciparum infections in Togo. This study assessed the efficacy of these combinations, the proportion of Day3-positive patients (D3 +), the proportion of molecular markers associated with P. falciparum resistance to anti-malarial drugs, and the variable performance of HRP2-based malaria rapid diagnostic tests (RDTs). METHODS: A single arm prospective study evaluating the efficacy of AL and DP was conducted at two sites (Kouvé and Anié) from September 2021 to January 2022. Eligible children were enrolled, randomly assigned to treatment at each site and followed up for 42 days after treatment initiation. The primary endpoint was polymerase chain reaction (PCR) adjusted adequate clinical and parasitological response (ACPR). At day 0, samples were analysed for mutations in the Pfkelch13, Pfcrt, Pfmdr-1, dhfr, dhps, and deletions in the hrp2/hrp3 genes. RESULTS: A total of 179 and 178 children were included in the AL and DP groups, respectively. After PCR correction, cure rates of patients treated with AL were 97.5% (91.4-99.7) at day 28 in Kouvé and 98.6% (92.4-100) in Anié, whereas 96.4% (CI 95%: 89.1-98.8) and 97.3% (CI 95%: 89.5-99.3) were observed at day 42 in Kouvé and Anié, respectively. The cure rates of patients treated with DP at day 42 were 98.9% (CI 95%: 92.1-99.8) in Kouvé and 100% in Anié. The proportion of patients with parasites on day 3 (D3 +) was 8.5% in AL and 2.6% in DP groups in Anié and 4.3% in AL and 2.1% DP groups in Kouvé. Of the 357 day 0 samples, 99.2% carried the Pfkelch13 wild-type allele. Two isolates carried nonsynonymous mutations not known to be associated with artemisinin partial resistance (ART-R) (A578S and A557S). Most samples carried the Pfcrt wild-type allele (97.2%). The most common Pfmdr-1 allele was the single mutant 184F (75.6%). Among dhfr/dhps mutations, the quintuple mutant haplotype N51I/C59R/S108N + 437G/540E, which is responsible for SP treatment failure in adults and children, was not detected. Single deletions in hrp2 and hrp3 genes were detected in 1/357 (0.3%) and 1/357 (0.3%), respectively. Dual hrp2/hrp3 deletions, which could affect the performances of HRP2-based RDTs, were not observed. CONCLUSION: The results of this study confirm that the AL and DP treatments are highly effective. The absence of the validated Pfkelch13 mutants in the study areas suggests the absence of ART -R, although a significant proportion of D3 + cases were found. The absence of dhfr/dhps quintuple or sextuple mutants (quintuple + 581G) supports the continued use of SP for IPTp during pregnancy and in combination with amodiaquine for seasonal malaria chemoprevention. TRIAL REGISTRATION: ACTRN12623000344695.


Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Piperazines , Quinolines , Child , Adult , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Artemether, Lumefantrine Drug Combination/pharmacology , Prevalence , Togo/epidemiology , Prospective Studies , Artemether/therapeutic use , Quinolines/pharmacology , Quinolines/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria/drug therapy , Drug Resistance , Tetrahydrofolate Dehydrogenase/genetics , Biomarkers , Drug Combinations , Plasmodium falciparum/genetics
15.
Malar J ; 23(1): 95, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38582830

BACKGROUND: The use of artemisinin-based combination therapy (ACT) is recommended by the World Health Organization for the treatment of uncomplicated falciparum malaria. Artemether-lumefantrine (AL) is the most widely adopted first-line ACT for uncomplicated malaria in sub-Saharan Africa (SSA), including mainland Tanzania, where it was introduced in December 2006. The WHO recommends regular assessment to monitor the efficacy of the first-line treatment specifically considering that artemisinin partial resistance was reported in Greater Mekong sub-region and has been confirmed in East Africa (Rwanda and Uganda). The main aim of this study was to assess the efficacy and safety of AL for the treatment of uncomplicated falciparum malaria in mainland Tanzania. METHODS: A single-arm prospective anti-malarial drug efficacy trial was conducted in Kibaha, Mlimba, Mkuzi, and Ujiji (in Pwani, Morogoro, Tanga, and Kigoma regions, respectively) in 2018. The sample size of 88 patients per site was determined based on WHO 2009 standard protocol. Participants were febrile patients (documented axillary temperature ≥ 37.5 °C and/or history of fever during the past 24 h) aged 6 months to 10 years. Patients received a 6-dose AL regimen by weight twice a day for 3 days. Clinical and parasitological parameters were monitored during 28 days of follow-up to evaluate the drug efficacy and safety. RESULTS: A total of 653 children were screened for uncomplicated malaria and 349 (53.7%) were enrolled between April and August 2018. Of the enrolled children, 345 (98.9%) completed the 28 days of follow-up or attained the treatment outcomes. There were no early treatment failures, but recurrent infections were higher in Mkuzi (35.2%) and Ujiji (23%). By Kaplan-Meier analysis of polymerase chain reaction (PCR) uncorrected adequate clinical and parasitological response (ACPR) ranged from 63.4% in Mkuzi to 85.9% in Mlimba, while PCR-corrected ACPR on day 28 varied from 97.6% in Ujiji to 100% in Mlimba. The drug was well tolerated; the commonly reported adverse events were cough, runny nose, and abdominal pain. No serious adverse event was reported. CONCLUSION: This study showed that AL had adequate efficacy and safety for the treatment of uncomplicated falciparum malaria. The high number of recurrent infections were mainly due to new infections, indicating the necessity of utilizing alternative artemisinin-based combinations, such as artesunate amodiaquine, which provide a significantly longer post-treatment prophylactic effect.


Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Child , Humans , Antimalarials/adverse effects , Artemether, Lumefantrine Drug Combination/adverse effects , Tanzania , Reinfection/chemically induced , Reinfection/drug therapy , Artemisinins/adverse effects , Artemether/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Amodiaquine/therapeutic use , Malaria/drug therapy , Fever/drug therapy , Drug Combinations , Ethanolamines/adverse effects , Plasmodium falciparum
16.
PLoS Comput Biol ; 20(4): e1012017, 2024 Apr.
Article En | MEDLINE | ID: mdl-38626207

Current malaria elimination targets must withstand a colossal challenge-resistance to the current gold standard antimalarial drug, namely artemisinin derivatives. If artemisinin resistance significantly expands to Africa or India, cases and malaria-related deaths are set to increase substantially. Spatial information on the changing levels of artemisinin resistance in Southeast Asia is therefore critical for health organisations to prioritise malaria control measures, but available data on artemisinin resistance are sparse. We use a comprehensive database from the WorldWide Antimalarial Resistance Network on the prevalence of non-synonymous mutations in the Kelch 13 (K13) gene, which are known to be associated with artemisinin resistance, and a Bayesian geostatistical model to produce spatio-temporal predictions of artemisinin resistance. Our maps of estimated prevalence show an expansion of the K13 mutation across the Greater Mekong Subregion from 2000 to 2022. Moreover, the period between 2010 and 2015 demonstrated the most spatial change across the region. Our model and maps provide important insights into the spatial and temporal trends of artemisinin resistance in a way that is not possible using data alone, thereby enabling improved spatial decision support systems on an unprecedented fine-scale spatial resolution. By predicting for the first time spatio-temporal patterns and extents of artemisinin resistance at the subcontinent level, this study provides critical information for supporting malaria elimination goals in Southeast Asia.


Antimalarials , Artemisinins , Bayes Theorem , Drug Resistance , Artemisinins/pharmacology , Asia, Southeastern/epidemiology , Drug Resistance/genetics , Antimalarials/pharmacology , Humans , Spatio-Temporal Analysis , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Mutation , Malaria/drug therapy , Malaria/epidemiology , Computational Biology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology
17.
ACS Infect Dis ; 10(4): 1286-1297, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38556981

Malaria is caused by parasites of the Plasmodium genus and remains one of the most pressing human health problems. The spread of parasites resistant to or partially resistant to single or multiple drugs, including frontline antimalarial artemisinin and its derivatives, poses a serious threat to current and future malaria control efforts. In vitro drug assays are important for identifying new antimalarial compounds and monitoring drug resistance. Due to its robustness and ease of use, the [3H]-hypoxanthine incorporation assay is still considered a gold standard and is widely applied, despite limited sensitivity and the dependence on radioactive material. Here, we present a first-of-its-kind chemiluminescence-based antimalarial drug screening assay. The effect of compounds on P. falciparum is monitored by using a dioxetane-based substrate (AquaSpark ß-D-galactoside) that emits high-intensity luminescence upon removal of a protective group (ß-D-galactoside) by a transgenic ß-galactosidase reporter enzyme. This biosensor enables highly sensitive, robust, and cost-effective detection of asexual, intraerythrocytic P. falciparum parasites without the need for parasite enrichment, washing, or purification steps. We are convinced that the ultralow detection limit of less than 100 parasites of the presented biosensor system will become instrumental in malaria research, including but not limited to drug screening.


Antimalarials , Folic Acid Antagonists , Malaria, Falciparum , Malaria , Humans , Antimalarials/pharmacology , Plasmodium falciparum , Malaria/drug therapy , Malaria, Falciparum/parasitology , Folic Acid Antagonists/pharmacology , Galactosides/pharmacology , Galactosides/therapeutic use
18.
Malar J ; 23(1): 101, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594679

BACKGROUND: Artemisinin-based combination therapy (ACT) has been a major contributor to the substantial reductions in global malaria morbidity and mortality over the last decade. In Tanzania, artemether-lumefantrine (AL) was introduced as the first-line treatment for uncomplicated Plasmodium falciparum malaria in 2006. The World Health Organization (WHO) recommends regular assessment and monitoring of the efficacy of the first-line treatment, specifically considering that artemisinin resistance has been confirmed in the Greater Mekong sub-region. This study's main aim was to assess the efficacy and safety of AL for treating uncomplicated P. falciparum malaria in Tanzania. METHODS: This was a single-arm prospective antimalarial drug efficacy trial conducted in four of the eight National Malaria Control Programme (NMCP) sentinel sites in 2019. The trial was carried out in outpatient health facilities in Karume-Mwanza region, Ipinda-Mbeya region, Simbo-Tabora region, and Nagaga-Mtwara region. Children aged six months to 10 years with microscopy confirmed uncomplicated P. falciparum malaria who met the inclusion criteria were recruited based on the WHO protocol. The children received AL (a 6-dose regimen of AL twice daily for three days). Clinical and parasitological parameters were monitored during follow-up over 28 days to evaluate drug efficacy. RESULTS: A total of 628 children were screened for uncomplicated malaria, and 349 (55.6%) were enrolled between May and September 2019. Of the enrolled children, 343 (98.3%) completed the 28-day follow-up or attained the treatment outcomes. There were no early treatment failures; recurrent infections during follow-up were common at two sites (Karume 29.5%; Simbo 18.2%). PCR-corrected adequate clinical and parasitological response (ACPR) by survival analysis to AL on day 28 of follow-up varied from 97.7% at Karume to 100% at Ipinda and Nagaga sites. The commonly reported adverse events were cough, skin pallor, and abdominal pain. The drug was well tolerated, and no serious adverse event was reported. CONCLUSION: This study showed that AL had adequate efficacy and safety for the treatment of uncomplicated falciparum malaria in Tanzania in 2019. The high recurrent infections were mainly due to new infections, highlighting the potential role of introducing alternative artemisinin-based combinations that offer improved post-treatment prophylaxis, such as artesunate-amodiaquine (ASAQ).


Antimalarials , Artemisinins , Malaria, Falciparum , Malaria , Child , Humans , Infant , Antimalarials/adverse effects , Artemether, Lumefantrine Drug Combination/adverse effects , Tanzania , Reinfection/chemically induced , Reinfection/drug therapy , Prospective Studies , Drug Combinations , Artemether/therapeutic use , Malaria, Falciparum/drug therapy , Artemisinins/adverse effects , Amodiaquine/therapeutic use , Malaria/drug therapy , Treatment Outcome , Plasmodium falciparum
19.
Clin Transl Sci ; 17(4): e13738, 2024 04.
Article En | MEDLINE | ID: mdl-38594824

Drug resistance to sulfadoxine-pyrimethamine and amodiaquine threatens the efficacy of malaria chemoprevention interventions in children and pregnant women. Combining pyronaridine (PYR) and piperaquine (PQP), both components of approved antimalarial therapies, has the potential to protect vulnerable populations from severe malaria. This randomized, double-blind, placebo-controlled (double-dummy), parallel-group, single site phase I study in healthy adult males or females of Black sub-Saharan African ancestry investigated the safety, tolerability, and pharmacokinetics of PYR + PQP (n = 15), PYR + placebo (n = 8), PQP + placebo (n = 8), and double placebo (n = 6) administered orally once daily for 3 days at the registered dose for the treatment of uncomplicated malaria. All participants completed the study. Forty-five adverse events were reported in 26 participants, most (41/45) were mild/moderate in severity, with no serious adverse events, deaths, or study withdrawals. Adverse events were reported in 66.7% (10/15) of participants administered PYR + PQP, 87.5% (7/8) with PYR + placebo, 50.0% (4/8) with PQP + placebo, and 83.3% (5/6) with placebo. For PYR containing regimens, five of 23 participants had asymptomatic transient increases in alanine and/or aspartate aminotransferase. With PQP containing regimens, four of 23 participants had mild Fridericia-corrected QT interval prolongation. Liver enzyme elevations and prolonged QTc interval were consistent with observations for PYR-artesunate and dihydroartemisinin-PQP, respectively, administered to healthy adults and malaria patients. Increases in PYR and PQP exposures were observed following co-administration versus placebo, with substantial interparticipant variability. The findings suggest that PYR + PQP may have potential in chemoprevention strategies. Further studies are needed in the target populations to assess chemoprotective efficacy and define the benefit-risk profile, with special considerations regarding hepatic and cardiac safety.


Malaria, Falciparum , Malaria , Naphthyridines , Piperazines , Quinolines , Adult , Child , Male , Humans , Female , Pregnancy , Malaria, Falciparum/drug therapy , Malaria/drug therapy , Malaria/prevention & control , Double-Blind Method , Africa South of the Sahara
20.
Cell Chem Biol ; 31(4): 743-759.e8, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38593807

Identification of new druggable protein targets remains the key challenge in the current antimalarial development efforts. Here we used mass-spectrometry-based cellular thermal shift assay (MS-CETSA) to identify potential targets of several antimalarials and drug candidates. We found that falcilysin (FLN) is a common binding partner for several drug candidates such as MK-4815, MMV000848, and MMV665806 but also interacts with quinoline drugs such as chloroquine and mefloquine. Enzymatic assays showed that these compounds can inhibit FLN proteolytic activity. Their interaction with FLN was explored systematically by isothermal titration calorimetry and X-ray crystallography, revealing a shared hydrophobic pocket in the catalytic chamber of the enzyme. Characterization of transgenic cell lines with lowered FLN expression demonstrated statistically significant increases in susceptibility toward MK-4815, MMV000848, and several quinolines. Importantly, the hydrophobic pocket of FLN appears amenable to inhibition and the structures reported here can guide the development of novel drugs against malaria.


Antimalarials , Malaria , Methylamines , Quinolines , Humans , Antimalarials/chemistry , Malaria/drug therapy , Phenols/therapeutic use , Quinolines/pharmacology , Quinolines/metabolism , Drug Development
...