Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000280

ABSTRACT

Multiple alterations of cellular metabolism have been documented in experimental studies of autosomal dominant polycystic kidney disease (ADPKD) and are thought to contribute to its pathogenesis. To elucidate the molecular pathways and transcriptional regulators associated with the metabolic changes of renal cysts in ADPKD, we compared global gene expression data from human PKD1 renal cysts, minimally cystic tissues (MCT) from the same patients, and healthy human kidney cortical tissue samples. We found gene expression profiles of PKD1 renal cysts were consistent with the Warburg effect with gene pathway changes favoring increased cellular glucose uptake and lactate production, instead of pyruvate oxidation. Additionally, mitochondrial energy metabolism was globally depressed, associated with downregulation of gene pathways related to fatty acid oxidation (FAO), branched-chain amino acid (BCAA) degradation, the Krebs cycle, and oxidative phosphorylation (OXPHOS) in renal cysts. Activation of mTORC1 and its two target proto-oncogenes, HIF-1α and MYC, was predicted to drive the expression of multiple genes involved in the observed metabolic reprogramming (e.g., GLUT3, HK1/HK2, ALDOA, ENO2, PKM, LDHA/LDHB, MCT4, PDHA1, PDK1/3, MPC1/2, CPT2, BCAT1, NAMPT); indeed, their predicted expression patterns were confirmed by our data. Conversely, we found AMPK inhibition was predicted in renal cysts. AMPK inhibition was associated with decreased expression of PGC-1α, a transcriptional coactivator for transcription factors PPARα, ERRα, and ERRγ, all of which play a critical role in regulating oxidative metabolism and mitochondrial biogenesis. These data provide a comprehensive map of metabolic pathway reprogramming in ADPKD and highlight nodes of regulation that may serve as targets for therapeutic intervention.


Subject(s)
Energy Metabolism , Polycystic Kidney, Autosomal Dominant , Systems Biology , Humans , Systems Biology/methods , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/genetics , TRPP Cation Channels/metabolism , TRPP Cation Channels/genetics , Mitochondria/metabolism , Mitochondria/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Oxidative Phosphorylation , Gene Expression Regulation
2.
Cancer Res Commun ; 4(8): 2058-2074, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38954770

ABSTRACT

Capivasertib is a potent selective inhibitor of AKT. It was recently FDA approved in combination with fulvestrant to treat HR+, HER2-negative breast cancers with certain genetic alteration(s) activating the PI3K pathway. In phase I trials, heavily pretreated patients with tumors selected for activating PI3K pathway mutations treated with capivasertib monotherapy demonstrated objective response rates of <30%. We investigated the proteomic profile associated with capivasertib response in genetically preselected patients and cancer cell lines. We analyzed samples from 16 PIK3CA-mutated patient tumors collected prior to capivasertib monotherapy in the phase I trial. PI3K pathway proteins were precisely quantified with immuno-Matrix-Assisted Laser Desorption/Ionization-mass spectrometry (iMALDI-MS). Global proteomic profiles were also obtained. Patients were classified according to response to capivasertib monotherapy: "clinical benefit (CB)" (≥12 weeks without progression, n = 7) or "no clinical benefit (NCB)" (progression in <12 weeks, n = 9). Proteins that differed between the patient groups were subsequently quantified in AKT1- or PIK3CA-altered breast cancer cell lines with varying capivasertib sensitivity. The measured concentrations of AKT1 and AKT2 varied among the PIK3CA-mutated tumors but did not differ between the CB and NCB groups. However, analysis of the global proteome data showed that translational activity was higher in tumors of the NCB vs. CB group. When reproducibly quantified by validated LC-MRM-MS assays, the same proteins of interest similarly distinguished between capivasertib-sensitive versus -resistant cell lines. The results provide further evidence that increased mTORC1-driven translation functions as a mechanism of resistance to capivasertib monotherapy. Protein concentrations may offer additional insights for patient selection for capivasertib, even among genetically preselected patients. SIGNIFICANCE: Capivasertib's first-in-class FDA approval demonstrates its promise, yet there remains an opportunity to optimize its use. Our results provide new evidence that proteomics can stratify genetically preselected patients on clinical benefit. Characterization of the same profile in cell lines furnishes additional validation. Among PIK3CA-altered tumors, increased mTORC1-driven translation appears to confer intrinsic resistance. Assessing mTORC1 activation could therefore prove a useful complement to the existing genetic selection strategy for capivasertib.


Subject(s)
Breast Neoplasms , Class I Phosphatidylinositol 3-Kinases , Mechanistic Target of Rapamycin Complex 1 , Protein Biosynthesis , Pyrimidines , Humans , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Female , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Protein Biosynthesis/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Mutation , Proteomics/methods , Pyrroles/pharmacology , Pyrroles/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics
3.
Nat Commun ; 15(1): 5812, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987251

ABSTRACT

RagGTPases (Rags) play an essential role in the regulation of cell metabolism by controlling the activities of both mechanistic target of rapamycin complex 1 (mTORC1) and Transcription factor EB (TFEB). Several diseases, herein named ragopathies, are associated to Rags dysfunction. These diseases may be caused by mutations either in genes encoding the Rags, or in their upstream regulators. The resulting phenotypes may encompass a variety of clinical features such as cataract, kidney tubulopathy, dilated cardiomyopathy and several types of cancer. In this review, we focus on the key clinical, molecular and physio-pathological features of ragopathies, aiming to shed light on their underlying mechanisms.


Subject(s)
Mutation , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Animals , Cataract/genetics , Cardiomyopathy, Dilated/genetics
4.
Circ Res ; 135(4): e94-e113, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38957991

ABSTRACT

BACKGROUND: Cerebral vascular malformations (CCMs) are primarily found within the brain, where they result in increased risk for stroke, seizures, and focal neurological deficits. The unique feature of the brain vasculature is the blood-brain barrier formed by the brain neurovascular unit. Recent studies suggest that loss of CCM genes causes disruptions of blood-brain barrier integrity as the inciting events for CCM development. CCM lesions are proposed to be initially derived from a single clonal expansion of a subset of angiogenic venous capillary endothelial cells (ECs) and respective resident endothelial progenitor cells (EPCs). However, the critical signaling events in the subclass of brain ECs/EPCs for CCM lesion initiation and progression are unclear. METHODS: Brain EC-specific CCM3-deficient (Pdcd10BECKO) mice were generated by crossing Pdcd10fl/fl mice with Mfsd2a-CreERT2 mice. Single-cell RNA-sequencing analyses were performed by the chromium single-cell platform (10× genomics). Cell clusters were annotated into EC subtypes based on visual inspection and GO analyses. Cerebral vessels were visualized by 2-photon in vivo imaging and tissue immunofluorescence analyses. Regulation of mTOR (mechanistic target of rapamycin) signaling by CCM3 and Cav1 (caveolin-1) was performed by cell biology and biochemical approaches. RESULTS: Single-cell RNA-sequencing analyses from P10 Pdcd10BECKO mice harboring visible CCM lesions identified upregulated CCM lesion signature and mitotic EC clusters but decreased blood-brain barrier-associated EC clusters. However, a unique EPC cluster with high expression levels of stem cell markers enriched with mTOR signaling was identified from early stages of the P6 Pdcd10BECKO brain. Indeed, mTOR signaling was upregulated in both mouse and human CCM lesions. Genetic deficiency of Raptor (regulatory-associated protein of mTOR), but not of Rictor (rapamycin-insensitive companion of mTOR), prevented CCM lesion formation in the Pdcd10BECKO model. Importantly, the mTORC1 (mTOR complex 1) pharmacological inhibitor rapamycin suppressed EPC proliferation and ameliorated CCM pathogenesis in Pdcd10BECKO mice. Mechanistic studies suggested that Cav1/caveolae increased in CCM3-depleted EPC-mediated intracellular trafficking and complex formation of the mTORC1 signaling proteins. CONCLUSIONS: CCM3 is critical for maintaining blood-brain barrier integrity and CCM3 loss-induced mTORC1 signaling in brain EPCs initiates and facilitates CCM pathogenesis.


Subject(s)
Endothelial Progenitor Cells , Hemangioma, Cavernous, Central Nervous System , Mechanistic Target of Rapamycin Complex 1 , Signal Transduction , Animals , Hemangioma, Cavernous, Central Nervous System/metabolism , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/pathology , Mice , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/pathology , Brain/metabolism , Brain/pathology , Brain/blood supply , Mice, Knockout , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Mice, Inbred C57BL , Membrane Proteins/metabolism , Membrane Proteins/genetics
5.
Commun Biol ; 7(1): 756, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907105

ABSTRACT

Tuberous sclerosis complex 2 (TSC2) crucially suppresses Rheb activity to prevent mTORC1 activation. However, mutations in TSC genes lead to mTORC1 overactivation, thereby causing various developmental disorders and cancer. Therefore, the discovery of novel Rheb inhibitors is vital to prevent mTOR overactivation. Here, we reveals that the anti-inflammatory cytokine IL-37d can bind to lysosomal Rheb and suppress its activity independent of TSC2, thereby preventing mTORC1 activation. The binding of IL-37d to Rheb switch-II subregion destabilizes the Rheb-mTOR and mTOR-S6K interactions, further halting mTORC1 signaling. Unlike TSC2, IL-37d is reduced under ethanol stimulation, which results in mitigating the suppression of lysosomal Rheb-mTORC1 activity. Consequently, the recombinant human IL-37d protein (rh-IL-37d) with a TAT peptide greatly improves alcohol-induced liver disorders by hindering Rheb-mTORC1 axis overactivation in a TSC2- independent manner. Together, IL-37d emerges as a novel Rheb suppressor independent of TSC2 to terminate mTORC1 activation and improve abnormal lipid metabolism in the liver.


Subject(s)
Liver Diseases, Alcoholic , Mechanistic Target of Rapamycin Complex 1 , Ras Homolog Enriched in Brain Protein , Signal Transduction , Tuberous Sclerosis Complex 2 Protein , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Ras Homolog Enriched in Brain Protein/metabolism , Ras Homolog Enriched in Brain Protein/genetics , Humans , Animals , Mice , Tuberous Sclerosis Complex 2 Protein/metabolism , Tuberous Sclerosis Complex 2 Protein/genetics , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/genetics , Interleukin-1/metabolism , Interleukin-1/genetics , Mice, Inbred C57BL , Male , HEK293 Cells
6.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892460

ABSTRACT

Sprouty-related enabled/vasodilator-stimulated phosphoprotein homology 1 domain containing 2 (SPRED2) is an inhibitor of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway and has been shown to promote autophagy in several cancers. Here, we aimed to determine whether SPRED2 plays a role in autophagy in hepatocellular carcinoma (HCC) cells. The Cancer Genome Atlas (TCGA) Liver Cancer Database showed a negative association between the level of SPRED2 and p62, a ubiquitin-binding scaffold protein that accumulates when autophagy is inhibited. Immunohistochemically, accumulation of p62 was detected in human HCC tissues with low SPRED2 expression. Overexpression of SPRED2 in HCC cells increased the number of autophagosomes and autophagic vacuoles containing damaged mitochondria, decreased p62 levels, and increased levels of light-chain-3 (LC3)-II, an autophagy marker. In contrast, SPRED2 deficiency increased p62 levels and decreased LC3-II levels. SPRED2 expression levels were negatively correlated with translocase of outer mitochondrial membrane 20 (TOM20) expression levels, suggesting its role in mitophagy. Mechanistically, SPRED2 overexpression reduced ERK activation followed by the mechanistic or mammalian target of rapamycin complex 1 (mTORC1)-mediated signaling pathway, and SPRED2 deficiency showed the opposite pattern. Finally, hepatic autophagy was impaired in the liver of SPRED2-deficient mice with hepatic lipid droplet accumulation in response to starvation. These results indicate that SPRED2 is a critical regulator of autophagy not only in HCC cells, but also in hepatocytes, and thus the manipulation of this process may provide new insights into liver pathology.


Subject(s)
Autophagy , Carcinoma, Hepatocellular , Hepatocytes , Liver Neoplasms , Animals , Humans , Mice , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Hepatocytes/metabolism , Hepatocytes/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , MAP Kinase Signaling System , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mitophagy/genetics , Repressor Proteins
7.
Exp Cell Res ; 440(1): 114116, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38830568

ABSTRACT

During the progression of diabetic kidney disease, proximal tubular epithelial cells respond to high glucose to induce hypertrophy and matrix expansion leading to renal fibrosis. Recently, a non-canonical PTEN has been shown to be translated from an upstream initiation codon CUG (leucine) to produce a longer protein called PTEN-Long (PTEN-L). Interestingly, the extended sequence present in PTEN-L contains cell secretion/penetration signal. Role of this non-canonical PTEN-L in diabetic renal tubular injury is not known. We show that high glucose decreases expression of PTEN-L. As a mechanism of its function, we find that reduced PTEN-L activates Akt-2, which phosphorylates and inactivate tuberin and PRAS40, resulting in activation of mTORC1 in tubular cells. Antibacterial agent acriflavine and antiviral agent ATA regulate translation from CUG codon. Acriflavine and ATA, respectively, decreased and increased expression of PTEN-L to altering Akt-2 and mTORC1 activation in the absence of change in expression of canonical PTEN. Consequently, acriflavine and ATA modulated high glucose-induced tubular cell hypertrophy and lamininγ1 expression. Importantly, expression of PTEN-L inhibited high glucose-stimulated Akt/mTORC1 activity to abrogate these processes. Since PTEN-L contains secretion/penetration signals, addition of conditioned medium containing PTEN-L blocked Akt-2/mTORC1 activity. Notably, in renal cortex of diabetic mice, we found reduced PTEN-L concomitant with Akt-2/mTORC1 activation, leading to renal hypertrophy and lamininγ1 expression. These results present first evidence for involvement of PTEN-L in diabetic kidney disease.


Subject(s)
Diabetic Nephropathies , Glucose , Kidney Tubules, Proximal , Mechanistic Target of Rapamycin Complex 1 , PTEN Phosphohydrolase , Animals , Humans , Male , Mice , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/genetics , Down-Regulation/drug effects , Glucose/metabolism , Glucose/pharmacology , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/drug effects , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Signal Transduction
8.
Nat Commun ; 15(1): 5248, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898112

ABSTRACT

Reproductive success relies on proper establishment and maintenance of biological sex. In many animals, including mammals, the primary gonad is initially ovary biased. We previously showed the RNA binding protein (RNAbp), Rbpms2, is required for ovary fate in zebrafish. Here, we identified Rbpms2 targets in oocytes (Rbpms2-bound oocyte RNAs; rboRNAs). We identify Rbpms2 as a translational regulator of rboRNAs, which include testis factors and ribosome biogenesis factors. Further, genetic analyses indicate that Rbpms2 promotes nucleolar amplification via the mTorc1 signaling pathway, specifically through the mTorc1-activating Gap activity towards Rags 2 (Gator2) component, Missing oocyte (Mios). Cumulatively, our findings indicate that early gonocytes are in a dual poised, bipotential state in which Rbpms2 acts as a binary fate-switch. Specifically, Rbpms2 represses testis factors and promotes oocyte factors to promote oocyte progression through an essential Gator2-mediated checkpoint, thereby integrating regulation of sexual differentiation factors and nutritional availability pathways in zebrafish oogenesis.


Subject(s)
Oocytes , Oogenesis , RNA-Binding Proteins , Zebrafish Proteins , Zebrafish , Animals , Female , Male , Gene Expression Regulation, Developmental , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Nutrients/metabolism , Oocytes/metabolism , Oogenesis/genetics , Ovary/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction , Testis/metabolism , Zebrafish/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism
9.
Mol Cell ; 84(11): 2011-2013, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848689

ABSTRACT

In this issue of Molecular Cell, Yi et al.1 demonstrate that reduced mTORC1 activity induces the CTLH E3 ligase-dependent degradation of HMGCS1, an enzyme in the mevalonate pathway, thus revealing a unique connection between mTORC1 signaling and the degradation of a specific metabolic enzyme via the ubiquitin-proteasome system.


Subject(s)
Mechanistic Target of Rapamycin Complex 1 , Proteasome Endopeptidase Complex , Signal Transduction , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Humans , Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Proteolysis , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Multiprotein Complexes/metabolism , Multiprotein Complexes/genetics , Animals , Mevalonic Acid/metabolism , Ubiquitin/metabolism
10.
Elife ; 122024 May 13.
Article in English | MEDLINE | ID: mdl-38738857

ABSTRACT

Enhanced protein synthesis is a crucial molecular mechanism that allows cancer cells to survive, proliferate, metastasize, and develop resistance to anti-cancer treatments, and often arises as a consequence of increased signaling flux channeled to mRNA-bearing eukaryotic initiation factor 4F (eIF4F). However, the post-translational regulation of eIF4A1, an ATP-dependent RNA helicase and subunit of the eIF4F complex, is still poorly understood. Here, we demonstrate that IBTK, a substrate-binding adaptor of the Cullin 3-RING ubiquitin ligase (CRL3) complex, interacts with eIF4A1. The non-degradative ubiquitination of eIF4A1 catalyzed by the CRL3IBTK complex promotes cap-dependent translational initiation, nascent protein synthesis, oncogene expression, and cervical tumor cell growth both in vivo and in vitro. Moreover, we show that mTORC1 and S6K1, two key regulators of protein synthesis, directly phosphorylate IBTK to augment eIF4A1 ubiquitination and sustained oncogenic translation. This link between the CRL3IBTK complex and the mTORC1/S6K1 signaling pathway, which is frequently dysregulated in cancer, represents a promising target for anti-cancer therapies.


Subject(s)
Eukaryotic Initiation Factor-4A , Mechanistic Target of Rapamycin Complex 1 , Protein Biosynthesis , Ribosomal Protein S6 Kinases, 70-kDa , Signal Transduction , Ubiquitination , Animals , Humans , Mice , Cell Line, Tumor , Eukaryotic Initiation Factor-4A/metabolism , Eukaryotic Initiation Factor-4A/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/genetics
11.
Nat Commun ; 15(1): 4083, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744825

ABSTRACT

Energetic stress compels cells to evolve adaptive mechanisms to adjust their metabolism. Inhibition of mTOR kinase complex 1 (mTORC1) is essential for cell survival during glucose starvation. How mTORC1 controls cell viability during glucose starvation is not well understood. Here we show that the mTORC1 effectors eukaryotic initiation factor 4E binding proteins 1/2 (4EBP1/2) confer protection to mammalian cells and budding yeast under glucose starvation. Mechanistically, 4EBP1/2 promote NADPH homeostasis by preventing NADPH-consuming fatty acid synthesis via translational repression of Acetyl-CoA Carboxylase 1 (ACC1), thereby mitigating oxidative stress. This has important relevance for cancer, as oncogene-transformed cells and glioma cells exploit the 4EBP1/2 regulation of ACC1 expression and redox balance to combat energetic stress, thereby supporting transformation and tumorigenicity in vitro and in vivo. Clinically, high EIF4EBP1 expression is associated with poor outcomes in several cancer types. Our data reveal that the mTORC1-4EBP1/2 axis provokes a metabolic switch essential for survival during glucose starvation which is exploited by transformed and tumor cells.


Subject(s)
Acetyl-CoA Carboxylase , Adaptor Proteins, Signal Transducing , Cell Cycle Proteins , Cell Survival , Fatty Acids , Glucose , Mechanistic Target of Rapamycin Complex 1 , Animals , Humans , Mice , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Line, Tumor , Eukaryotic Initiation Factors/metabolism , Eukaryotic Initiation Factors/genetics , Fatty Acids/metabolism , Glucose/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , NADP/metabolism , Oxidative Stress , Phosphoproteins/metabolism , Phosphoproteins/genetics , Protein Biosynthesis
12.
Mol Cell ; 84(11): 2166-2184.e9, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38788716

ABSTRACT

Mammalian target of rapamycin (mTOR) senses changes in nutrient status and stimulates the autophagic process to recycle amino acids. However, the impact of nutrient stress on protein degradation beyond autophagic turnover is incompletely understood. We report that several metabolic enzymes are proteasomal targets regulated by mTOR activity based on comparative proteome degradation analysis. In particular, 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) synthase 1 (HMGCS1), the initial enzyme in the mevalonate pathway, exhibits the most significant half-life adaptation. Degradation of HMGCS1 is regulated by the C-terminal to LisH (CTLH) E3 ligase through the Pro/N-degron motif. HMGCS1 is ubiquitylated on two C-terminal lysines during mTORC1 inhibition, and efficient degradation of HMGCS1 in cells requires a muskelin adaptor. Importantly, modulating HMGCS1 abundance has a dose-dependent impact on cell proliferation, which is restored by adding a mevalonate intermediate. Overall, our unbiased degradomics study provides new insights into mTORC1 function in cellular metabolism: mTORC1 regulates the stability of limiting metabolic enzymes through the ubiquitin system.


Subject(s)
Cell Proliferation , Hydroxymethylglutaryl-CoA Synthase , Mechanistic Target of Rapamycin Complex 1 , Proteolysis , Ubiquitin-Protein Ligases , Ubiquitination , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , HEK293 Cells , Hydroxymethylglutaryl-CoA Synthase/metabolism , Hydroxymethylglutaryl-CoA Synthase/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Mevalonic Acid/metabolism , Multiprotein Complexes/metabolism , Multiprotein Complexes/genetics , Signal Transduction , Degrons , Adaptor Proteins, Signal Transducing
13.
Elife ; 122024 May 07.
Article in English | MEDLINE | ID: mdl-38713053

ABSTRACT

Uncovering the regulators of cellular aging will unravel the complexity of aging biology and identify potential therapeutic interventions to delay the onset and progress of chronic, aging-related diseases. In this work, we systematically compared genesets involved in regulating the lifespan of Saccharomyces cerevisiae (a powerful model organism to study the cellular aging of humans) and those with expression changes under rapamycin treatment. Among the functionally uncharacterized genes in the overlap set, YBR238C stood out as the only one downregulated by rapamycin and with an increased chronological and replicative lifespan upon deletion. We show that YBR238C and its paralog RMD9 oppositely affect mitochondria and aging. YBR238C deletion increases the cellular lifespan by enhancing mitochondrial function. Its overexpression accelerates cellular aging via mitochondrial dysfunction. We find that the phenotypic effect of YBR238C is largely explained by HAP4- and RMD9-dependent mechanisms. Furthermore, we find that genetic- or chemical-based induction of mitochondrial dysfunction increases TORC1 (Target of Rapamycin Complex 1) activity that, subsequently, accelerates cellular aging. Notably, TORC1 inhibition by rapamycin (or deletion of YBR238C) improves the shortened lifespan under these mitochondrial dysfunction conditions in yeast and human cells. The growth of mutant cells (a proxy of TORC1 activity) with enhanced mitochondrial function is sensitive to rapamycin whereas the growth of defective mitochondrial mutants is largely resistant to rapamycin compared to wild type. Our findings demonstrate a feedback loop between TORC1 and mitochondria (the TORC1-MItochondria-TORC1 (TOMITO) signaling process) that regulates cellular aging processes. Hereby, YBR238C is an effector of TORC1 modulating mitochondrial function.


Subject(s)
Cellular Senescence , Mitochondria , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Signal Transduction , Gene Deletion , Gene Expression Regulation, Fungal , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mitochondria/metabolism , Mitochondria/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sirolimus/pharmacology , Transcription Factors/metabolism , Transcription Factors/genetics
14.
JCI Insight ; 9(10)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38775158

ABSTRACT

Sarcomatoid dedifferentiation is common to multiple renal cell carcinoma (RCC) subtypes, including chromophobe RCC (ChRCC), and is associated with increased aggressiveness, resistance to targeted therapies, and heightened sensitivity to immunotherapy. To study ChRCC dedifferentiation, we performed multiregion integrated paired pathological and genomic analyses. Interestingly, ChRCC dedifferentiates not only into sarcomatoid but also into anaplastic and glandular subtypes, which are similarly associated with increased aggressiveness and metastases. Dedifferentiated ChRCC shows loss of epithelial markers, convergent gene expression, and whole genome duplication from a hypodiploid state characteristic of classic ChRCC. We identified an intermediate state with atypia and increased mitosis but preserved epithelial markers. Our data suggest that dedifferentiation is initiated by hemizygous mutation of TP53, which can be observed in differentiated areas, as well as mutation of PTEN. Notably, these mutations become homozygous with duplication of preexisting monosomes (i.e., chromosomes 17 and 10), which characterizes the transition to dedifferentiated ChRCC. Serving as potential biomarkers, dedifferentiated areas become accentuated by mTORC1 activation (phospho-S6) and p53 stabilization. Notably, dedifferentiated ChRCC share gene enrichment and pathway activation features with other sarcomatoid RCC, suggesting convergent evolutionary trajectories. This study expands our understanding of aggressive ChRCC, provides insight into molecular mechanisms of tumor progression, and informs pathologic classification and diagnostics.


Subject(s)
Carcinoma, Renal Cell , Cell Dedifferentiation , Kidney Neoplasms , Mutation , Tumor Suppressor Protein p53 , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Cell Dedifferentiation/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , PTEN Phosphohydrolase/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Male
15.
Virus Genes ; 60(4): 347-356, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38739247

ABSTRACT

O-Glycan synthesis enzyme glucosaminyl (N-acetyl) transferase 3 (GCNT3) is closely related to the occurrence and development of various cancers. However, the regulatory mechanism and function of GCNT3 in nasopharyngeal carcinoma (NPC) are still poorly understood. This study aims to explore the regulatory mechanism of EBV-encoded latent membrane protein 2A (LMP2A) on GCNT3 and the biological role of GCNT3 in NPC. The results show that LMP2A can activate GCNT3 through the mTORC1 pathway, and there is a positive feedback between the mTORC1 and GCNT3. GCNT3 regulates EMT progression by forming a complex with ZEB1 to promote cell migration. GCNT3 can also promote cell proliferation. These findings indicate that targeting the LMP2A-mTORC1-GCNT3 axis may represent a novel therapeutic target in NPC.


Subject(s)
Cell Movement , Cell Proliferation , N-Acetylglucosaminyltransferases , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Viral Matrix Proteins , Humans , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/virology , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/virology , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/metabolism , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Cell Line, Tumor , Cell Movement/genetics , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Gene Expression Regulation, Neoplastic , Herpesvirus 4, Human/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Epithelial-Mesenchymal Transition/genetics
16.
Int J Biol Sci ; 20(6): 2187-2201, 2024.
Article in English | MEDLINE | ID: mdl-38617535

ABSTRACT

The intestine is critical for not only processing nutrients but also protecting the organism from the environment. These functions are mainly carried out by the epithelium, which is constantly being self-renewed. Many genes and pathways can influence intestinal epithelial cell proliferation. Among them is mTORC1, whose activation increases cell proliferation. Here, we report the first intestinal epithelial cell (IEC)-specific knockout (ΔIEC) of an amino acid transporter capable of activating mTORC1. We show that the transporter, SLC7A5, is highly expressed in mouse intestinal crypt and Slc7a5ΔIEC reduces mTORC1 signaling. Surprisingly, adult Slc7a5ΔIEC intestinal crypts have increased cell proliferation but reduced mature Paneth cells. Goblet cells, the other major secretory cell type in the small intestine, are increased in the crypts but reduced in the villi. Analyses with scRNA-seq and electron microscopy have revealed dedifferentiation of Paneth cells in Slc7a5ΔIEC mice, leading to markedly reduced secretory granules with little effect on Paneth cell number. Thus, SLC7A5 likely regulates secretory cell differentiation to affect stem cell niche and indirectly regulate cell proliferation.


Subject(s)
Amino Acid Transport Systems , Large Neutral Amino Acid-Transporter 1 , Animals , Mice , Cell Differentiation/genetics , Cell Proliferation/genetics , Large Neutral Amino Acid-Transporter 1/genetics , Mechanistic Target of Rapamycin Complex 1/genetics
17.
Circ Heart Fail ; 17(4): e011110, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38567527

ABSTRACT

BACKGROUND: Mutations in LMNA encoding nuclear envelope proteins lamin A/C cause dilated cardiomyopathy. Activation of the AKT/mTOR (RAC-α serine/threonine-protein kinase/mammalian target of rapamycin) pathway is implicated as a potential pathophysiologic mechanism. The aim of this study was to assess whether pharmacological inhibition of mTOR signaling has beneficial effects on heart function and prolongs survival in a mouse model of the disease, after onset of heart failure. METHODS: We treated male LmnaH222P/H222P mice, after the onset of heart failure, with placebo or either of 2 orally bioavailable mTOR inhibitors: everolimus or NV-20494, a rapamycin analog highly selective against mTORC1. We examined left ventricular remodeling, and the cell biological, biochemical, and histopathologic features of cardiomyopathy, potential drug toxicity, and survival. RESULTS: Everolimus treatment (n=17) significantly reduced left ventricular dilatation and increased contractility on echocardiography, with a 7% (P=0.018) reduction in left ventricular end-diastolic diameter and a 39% (P=0.0159) increase fractional shortening compared with placebo (n=17) after 6 weeks of treatment. NV-20494 treatment (n=15) yielded similar but more modest and nonsignificant changes. Neither drug prevented the development of cardiac fibrosis. Drug treatment reactivated suppressed autophagy and inhibited mTORC1 signaling in the heart, although everolimus was more potent. With regards to drug toxicity, everolimus alone led to a modest degree of glucose intolerance during glucose challenge. Everolimus (n=20) and NV-20494 (n=20) significantly prolonged median survival in LmnaH222P/H222P mice, by 9% (P=0.0348) and 11% (P=0.0206), respectively, compared with placebo (n=20). CONCLUSIONS: These results suggest that mTOR inhibitors may be beneficial in patients with cardiomyopathy caused by LMNA mutations and that further study is warranted.


Subject(s)
Cardiomyopathies , Drug-Related Side Effects and Adverse Reactions , Heart Failure , Mice , Humans , Male , Animals , Everolimus/pharmacology , Everolimus/therapeutic use , Lamin Type A/genetics , Lamin Type A/metabolism , MTOR Inhibitors , Cardiomyopathies/drug therapy , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Mutation , TOR Serine-Threonine Kinases , Mechanistic Target of Rapamycin Complex 1/genetics , Mammals/metabolism
18.
Adv Sci (Weinh) ; 11(22): e2400446, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38639386

ABSTRACT

Despite accumulating evidence linking defective lysosome function with autoimmune diseases, how the catabolic machinery is regulated to maintain immune homeostasis remains unknown. Late endosomal/lysosomal adaptor, MAPK and mTOR activator 5 (Lamtor5) is a subunit of the Ragulator mediating mechanistic target of rapamycin complex 1 (mTORC1) activation in response to amino acids, but its action mode and physiological role are still unclear. Here it is demonstrated that Lamtor5 level is markedly decreased in peripheral blood mononuclear cells (PBMCs) of patients with systemic lupus erythematosus (SLE). In parallel, the mice with myeloid Lamtor5 ablation developed SLE-like manifestation. Impaired lysosomal function and aberrant activation of mTORC1 are evidenced in Lamtor5 deficient macrophages and PBMCs of SLE patients, accompanied by blunted autolysosomal pathway and undesirable inflammatory responses. Mechanistically, it is shown that Lamtor5 is physically associated with ATP6V1A, an essential subunit of vacuolar H+-ATPase (v-ATPase), and promoted the V0/V1 holoenzyme assembly to facilitate lysosome acidification. The binding of Lamtor5 to v-ATPase affected the lysosomal tethering of Rag GTPase and weakened its interaction with mTORC1 for activation. Overall, Lamtor5 is identified as a critical factor for immune homeostasis by intergrading v-ATPase activity, lysosome function, and mTOR pathway. The findings provide a potential therapeutic target for SLE and/or other autoimmune diseases.


Subject(s)
Autoimmunity , Lupus Erythematosus, Systemic , Lysosomes , Vacuolar Proton-Translocating ATPases , Animals , Female , Humans , Mice , Autoimmunity/immunology , Autoimmunity/genetics , Disease Models, Animal , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/immunology
19.
Yeast ; 41(6): 379-400, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38639144

ABSTRACT

Under stress conditions, ribosome biogenesis is downregulated. This process requires that expression of ribosomal RNA, ribosomal protein, and ribosome biogenesis genes be controlled in a coordinated fashion. The mechanistic Target of Rapamycin Complex 1 (mTORC1) participates in sensing unfavorable conditions to effect the requisite change in gene expression. In Saccharomyces cerevisiae, downregulation of ribosomal protein genes involves dissociation of the activator Ifh1p in a process that depends on Utp22p, a protein that also functions in pre-rRNA processing. Ifh1p has a paralog, Crf1p, which was implicated in communicating mTORC1 inhibition and hence was perceived as a repressor. We focus here on two ribosomal biogenesis genes, encoding Utp22p and the high mobility group protein Hmo1p, both of which are required for communication of mTORC1 inhibition to target genes. Crf1p functions as an activator on these genes as evidenced by reduced mRNA abundance and RNA polymerase II occupancy in a crf1Δ strain. Inhibition of mTORC1 has distinct effects on expression of HMO1 and UTP22; for example, on UTP22, but not on HMO1, the presence of Crf1p promotes the stable depletion of Ifh1p. Our data suggest that Crf1p functions as a weak activator, and that it may be required to prevent re-binding of Ifh1p to some gene promoters after mTORC1 inhibition in situations when Ifh1p is available. We propose that the inclusion of genes encoding proteins required for mTORC1-mediated downregulation of ribosomal protein genes in the same regulatory circuit as the ribosomal protein genes serves to optimize transcriptional responses during mTORC1 inhibition.


Subject(s)
Gene Expression Regulation, Fungal , Mechanistic Target of Rapamycin Complex 1 , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , High Mobility Group Proteins/genetics , High Mobility Group Proteins/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Trans-Activators
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167185, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653360

ABSTRACT

OBJECTIVE: Glucagon is a critical hormone regulating glucose metabolism. It stimulates the liver to release glucose under low blood sugar conditions, thereby maintaining blood glucose stability. Excessive glucagon secretion and hyperglycemia is observed in individuals with diabetes. Precise modulation of glucagon is significant to maintain glucose homeostasis. Piezo1 is a mechanosensitive ion channel capable of converting extracellular mechanical forces into intracellular signals, thus regulating hormonal synthesis and secretion. This study aims to investigate the role of Piezo1 in regulating glucagon production in α cells. METHODS: The effects of Piezo1 on glucagon production were examined in normal- or high-fat diet fed α cell-specific Piezo1 knockout mice (Gcg-Piezo1-/-), and the murine pancreatic α cell line αTC1-6. Expression of Proglucagon was investigated by real-time PCR and western blotting. Plasma glucagon and insulin were detected by enzyme immunoassay. RESULTS: Under both normal- and high-fat diet conditions, Gcg-Piezo1-/- mice exhibited increased pancreatic α cell proportion, hyperglucagonemia, impaired glucose tolerance, and activated pancreatic mTORC1 signaling. Activation of Piezo1 by its agonist Yoda1 or overexpression of Piezo1 led to decreased glucagon synthesis and suppressed mTOR signaling pathway in αTC1-6 cells. Additionally, the levels of glucagon in the medium were also reduced. Conversely, knockdown of Piezo1 produced opposite effects. CONCLUSION: Our study uncovers the regulatory role of the Piezo1 ion channel in α cells. Piezo1 influences glucagon production by affecting mTOR signaling pathway.


Subject(s)
Diet, High-Fat , Glucagon-Secreting Cells , Glucagon , Ion Channels , Mice, Knockout , Animals , Glucagon-Secreting Cells/metabolism , Glucagon/metabolism , Mice , Ion Channels/metabolism , Ion Channels/genetics , Diet, High-Fat/adverse effects , Male , Signal Transduction , Insulin/metabolism , Cell Line , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanotransduction, Cellular , Mice, Inbred C57BL , Proglucagon/metabolism , Proglucagon/genetics , Pyrazines , Thiadiazoles
SELECTION OF CITATIONS
SEARCH DETAIL