Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32.822
1.
World J Microbiol Biotechnol ; 40(8): 233, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38842631

Tigecycline-non-susceptible Klebsiella pneumoniae (TNSKP) is increasing and has emerged as a global public health issue. However, the mechanism of tigecycline resistance remains unclear. The objective of this study was to investigate the potential role of efflux pump system in tigecycline resistance. 29 tigecycline-non-susceptible Klebsiella pneumoniae (TNSKP) strains were collected and their minimum inhibitory concentrations (MIC) were determined by the broth microdilution method. The ramR, acrR, rpsJ, tet(A), and tet(X) were amplified by polymerase chain reaction (PCR). The mRNA expression of different efflux pump genes and regulator genes were analyzed by real-time PCR. Additionally, KP14 was selected for genome sequencing. KP14 genes without acrB, oqxB, and TetA were modified using suicide plasmids and MIC of tigecycline of KP14 with target genes knocked out was investigated. It was found that MIC of tigecycline of 20 out of the 29 TNSKP strains decreased by over four folds once combined with phenyl-arginine-ß-naphthylamide dihydrochloride (PaßN). Most strains exhibited upregulation of AcrAB and oqxAB efflux pumps. The strains with acrB, oqxB, and tetA genes knocked out were constructed, wherein the MIC of tigecycline of KP14∆acrB and KP14∆tetA was observed to be 2 µg/mL (decreased by 16 folds), the MIC of tigecycline of KP14ΔacrBΔTetA was 0.25 µg/mL (decreased by 128 folds), but the MIC of tigecycline of KP14∆oqxB remained unchanged at 32 µg/mL. The majority of TNSKP strains demonstrated increased expression of AcrAB-TolC and oqxAB, while certain strains showed mutations in other genes associated with tigecycline resistance. In KP14, both overexpression of AcrAB-TolC and tet(A) gene mutation contributed to the mechanism of tigecycline resistance.


Anti-Bacterial Agents , Bacterial Proteins , Klebsiella pneumoniae , Microbial Sensitivity Tests , Mutation , Tigecycline , Tigecycline/pharmacology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Drug Resistance, Bacterial/genetics , Humans , Antiporters
2.
Lipids Health Dis ; 23(1): 175, 2024 Jun 08.
Article En | MEDLINE | ID: mdl-38851763

BACKGROUND: The causal associations of lipids and the drug target genes with atrial fibrillation (AF) risk remain obscure. We aimed to investigate the causal associations using genetic evidence. METHODS: Mendelian randomization (MR) analyses were conducted using summary-level genome-wide association studies (GWASs) in European and East Asian populations. Lipid profiles (low-density lipoprotein cholesterol, triglyceride, and lipoprotein[a]) and lipid-modifying drug target genes (3-hydroxy-3-methylglutaryl-CoA reductase, proprotein convertase subtilisin/kexin type 9, NPC1-like intracellular cholesterol transporter 1, apolipoprotein C3, angiopoietin-like 3, and lipoprotein[a]) were used as exposures. AF was used as an outcome. The inverse variance weighted method was applied as the primary method. Summary-data-based Mendelian randomization analyses were performed for further validation using expression quantitative trait loci data. Mediation analyses were conducted to explore the indirect effect of coronary heart disease. RESULTS: In the European population, MR analyses demonstrated that elevated levels of lipoprotein(a) increased AF risk. Moreover, analyses focusing on drug targets revealed that the genetically proxied target gene LPA, which simulates the effects of drug intervention by reducing lipoprotein(a), exhibited an association with AF risk. This association was validated in independent datasets. There were no consistent and significant associations observed for other traits when analyzed in different datasets. This finding was also corroborated by Summary-data-based Mendelian randomization analyses between LPA and AF. Mediation analyses revealed that coronary heart disease plays a mediating role in this association. However, in the East Asian population, no statistically significant evidence was observed to support these associations. CONCLUSIONS: This study provided genetic evidence that Lp(a) may be a causal factor for AF and that LPA may represent a promising pharmacological target for preventing AF in the European population.


Atrial Fibrillation , Genome-Wide Association Study , Hydroxymethylglutaryl CoA Reductases , Lipoprotein(a) , Mendelian Randomization Analysis , Proprotein Convertase 9 , Humans , Angiopoietin-Like Protein 3 , Atrial Fibrillation/genetics , Atrial Fibrillation/drug therapy , Cholesterol, LDL/blood , Genetic Predisposition to Disease , Genomics/methods , Hydroxymethylglutaryl CoA Reductases/genetics , Lipoprotein(a)/genetics , Lipoprotein(a)/blood , Membrane Transport Proteins , Polymorphism, Single Nucleotide , Proprotein Convertase 9/genetics , Quantitative Trait Loci , Risk Factors , Triglycerides/blood , White People/genetics , East Asian People/genetics
3.
Commun Biol ; 7(1): 708, 2024 Jun 08.
Article En | MEDLINE | ID: mdl-38851810

Robotically assisted proteomics provides insights into the regulation of multiple proteins achieving excellent spatial resolution. However, developing an effective method for spatially resolved quantitative proteomics of formalin fixed paraffin embedded tissue (FFPE) in an accessible and economical manner remains challenging. We introduce non-robotic In-insert FFPE proteomics approach, combining glass insert FFPE tissue processing with spatial quantitative data-independent mass spectrometry (DIA). In-insert approach identifies 450 proteins from a 5 µm thick breast FFPE tissue voxel with 50 µm lateral dimensions covering several tens of cells. Furthermore, In-insert approach associated a keratin series and moesin (MOES) with prolactin-induced protein (PIP) indicating their prolactin and/or estrogen regulation. Our data suggest that PIP is a spatial biomarker for hormonally triggered cytoskeletal remodeling, potentially useful for screening hormonally affected hotspots in breast tissue. In-insert proteomics represents an alternative FFPE processing method, requiring minimal laboratory equipment and skills to generate spatial proteotype repositories from FFPE tissue.


Biomarkers , Cytoskeleton , Paraffin Embedding , Proteomics , Tissue Fixation , Humans , Proteomics/methods , Cytoskeleton/metabolism , Female , Biomarkers/metabolism , Tissue Fixation/methods , Prolactin/metabolism , Formaldehyde/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Microfilament Proteins/metabolism , Membrane Transport Proteins
4.
Sci Rep ; 14(1): 12902, 2024 06 05.
Article En | MEDLINE | ID: mdl-38839922

Bacterial biofilms are highly complex communities in which isogenic bacteria display different gene expression patterns and organize in a three-dimensional mesh gaining enhanced resistance to biocides. The molecular mechanisms behind such increased resistance remain mostly unknown, also because of the technical difficulties in biofilm investigation at the sub-cellular and molecular level. In this work we focus on the AcrAB-TolC protein complex, a multidrug efflux pump found in Enterobacteriaceae, whose overexpression is associated with most multiple drug resistance (MDR) phenotypes occurring in Gram-negative bacteria. We propose an optical method to quantify the expression level of the AcrAB-TolC pump within the biofilm volume at the sub-cellular level, with single-molecule sensitivity. Through a combination of super-resolution PALM with single objective light sheet and precision genome editing, we can directly quantify the spatial distribution of endogenous AcrAB-TolC pumps expressed in both planktonic bacteria and, importantly, within the bacterial biofilm volume. We observe a gradient of pump density within the biofilm volume and over the course of biofilm maturation. Notably, we propose an optical method that could be broadly employed to achieve volumetric super-resolution imaging of thick samples.


Biofilms , Biofilms/growth & development , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Carrier Proteins
5.
Lipids Health Dis ; 23(1): 163, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38831433

OBJECTIVE: High low-density-lipoprotein (LDL) cholesterol has been associated with an increased risk of coronary artery diseases (CAD) including acute myocardial infarction (AMI). However, whether lipids lowering drug treatment is causally associated with decreased risk of AMI remains largely unknown. We used Mendelian randomization (MR) to evaluate the influence of genetic variation affecting the function of lipid-lowering drug targets on AMI. METHODS: Single-nucleotide polymorphisms (SNPs) associated with lipids as instruments were extracted from the Global Lipids Genetics Consortium (GLGC). The genome-wide association study (GWAS) data for AMI were obtained from UK Biobank. Two sample MR analysis was used to study the associations between high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, and triglycerides (TG) with AMI (n = 3,927). Genetic variants associated with LDL cholesterol at or near drug target gene were used to mimic drug effects on the AMI events in drug target MR. RESULTS: Genetically predicted higher LDL-C (per one SD increase in LDL-C of 38.67 mg/dL, OR 1.006, 95% CI 1.004-1.007) and TG (per one SD increase in TG of 90.72 mg/dL, 1.004, 1.002-1.006) was associated with increased risk of AMI, but decreased risk for higher HDL-C (per one SD increase in HDL-C of 15.51 mg/dL, 0.997, 0.995-0.999) in univariable MR. Association remained significant for LDL-C, but attenuated toward the null for HDL-C and TG in multivariable MR. Genetically proxied lower LDL-C with genetic variants at or near the PCSK9 region (drug target of evolocumab) and NPC1L1 (drug target of ezetimibe) were associated with decreased risk of AMI (0.997, 0.994-0.999 and 0.986, 0.975-0.998, respectively), whereas genetic variants at HMGCR region (drug target of statin) showed marginal association with AMI (0.995, 0.990-1.000). After excluding drug target-related SNPs, LDL-C related SNPs outside the drug target region remained a causal effect on AMI (0.994, 0.993-0.996). CONCLUSIONS: The findings suggest that genetically predicted LDL-C may play a predominant role in the development of AMI. The drug MR results imply that ezetimibe and evolocumab may decrease the risk of AMI due to their LDL-C lowering effect, and there are other non-drug related lipid lowering pathways that may be causally linked to AMI.


Cholesterol, HDL , Cholesterol, LDL , Genome-Wide Association Study , Mendelian Randomization Analysis , Myocardial Infarction , Polymorphism, Single Nucleotide , Triglycerides , Humans , Myocardial Infarction/genetics , Myocardial Infarction/drug therapy , Cholesterol, LDL/blood , Triglycerides/blood , Male , Female , Cholesterol, HDL/blood , Middle Aged , Membrane Proteins/genetics , Membrane Transport Proteins/genetics , Proprotein Convertase 9/genetics , Hypolipidemic Agents/therapeutic use , Hydroxymethylglutaryl CoA Reductases/genetics , Aged
6.
Nat Immunol ; 25(6): 969-980, 2024 Jun.
Article En | MEDLINE | ID: mdl-38831104

Rare genetic variants in toll-like receptor 7 (TLR7) are known to cause lupus in humans and mice. UNC93B1 is a transmembrane protein that regulates TLR7 localization into endosomes. In the present study, we identify two new variants in UNC93B1 (T314A, located proximally to the TLR7 transmembrane domain, and V117L) in a cohort of east Asian patients with childhood-onset systemic lupus erythematosus. The V117L variant was associated with increased expression of type I interferons and NF-κB-dependent cytokines in patient plasma and immortalized B cells. THP-1 cells expressing the variant UNC93B1 alleles exhibited exaggerated responses to stimulation of TLR7/-8, but not TLR3 or TLR9, which could be inhibited by targeting the downstream signaling molecules, IRAK1/-4. Heterozygous mice expressing the orthologous Unc93b1V117L variant developed a spontaneous lupus-like disease that was more severe in homozygotes and again hyperresponsive to TLR7 stimulation. Together, this work formally identifies genetic variants in UNC93B1 that can predispose to childhood-onset systemic lupus erythematosus.


Genetic Predisposition to Disease , Lupus Erythematosus, Systemic , Toll-Like Receptor 7 , Lupus Erythematosus, Systemic/genetics , Humans , Animals , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Mice , Child , Female , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Male , Age of Onset , Genetic Variation , NF-kappa B/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Adolescent , THP-1 Cells , Interferon Type I/metabolism
7.
Ophthalmic Surg Lasers Imaging Retina ; 55(6): 349-353, 2024 Jun.
Article En | MEDLINE | ID: mdl-38860972

We report a 23-year-old female patient with ophthalmic features of albinism, including refractive errors, nystagmus, depigmented fundus, and foveal hypoplasia. She presented for a rhegmatogenous retinal detachment, which was surgically reattached with no complications. Further genetic testing revealed the presence of a heterozygous pathogenic oculocutaneous albinism OCA2 gene mutation, conferring carrier status. To the best of our knowledge, this is the first reported case of typical ocular phenotype of albinism, specifically nystagmus, in a patient who is carrier for oculo-cutaneous albinism. Further research is required to expand the genotype-phenotype relationship in carriers of oculocutaneous albinism. [Ophthalmic Surg Lasers Imaging Retina 2024;55:349-353.].


Albinism, Oculocutaneous , Fovea Centralis , Nystagmus, Pathologic , Humans , Albinism, Oculocutaneous/diagnosis , Albinism, Oculocutaneous/genetics , Albinism, Oculocutaneous/complications , Female , Fovea Centralis/abnormalities , Fovea Centralis/pathology , Young Adult , Nystagmus, Pathologic/diagnosis , Tomography, Optical Coherence/methods , Heterozygote , Membrane Transport Proteins/genetics , Mutation , Eye Diseases, Hereditary , Nystagmus, Congenital
8.
Arch Microbiol ; 206(7): 298, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38860999

A decreased chloramphenicol susceptibility in Haemophilus influenzae is commonly caused by the activity of chloramphenicol acetyltransferases (CATs). However, the involvement of membrane proteins in chloramphenicol susceptibility in H. influenzae remains unclear. In this study, chloramphenicol susceptibility testing, whole-genome sequencing, and analyses of membrane-related genes were performed in 51 H. influenzae isolates. Functional complementation assays and structure-based protein analyses were conducted to assess the effect of proteins with sequence substitutions on the minimum inhibitory concentration (MIC) of chloramphenicol in CAT-negative H. influenzae isolates. Six isolates were resistant to chloramphenicol and positive for type A-2 CATs. Of these isolates, A3256 had a similar level of CAT activity but a higher chloramphenicol MIC relative to the other resistant isolates; it also had 163 specific variations in 58 membrane genes. Regarding the CAT-negative isolates, logistic regression and receiver operator characteristic curve analyses revealed that 48T > G (Asn16Lys), 85 C > T (Leu29Phe), and 88 C > A (Leu30Ile) in HI_0898 (emrA), and 86T > G (Phe29Cys) and 141T > A (Ser47Arg) in HI_1177 (artM) were associated with enhanced chloramphenicol susceptibility, whereas 997G > A (Val333Ile) in HI_1612 (hmrM) was associated with reduced chloramphenicol susceptibility. Furthermore, the chloramphenicol MIC was lower in the CAT-negative isolates with EmrA-Leu29Phe/Leu30Ile or ArtM-Ser47Arg substitution and higher in those with HmrM-Val333Ile substitution, relative to their counterparts. The Val333Ile substitution was associated with enhanced HmrM protein stability and flexibility and increased chloramphenicol MICs in CAT-negative H. influenzae isolates. In conclusion, the substitution in H. influenzae multidrug efflux pump HmrM associated with reduced chloramphenicol susceptibility was characterised.


Amino Acid Substitution , Anti-Bacterial Agents , Bacterial Proteins , Chloramphenicol O-Acetyltransferase , Chloramphenicol , Haemophilus influenzae , Microbial Sensitivity Tests , Chloramphenicol/pharmacology , Haemophilus influenzae/genetics , Haemophilus influenzae/drug effects , Haemophilus influenzae/metabolism , Haemophilus influenzae/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chloramphenicol O-Acetyltransferase/genetics , Chloramphenicol O-Acetyltransferase/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Chloramphenicol Resistance/genetics , Humans , Haemophilus Infections/microbiology , Whole Genome Sequencing
9.
BMC Pediatr ; 24(1): 390, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38858617

BACKGROUND: Oculocutaneous albinism (OCA) is a group of autosomal recessive hereditary disorders that affect melanin biosynthesis, resulting in abnormalities in hair, skin, and eyes. Retinopathy of prematurity (ROP) is a proliferative retinopathy mainly observed in premature infants with low birth weight and early gestational age, but it can also affect full-term infants or children with normal weight, particularly in developing countries. The coexistence of ROP and OCA is rare. There is limited documentation regarding treatment approaches, with few studies reporting positive outcomes with laser treatment due to the absence of melanin pigment. This study discusses the treatment challenges in a female infant diagnosed with ROP and OCA, and underscores the importance of genetic analysis in guiding therapeutic decisions for this rare comorbid condition. CASE PRESENTATION: The study presents a case of ROP occurring concurrently with OCA. Genetic testing revealed two variants, c.727C > T (p.R243C) and c.1832 T > C (p.L611P), in the OCA2 gene, inherited from the patient's mother and father, respectively. The identified mutations were consistent with a diagnosis of OCA2, classified as a subtype of OCA. The patient initially received intravitreal anti-vascular endothelial growth factor (anti-VEGF) injection, followed by laser photocoagulation therapy for a recurrent event. A favorable outcome was observed during the 2-month follow-up period. CONCLUSIONS: The co-occurrence of ROP and OCA is a rare phenomenon, and this is the first recorded case in the Chinese population. The current case supports the use of laser as the primary treatment modality for ROP in OCA2 patients with partial pigmentation impairment. Furthermore, genetic analysis can aid in predicting the effectiveness of laser photocoagulation in this patient population.


Albinism, Oculocutaneous , Retinopathy of Prematurity , Humans , Female , Albinism, Oculocutaneous/genetics , Albinism, Oculocutaneous/complications , Albinism, Oculocutaneous/therapy , Retinopathy of Prematurity/genetics , Retinopathy of Prematurity/therapy , Retinopathy of Prematurity/complications , Infant, Newborn , Membrane Transport Proteins/genetics , Mutation , Angiogenesis Inhibitors/therapeutic use , Laser Coagulation , Bevacizumab/therapeutic use
10.
Proc Natl Acad Sci U S A ; 121(25): e2314314121, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38865262

Pyruvate lies at a pivotal node of carbon metabolism in eukaryotes. It is involved in diverse metabolic pathways in multiple organelles, and its interorganelle shuttling is crucial for cell fitness. Many apicomplexan parasites harbor a unique organelle called the apicoplast that houses metabolic pathways like fatty acid and isoprenoid precursor biosyntheses, requiring pyruvate as a substrate. However, how pyruvate is supplied in the apicoplast remains enigmatic. Here, deploying the zoonotic parasite Toxoplasma gondii as a model apicomplexan, we identified two proteins residing in the apicoplast membranes that together constitute a functional apicoplast pyruvate carrier (APC) to mediate the import of cytosolic pyruvate. Depletion of APC results in reduced activities of metabolic pathways in the apicoplast and impaired integrity of this organelle, leading to parasite growth arrest. APC is a pyruvate transporter in diverse apicomplexan parasites, suggesting a common strategy for pyruvate acquisition by the apicoplast in these clinically relevant intracellular pathogens.


Apicoplasts , Pyruvic Acid , Toxoplasma , Apicoplasts/metabolism , Toxoplasma/metabolism , Pyruvic Acid/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Animals , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Biological Transport , Metabolic Networks and Pathways
11.
Proc Natl Acad Sci U S A ; 121(25): e2403273121, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38865266

In secondary active transporters, a relatively limited set of protein folds have evolved diverse solute transport functions. Because of the conformational changes inherent to transport, altering substrate specificity typically involves remodeling the entire structural landscape, limiting our understanding of how novel substrate specificities evolve. In the current work, we examine a structurally minimalist family of model transport proteins, the small multidrug resistance (SMR) transporters, to understand the molecular basis for the emergence of a novel substrate specificity. We engineer a selective SMR protein to promiscuously export quaternary ammonium antiseptics, similar to the activity of a clade of multidrug exporters in this family. Using combinatorial mutagenesis and deep sequencing, we identify the necessary and sufficient molecular determinants of this engineered activity. Using X-ray crystallography, solid-supported membrane electrophysiology, binding assays, and a proteoliposome-based quaternary ammonium antiseptic transport assay that we developed, we dissect the mechanistic contributions of these residues to substrate polyspecificity. We find that substrate preference changes not through modification of the residues that directly interact with the substrate but through mutations peripheral to the binding pocket. Our work provides molecular insight into substrate promiscuity among the SMRs and can be applied to understand multidrug export and the evolution of novel transport functions more generally.


Quaternary Ammonium Compounds , Substrate Specificity , Quaternary Ammonium Compounds/metabolism , Quaternary Ammonium Compounds/chemistry , Crystallography, X-Ray , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Biological Transport , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics , Anti-Infective Agents, Local/metabolism , Anti-Infective Agents, Local/pharmacology , Anti-Infective Agents, Local/chemistry , Models, Molecular
12.
J Exp Med ; 221(8)2024 Aug 05.
Article En | MEDLINE | ID: mdl-38869499

Genetic variation in UNC93B1, a key component in TLR trafficking, can lead to autoinflammation caused by increased TLR activity. Analysis of seven patient variants combined with a comprehensive alanine screen revealed that different regions of UNC93B1 selectively regulate different TLRs (Rael et al. https://doi.org/10.1084/jem.20232005; David et al. https://doi.org/10.1084/jem.20232066).


Toll-Like Receptors , Humans , Toll-Like Receptors/metabolism , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Protein Transport , Animals
13.
J Exp Med ; 221(8)2024 Aug 05.
Article En | MEDLINE | ID: mdl-38869500

UNC93B1 is a transmembrane domain protein mediating the signaling of endosomal Toll-like receptors (TLRs). We report five families harboring rare missense substitutions (I317M, G325C, L330R, R466S, and R525P) in UNC93B1 causing systemic lupus erythematosus (SLE) or chilblain lupus (CBL) as either autosomal dominant or autosomal recessive traits. As for a D34A mutation causing murine lupus, we recorded a gain of TLR7 and, to a lesser extent, TLR8 activity with the I317M (in vitro) and G325C (in vitro and ex vivo) variants in the context of SLE. Contrastingly, in three families segregating CBL, the L330R, R466S, and R525P variants were isomorphic with respect to TLR7 activity in vitro and, for R525P, ex vivo. Rather, these variants demonstrated a gain of TLR8 activity. We observed enhanced interaction of the G325C, L330R, and R466S variants with TLR8, but not the R525P substitution, indicating different disease mechanisms. Overall, these observations suggest that UNC93B1 mutations cause monogenic SLE or CBL due to differentially enhanced TLR7 and TLR8 signaling.


Chilblains , Lupus Erythematosus, Systemic , Toll-Like Receptor 7 , Humans , Lupus Erythematosus, Systemic/genetics , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Female , Male , Chilblains/genetics , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Gain of Function Mutation , Toll-Like Receptor 8/genetics , Toll-Like Receptor 8/metabolism , Pedigree , Mutation, Missense , HEK293 Cells , Lupus Erythematosus, Cutaneous/genetics , Lupus Erythematosus, Cutaneous/pathology
14.
Alzheimers Res Ther ; 16(1): 127, 2024 Jun 13.
Article En | MEDLINE | ID: mdl-38872230

BACKGROUND: Our study aims to evaluate the genetic and phenotypic spectrum of Frontotemporal dementia (FTD) gene variant carriers in Chinese populations, investigate mutation frequencies, and assess the functional properties of TBK1 and OPTN variants. METHODS: Clinically diagnosed FTD patients underwent genetic analysis through exome sequencing, repeat-primed polymerase chain reaction, and Sanger sequencing. TBK1 and OPTN variants were biologically characterized in vitro using immunofluorescence, immunoprecipitation, and immunoblotting analysis. The frequencies of genes implicated in FTD in China were analyzed through a literature review and meta-analysis. RESULTS: Of the 261 Chinese FTD patients, 61 (23.4%) carried potential causative variants in FTD-related genes, including MAPT (n = 17), TBK1 (n = 7), OPTN (n = 6), GRN (n = 6), ANXA11 (n = 4), CHMP2B (n = 3), C9orf72 GGGGCC repeats (n = 2), CYLD (n = 2), PRNP (n = 2), SQSTM1 (n = 2), TARDBP (n = 2), VCP (n = 1), CCNF (n = 1), CHCHD10 (n = 1), SIGMAR1 (n = 1), CHCHD2 (n = 1), FUS (n = 1), TMEM106B (n = 1), and UBQLN2 (n = 1). 29 variants can be considered novel, including the MAPT p.D54N, p.E342K, p.R221P, p.T263I, TBK1 p.E696G, p.I37T, p.E232Q, p.S398F, p.T78A, p.Q150P, p.W259fs, OPTN p.R144G, p.F475V, GRN p.V473fs, p.C307fs, p.R101fs, CHMP2B p.K6N, p.R186Q, ANXA11 p.Q155*, CYLD p.T157I, SQSTM1 p.S403A, UBQLN2 p.P509H, CCNF p.S160N, CHCHD10 p.A8T, SIGMAR1 p.S117L, CHCHD2 p.P53fs, FUS p.S235G & p.S236G, and TMEM106B p.L144V variants. Patients with TBK1 and OPTN variants presented with heterogeneous clinical phenotypes. Functional analysis demonstrated that TBK1 I37T and E232Q mutants showed decreased autophosphorylation, and the OPTN phosphorylation was reduced by the TBK1 I37T mutant. The OPTN-TBK1 complex formation was enhanced by the TBK1 E696G mutant, while OPTN R144G and F475V mutants exhibited reduced recruitment to autophagosomes compared to the wild-type. The overall frequency of TBK1 and OPTN in Chinese FTD patients was 2.0% and 0.3%, respectively. CONCLUSIONS: Our study demonstrates the extensive genetic and phenotypic heterogeneity of Chinese FTD patients. TBK1 mutations are the second most frequent cause of clinical FTD after MAPT in the Chinese.


Asian People , Cell Cycle Proteins , Frontotemporal Dementia , Membrane Transport Proteins , Mutation , Protein Serine-Threonine Kinases , Transcription Factor TFIIIA , Humans , Protein Serine-Threonine Kinases/genetics , Membrane Transport Proteins/genetics , Female , Frontotemporal Dementia/genetics , Male , Middle Aged , Cell Cycle Proteins/genetics , China/epidemiology , Aged , Transcription Factor TFIIIA/genetics , Asian People/genetics , Genetic Predisposition to Disease/genetics , East Asian People
15.
Int J Mol Sci ; 25(10)2024 May 18.
Article En | MEDLINE | ID: mdl-38791559

This editorial summarizes the seven scientific papers published in the Special Issue "Overcoming Biological Barriers: Importance of Membrane Transporters in Homeostasis, Disease, and Disease Treatment 2 [...].


Homeostasis , Membrane Transport Proteins , Humans , Membrane Transport Proteins/metabolism , Animals , Biological Transport
16.
Immunohematology ; 40(1): 28-33, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38739024

Since publication of the original Immunohematology review of the Kidd blood group system in 2015 (Hamilton JR. Kidd blood group system: a review. Immunohematology 2015;31:29-34), knowledge has mushroomed pertaining to gene structure, alleles causing variant and null phenotypes, clinical significance in renal transplant and hemolytic disease of the fetus and newborn, and physiologic functions of urea transporters in non-renal tissues. This review will detail much of this new information.


Kidd Blood-Group System , Kidney Transplantation , Humans , Kidd Blood-Group System/genetics , Kidd Blood-Group System/immunology , Urea Transporters , Erythroblastosis, Fetal/genetics , Erythroblastosis, Fetal/immunology , Erythroblastosis, Fetal/blood , Infant, Newborn , Membrane Transport Proteins/genetics , Alleles , Blood Group Antigens/genetics , Blood Group Antigens/immunology
17.
BMC Cancer ; 24(1): 602, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760735

BACKGROUND: Melanoma proliferation is partly attributed to dysregulated lipid metabolism. The effectiveness of lipid-lowering drugs in combating cutaneous melanoma (CM) is a subject of ongoing debate in both in vitro and clinical studies. METHOD: This study aims to evaluate the causal relationship between various lipid-lowering drug targets, namely 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR, targeted by statins), Proprotein convertase subtilisin/kexin type 9 (PCSK9, targeted by alirocumab and evolocumab), and Niemann-Pick C1-like 1 (NPC1L1, targeted by ezetimibe), and the outcomes of cutaneous melanoma. To mimic the effects of lipid-lowering drugs, we utilized two genetic tools: analysis of polymorphisms affecting the expression levels of drug target genes, and genetic variations linked to low-density lipoprotein cholesterol levels and drug target genes. These variations were sourced from genome-wide association studies (GWAS). We applied Summary-data-based Mendelian Randomization (SMR) and Inverse Variance Weighted Mendelian Randomization (IVW-MR) to gauge the effectiveness of these drugs. RESULTS: Our findings, with SMR results showing an odds ratio (OR) of 1.44 (95% CI: 1.08-1.92; P = 0.011) and IVW-MR results indicating an OR of 1.56 (95% CI: 1.10-2.23; P = 0.013), demonstrate a positive correlation between PCSK9 expression and increased risk of CM. However, no such correlations were observed in other analyses. CONCLUSION: The study concludes that PCSK9 plays a significant role in the development of CM, and its inhibition is linked to a reduced risk of the disease.


Genome-Wide Association Study , Hydroxymethylglutaryl CoA Reductases , Melanoma , Mendelian Randomization Analysis , Proprotein Convertase 9 , Skin Neoplasms , Humans , Melanoma/genetics , Melanoma/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/drug therapy , Proprotein Convertase 9/genetics , Hydroxymethylglutaryl CoA Reductases/genetics , Melanoma, Cutaneous Malignant , Antibodies, Monoclonal, Humanized/therapeutic use , Polymorphism, Single Nucleotide , Membrane Transport Proteins/genetics , Membrane Proteins/genetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Ezetimibe/therapeutic use , Hypolipidemic Agents/therapeutic use , Hypolipidemic Agents/pharmacology
18.
Int J Mycobacteriol ; 13(1): 7-14, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-38771273

BACKGROUND: The overexpression of efflux pumps (Eps) was reported to contribute to multidrug resistant tuberculosis (MDR-TB). Increases in Eps that expel structurally unrelated drugs contribute to reduced susceptibility by decreasing the intracellular concentration of antibiotics. In the present study, an association of mycobacterial membrane protein (MmpS5-MmpL5) Ep and its gene regulator (Rv0678) was investigated in MDR-tuberculosis isolates. METHODS: MTB strains were isolated from patients at two different intervals, i.e., once when they had persistent symptoms despite 3-15 ≥ months of treatment and once when they had started new combination therapy ≥2-3 months. Sputum specimens were subjected to Xpert MTB/rifampicin test and then further susceptibility testing using proportional method and multiplex polymerase chain reaction (PCR) were performed on them. The isolates were characterized using both 16S-23S RNA and hsp65 genes spacer (PCR-restriction fragment length polymorphism). Whole-genome sequencing (WGS) was investigated on two isolates from culture-positive specimen per patient. The protein structure was simulated using the SWISS-MODEL. The input format used for this web server was FASTA (amino acid sequence). Protein structure was also analysis using Ramachandran plot. RESULTS: WGS documented deletion, insertion, and substitution in transmembrane transport protein MmpL5 (Rv0676) of Eps. Majority of the studied isolates (n = 12; 92.3%) showed a unique deletion mutation at three positions: (a) from amino acid number 771 (isoleucine) to 776 (valine), (b) from amino acid number 785 (valine) to 793 (histidine), and (c) from amino acid number 798 (leucine) to 806 (glycine)." One isolate (7.6%) had no deletion mutation. In all isolates (n = 13; 100%), a large insertion mutation consisting of 94 amino acid was observed "from amino acid number 846 (isoleucine) to amino acid number 939 (leucine)". Thirty-eight substitutions in Rv0676 were detected, of which 92.3% were identical in the studied isolates. WGS of mycobacterial membrane proteins (MmpS5; Rv0677) and its gene regulator (Rv0678) documented no deletion, insertion, and substitution. No differences were observed between MmpS5-MmpL5 and its gene regulator in isolates that were collected at different intervals. CONCLUSIONS: Significant genetic mutation like insertion, deletion, and substitution within transmembrane transport protein MmpL5 (Rv0676) can change the functional balance of Eps and cause a reduction in drug susceptibility. This is the first report documenting a unique amino acid mutation (insertion and deletion ≥4-94) in Rv0676 among drug-resistant MTB. We suggest the changes in Mmpl5 (Rv0676) might occurred due to in-vivo sub-therapeutic drug stress within the host cell. Changes in MmpL5 are stable and detected through subsequent culture-positive specimens.


Antitubercular Agents , Bacterial Proteins , Membrane Transport Proteins , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Tuberculosis, Multidrug-Resistant/microbiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Antitubercular Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Whole Genome Sequencing , Sputum/microbiology
19.
Inhal Toxicol ; 36(4): 250-260, 2024 Apr.
Article En | MEDLINE | ID: mdl-38738559

OBJECTIVE: The purpose of these studies was to investigate the uptake of atrazine across the nasal mucosa to determine whether direct transport to the brain through the olfactory epithelium is likely to occur. These studies were undertaken to provide important new information about the potential for the enhanced neurotoxicity of herbicides following nasal inhalation. MATERIALS AND METHODS: Transport of atrazine from aqueous solution and from commercial atrazine-containing herbicide products was assessed using excised nasal mucosal tissues. The permeation rate and the role of membrane transporters in the uptake of atrazine across the nasal mucosa were also investigated. Histological examination of the nasal tissues was conducted to assess the effects of commercial atrazine-containing products on nasal tissue morphology. RESULTS: Atrazine showed high flux across both nasal respiratory and olfactory tissues, and efflux transporters were found to play an essential role in limiting its uptake at low exposure concentrations. Commercial atrazine-containing herbicide products showed remarkably high transfer across the nasal tissues, and histological evaluation showed significant changes in the morphology of the nasal epithelium following exposure to the herbicide products. DISCUSSION: Lipophilic herbicides such as atrazine can freely permeate across the nasal mucosa despite the activity of efflux transporters. The adjuvant compounds in commercial herbicide products disrupt the nasal mucosa's epithelial barrier, resulting in even greater atrazine permeation across the tissues. The properties of the herbicide itself and those of the formulated products play crucial roles in the potential for the enhanced neurotoxicity of herbicides following nasal inhalation.


Atrazine , Herbicides , Nasal Mucosa , Atrazine/toxicity , Atrazine/pharmacokinetics , Herbicides/toxicity , Herbicides/pharmacokinetics , Nasal Mucosa/drug effects , Nasal Mucosa/metabolism , Animals , Membrane Transport Proteins/metabolism , Male , Administration, Intranasal , Nasal Absorption/drug effects
20.
Int J Biol Macromol ; 269(Pt 2): 132166, 2024 Jun.
Article En | MEDLINE | ID: mdl-38723822

Improving the ability of bacteria to secrete protein is essential for large-scale production of food enzymes. However, due to the lack of effective tracking technology for target proteins, the optimization of the secretory system is facing many problems. In this study, we utilized the split-GFP system to achieve self-assembly into mature GFP in Bacillus amyloliquefaciens and successfully tracked the alkaline protease AprE. The split-GFP system was employed to assess the signal peptidases, a crucial component in the secretory system, and signal peptidase sipA was identified as playing a role in the secretion of AprE. Deletion of sipA resulted in a higher accumulation of the precursor protein of AprE compared to other signal peptidase deletion strains. To explore the mechanism of signal peptidase on signal peptide, molecular docking and calculation of free energy were performed. The action strength of the signal peptidase is determined by its binding affinity with the tripeptides at the C-terminal of the signal peptide. The functions of signal peptides YdbK and NucB rely on sipA, and overexpression of sipA by integrating it into genome of B. amyloliquefaciens increased the activity of extracellular AprE by 19.9 %. These findings provide insights into enhancing the secretion efficiency of chassis strains.


Bacillus amyloliquefaciens , Bacterial Proteins , Endopeptidases , Green Fluorescent Proteins , Bacillus amyloliquefaciens/enzymology , Bacillus amyloliquefaciens/genetics , Bacillus amyloliquefaciens/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Endopeptidases/metabolism , Endopeptidases/genetics , Endopeptidases/chemistry , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Molecular Docking Simulation , Protein Sorting Signals , Membrane Proteins , Serine Endopeptidases , Membrane Transport Proteins
...