Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 782
Filter
1.
Proc Natl Acad Sci U S A ; 121(39): e2402233121, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39284054

ABSTRACT

A fundamental assumption in plant science posits that leaf air spaces remain vapor saturated, leading to the predominant view that stomata alone control leaf water loss. This concept has been pivotal in photosynthesis and water-use efficiency research. However, recent evidence has refuted this longstanding assumption by providing evidence of unsaturation in the leaf air space of C3 plants under relatively mild vapor pressure deficit (VPD) stress. This phenomenon represents a nonstomatal mechanism restricting water loss from the mesophyll. The potential ubiquity and physiological implications of this phenomenon, its driving mechanisms in different plant species and habitats, and its interaction with other ecological adaptations have. In this context, C4 plants spark particular interest for their importance as crops, bundle sheath cells' unique anatomical characteristics and specialized functions, and notably higher water-use efficiency relative to C3 plants. Here, we confirm reduced relative humidities in the substomatal cavity of the C4 plants maize, sorghum, and proso millet down to 80% under mild VPD stress. We demonstrate the critical role of nonstomatal control in these plants, indicating that the role of the CO2 concentration mechanism in CO2 management at a high VPD may have been overestimated. Our findings offer a mechanistic reconciliation between discrepancies in CO2 and VPD responses reported in C4 species. They also reveal that nonstomatal control is integral to maintaining an advantageous microclimate of relatively higher CO2 concentrations in the mesophyll air space of C4 plants for carbon fixation, proving vital when these plants face VPD stress.


Subject(s)
Mesophyll Cells , Photosynthesis , Vapor Pressure , Zea mays , Mesophyll Cells/metabolism , Zea mays/physiology , Zea mays/metabolism , Photosynthesis/physiology , Plant Leaves/metabolism , Plant Leaves/physiology , Water/metabolism , Stress, Physiological/physiology , Carbon Dioxide/metabolism , Sorghum/metabolism , Sorghum/physiology , Plant Stomata/physiology , Plant Stomata/metabolism
2.
Physiol Plant ; 176(5): e14518, 2024.
Article in English | MEDLINE | ID: mdl-39284792

ABSTRACT

Water-saving and drought-resistant rice (WDR) coupled with alternate wetting and drying irrigation (AWDI) possesses a high photosynthetic potential due to higher mesophyll conductance (gm) under drought conditions. However, the physiological and structural contributions to the gm of leaves and their mechanisms in WDR under AWDI are still unclear. In this study, WDR (Hanyou 73) and drought-sensitive rice (Huiliangyou 898) were selected as materials. Three irrigation patterns were established from transplanting to the heading stage, including conventional flooding irrigation (W1), moderate AWDI (W2), and severe AWDI (W3). A severe drought with a soil water potential of -50 kPa was applied for a week at the heading stage across all treatments and cultivars. The results revealed that severe drought reduced gas exchange parameters and gm but enhanced antioxidant enzyme activities and malondialdehyde content in the three treatments and both cultivars. The maximal photosynthetic rate (Amax) of HY73 in the W2 treatment was greater than that in the other combinations of cultivars and irrigation patterns. The contribution of leaf structure (54%) to gm (gm-S, structural gm) was higher than that of leaf physiology (46%) to gm (gm-P, physiological gm) in the W2 treatment of Hanyou 73. Additionally, gm-S was significantly and linearly positively correlated with gm under severe drought. Moreover, both the initial and apparent quantum efficiencies were significantly and positively with gm in rice plants (p < 0.05). These results suggest that the improvements in photosynthesis and yield in the WDR combined with moderate AWDI can mainly be attributed to the enhancement of gm-S under severe drought conditions. Quantum efficiency may be a potential factor in regulating photosynthesis by cooperating with the gm of rice plants under severe drought conditions.


Subject(s)
Agricultural Irrigation , Droughts , Mesophyll Cells , Oryza , Photosynthesis , Plant Leaves , Water , Oryza/physiology , Water/metabolism , Agricultural Irrigation/methods , Photosynthesis/physiology , Mesophyll Cells/physiology , Plant Leaves/physiology , Plant Transpiration/physiology , Desiccation/methods
3.
New Phytol ; 243(6): 2187-2200, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39036838

ABSTRACT

The superior productivity of C4 plants is achieved via a metabolic C4 cycle which acts as a CO2 pump across mesophyll and bundle sheath (BS) cells and requires an additional input of energy in the form of ATP. The importance of chloroplast NADH dehydrogenase-like complex (NDH) operating cyclic electron flow (CEF) around Photosystem I (PSI) for C4 photosynthesis has been shown in reverse genetics studies but the contribution of CEF and NDH to cell-level electron fluxes remained unknown. We have created gene-edited Setaria viridis with null ndhO alleles lacking functional NDH and developed methods for quantification of electron flow through NDH in BS and mesophyll cells. We show that CEF accounts for 84% of electrons reducing PSI in BS cells and most of those electrons are delivered through NDH while the contribution of the complex to electron transport in mesophyll cells is minimal. A decreased leaf CO2 assimilation rate and growth of plants lacking NDH cannot be rescued by supplying additional CO2. Our results indicate that NDH-mediated CEF is the primary electron transport route in BS chloroplasts highlighting the essential role of NDH in generating ATP required for CO2 fixation by the C3 cycle in BS cells.


Subject(s)
Chloroplasts , NADH Dehydrogenase , Photosystem I Protein Complex , Electron Transport , Chloroplasts/metabolism , NADH Dehydrogenase/metabolism , NADH Dehydrogenase/genetics , Photosystem I Protein Complex/metabolism , Setaria Plant/metabolism , Setaria Plant/genetics , Carbon Dioxide/metabolism , Mesophyll Cells/metabolism , Photosynthesis , Plant Vascular Bundle/metabolism , Plant Leaves/metabolism
4.
Plant Cell Environ ; 47(9): 3590-3604, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39031544

ABSTRACT

The response of mesophyll conductance (gm) to CO2 plays a key role in photosynthesis and ecosystem carbon cycles under climate change. Despite numerous studies, there is still debate about how gm responds to short-term CO2 variations. Here we used multiple methods and looked at the relationship between stomatal conductance to CO2 (gsc) and gm to address this aspect. We measured chlorophyll fluorescence parameters and online carbon isotope discrimination (Δ) at different CO2 mole fractions in sunflower (Helianthus annuus L.), cowpea (Vigna unguiculata L.), and wheat (Triticum aestivum L.) leaves. The variable J and Δ based methods showed that gm decreased with an increase in CO2 mole fraction, and so did stomatal conductance. There were linear relationships between gm and gsc across CO2 mole fractions. gm obtained from A-Ci curve fitting method was higher than that from the variable J method and was not representative of gm under the growth CO2 concentration. gm could be estimated by empirical models analogous to the Ball-Berry model and the USO model for stomatal conductance. Our results suggest that gm and gsc respond in a coordinated manner to short-term variations in CO2, providing new insight into the role of gm in photosynthesis modelling.


Subject(s)
Carbon Dioxide , Helianthus , Mesophyll Cells , Plant Stomata , Triticum , Carbon Dioxide/metabolism , Plant Stomata/physiology , Mesophyll Cells/physiology , Mesophyll Cells/metabolism , Triticum/physiology , Triticum/metabolism , Helianthus/physiology , Helianthus/metabolism , Carbon Isotopes , Photosynthesis/physiology , Fabaceae/physiology , Chlorophyll/metabolism , Plant Leaves/physiology , Plant Leaves/metabolism
5.
Biosci Biotechnol Biochem ; 88(10): 1164-1171, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39013611

ABSTRACT

SO2/H2SO3 can damage plants. However, its toxic mechanism has still been controversial. Two models have been proposed, cytosolic acidification model and cellular oxidation model. Here, we assessed the toxic mechanism of H2SO3 in three cell types of Arabidopsis thaliana, mesophyll cells, guard cells (GCs), and petal cells. The sensitivity of GCs of Chloride channel a (CLCa)-knockout mutants to H2SO3 was significantly lower than those of wildtype plants. Expression of other CLC genes in mesophyll cells and petal cells were different from GCs. Treatment with antioxidant, disodium 4,5-dihydroxy-1,3-benzenedisulfonate (tiron), increased the median lethal concentration (LC50) of H2SO3 in GCs indicating the involvement of cellular oxidation, while the effect was negligible in mesophyll cells and petal cells. These results indicate that there are two toxic mechanisms of SO2 to Arabidopsis cells: cytosolic acidification and cellular oxidation, and the toxic mechanism may vary among cell types.


Subject(s)
Arabidopsis , Cytosol , Oxidation-Reduction , Sulfur Dioxide , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/drug effects , Cytosol/metabolism , Sulfur Dioxide/toxicity , Sulfur Dioxide/metabolism , Hydrogen-Ion Concentration , Mesophyll Cells/metabolism , Mesophyll Cells/drug effects , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Chloride Channels/metabolism , Chloride Channels/genetics , Gene Expression Regulation, Plant/drug effects
7.
Plant Physiol Biochem ; 213: 108857, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38905728

ABSTRACT

As an important warm-season turfgrass species, bermudagrass (Cynodon dactylon L.) flourishes in warm areas around the world due to the existence of the C4 photosynthetic pathway. However, how C4 photosynthesis operates in bermudagrass leaves is still poorly understood. In this study, we performed single-cell RNA-sequencing on 5296 cells from bermudagrass leaf blades. Eight cell clusters corresponding to mesophyll, bundle sheath, epidermis and vascular bundle cells were successfully identified using known cell marker genes. Expression profiling indicated that genes encoding NADP-dependent malic enzymes (NADP-MEs) were highly expressed in bundle sheath cells, whereas NAD-ME genes were weakly expressed in all cell types, suggesting C4 photosynthesis of bermudagrass leaf blades might be NADP-ME type rather than NAD-ME type. The results also indicated that starch synthesis-related genes showed preferential expression in bundle sheath cells, whereas starch degradation-related genes were highly expressed in mesophyll cells, which agrees with the observed accumulation of starch-filled chloroplasts in bundle sheath cells. Gene co-expression analysis further revealed that different families of transcription factors were co-expressed with multiple C4 photosynthesis-related genes, suggesting a complex transcription regulatory network of C4 photosynthesis might exist in bermudagrass leaf blades. These findings collectively provided new insights into the cell-specific expression patterns and transcriptional regulation of photosynthetic genes in bermudagrass.


Subject(s)
Cynodon , Gene Expression Regulation, Plant , Photosynthesis , Plant Leaves , Photosynthesis/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Cynodon/genetics , Cynodon/metabolism , Single-Cell Analysis/methods , Sequence Analysis, RNA , Mesophyll Cells/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Malate Dehydrogenase/metabolism , Malate Dehydrogenase/genetics
8.
Plant Cell Rep ; 43(7): 168, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864883

ABSTRACT

KEY MESSAGE: Immunofluorescence staining with frozen sections of plant tissues and a nest tube is convenient and effective, and broadens the applicability of immunofluorescence staining. Immunofluorescence staining is an indispensable and extensively employed technique for determining the subcellular localization of chloroplast division proteins. At present, it is difficult to effectively observe the localization of target proteins in leaves that are hard, or very thin, or have epidermal hair or glands with the current immunofluorescence staining methods. Moreover, signals of target proteins were predominantly detected in mesophyll cells, not the cells of other types. Thus, the method of immunofluorescence staining was further explored for improvement in this study. The plant tissue was embedded with 50% PEG4000 at -60℃, which was then cut into sections by a cryomacrotome. The sections were immediately immersed in fixation solution. Then, the sample was transferred into a special nested plastic tube, which facilitated the fixation and immunofluorescence staining procedures. The use of frozen sections in this method enabled a short processing time and reduced material requirements. By optimizing the thickness of the sections, a large proportion of the cells could be well stained. With this method, we observed the localization of a chloroplast division protein FtsZ1 in the wild-type Arabidopsis and various chloroplast division mutants. Meanwhile, the localization of FtsZ1 was also observed not only in mesophyll cells, but also in guard cells and epidermal cells in a lot of other plant species, including many species with hard leaf tissues. This method is not only easy to use, but also expands the scope of applicability for immunofluorescence staining.


Subject(s)
Arabidopsis , Chloroplast Proteins , Chloroplasts , Fluorescent Antibody Technique , Frozen Sections , Staining and Labeling , Arabidopsis/metabolism , Arabidopsis/cytology , Frozen Sections/methods , Fluorescent Antibody Technique/methods , Chloroplasts/metabolism , Staining and Labeling/methods , Chloroplast Proteins/metabolism , Chloroplast Proteins/genetics , Plant Leaves/metabolism , Plant Leaves/cytology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Mesophyll Cells/metabolism , Mesophyll Cells/cytology
9.
Physiol Plant ; 176(3): e14376, 2024.
Article in English | MEDLINE | ID: mdl-38837784

ABSTRACT

Variations in light intensity induce cytosol pH changes in photosynthetic tissues, providing a possible signal to adjust a variety of biochemical, physiological and developmental processes to the energy status of the cells. It was shown that these pH changes are partially due to the transport of protons in or out of the thylakoid lumen. However, the ion transporters in the chloroplast that transmit these pH changes to the cytosol are not known. KEA1 and KEA2 are K+/H+ antiporters in the chloroplast inner envelope that adjust stromal pH in light-to-dark transitions. We previously determined that stromal pH is higher in kea1kea2 mutant cells. In this study, we now show that KEA1 and KEA2 are required to attenuate cytosol pH variations upon sudden light intensity changes in leaf mesophyll cells, showing they are important components of the light-modulated pH signalling module. The kea1kea2 mutant mesophyll cells also have a considerably less negative membrane potential. Membrane potential is dependent on the activity of the plasma membrane proton ATPase and is regulated by secondary ion transporters, mainly potassium channels in the plasma membrane. We did not find significant differences in the activity of the plasma membrane proton pump but found a strongly increased membrane permeability to protons, especially potassium, of the double mutant plasma membranes. Our results indicate that chloroplast envelope K+/H+ antiporters not only affect chloroplast pH but also have a strong impact on cellular ion homeostasis and energization of the plasma membrane.


Subject(s)
Arabidopsis , Chloroplasts , Cytosol , Potassium-Hydrogen Antiporters , Hydrogen-Ion Concentration , Cytosol/metabolism , Chloroplasts/metabolism , Potassium-Hydrogen Antiporters/metabolism , Potassium-Hydrogen Antiporters/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Light , Membrane Potentials , Potassium/metabolism , Mesophyll Cells/metabolism , Mutation/genetics , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/radiation effects
10.
Plant Cell Environ ; 47(9): 3638-3653, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38757412

ABSTRACT

Salinity tolerance requires coordinated responses encompassing salt exclusion in roots and tissue/cellular compartmentation of salt in leaves. We investigated the possible control points for salt ions transport in roots and tissue tolerance to Na+ and Cl- in leaves of two contrasting mungbean genotypes, salt-tolerant Jade AU and salt-sensitive BARI Mung-6, grown in nonsaline and saline (75 mM NaCl) soil. Cryo-SEM X-ray microanalysis was used to determine concentrations of Na, Cl, K, Ca, Mg, P, and S in various cell types in roots related to the development of apoplastic barriers, and in leaves related to photosynthetic performance. Jade AU exhibited superior salt exclusion by accumulating higher [Na] in the inner cortex, endodermis, and pericycle with reduced [Na] in xylem vessels and accumulating [Cl] in cortical cell vacuoles compared to BARI Mung-6. Jade AU maintained higher [K] in root cells than BARI Mung-6. In leaves, Jade AU maintained lower [Na] and [Cl] in chloroplasts and preferentially accumulated [K] in mesophyll cells than BARI Mung-6, resulting in higher photosynthetic efficiency. Salinity tolerance in Jade AU was associated with shoot Na and Cl exclusion, effective regulation of Na and Cl accumulation in chloroplasts, and maintenance of high K in root and leaf mesophyll cells.


Subject(s)
Chlorides , Chloroplasts , Mesophyll Cells , Plant Leaves , Plant Roots , Potassium , Salt Tolerance , Sodium , Vigna , Plant Roots/metabolism , Plant Roots/physiology , Chloroplasts/metabolism , Sodium/metabolism , Plant Leaves/metabolism , Plant Leaves/physiology , Mesophyll Cells/metabolism , Potassium/metabolism , Chlorides/metabolism , Vigna/metabolism , Vigna/physiology , Photosynthesis , Biological Transport
11.
Plant Cell Environ ; 47(9): 3411-3427, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38804598

ABSTRACT

The growing demand for global food production is likely to be a defining issue facing humanity over the next 50 years. To tackle this challenge, there is a desire to bioengineer crops with higher photosynthetic efficiencies, to increase yields. Recently, there has been a growing interest in engineering leaves with higher mesophyll conductance (gm), which would allow CO2 to move more efficiently from the substomatal cavities to the chloroplast stroma. However, if crop yield gains are to be realised through this approach, it is essential that the methodological limitations associated with estimating gm are fully appreciated. In this review, we summarise these limitations, and outline the uncertainties and assumptions that can affect the final estimation of gm. Furthermore, we critically assess the predicted quantitative effect that elevating gm will have on assimilation rates in crop species. We highlight the need for more theoretical modelling to determine whether altering gm is truly a viable route to improve crop performance. Finally, we offer suggestions to guide future research on gm, which will help mitigate the uncertainty inherently associated with estimating this parameter.


Subject(s)
Crops, Agricultural , Mesophyll Cells , Photosynthesis , Mesophyll Cells/metabolism , Mesophyll Cells/physiology , Crops, Agricultural/physiology , Crops, Agricultural/growth & development , Carbon Dioxide/metabolism , Plant Leaves/physiology , Plant Leaves/metabolism
12.
Plant Cell Environ ; 47(8): 3147-3165, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38693776

ABSTRACT

Partial root-zone drying irrigation (PRD) can improve water-use efficiency (WUE) without reductions in photosynthesis; however, the mechanism by which this is attained is unclear. To amend that, PRD conditions were simulated by polyethylene glycol 6000 in a root-splitting system and the effects of PRD on cotton growth were studied. Results showed that PRD decreased stomatal conductance (gs) but increased mesophyll conductance (gm). Due to the contrasting effects on gs and gm, net photosynthetic rate (AN) remained unaffected, while the enhanced gm/gs ratio facilitated a larger intrinsic WUE. Further analyses indicated that PRD-induced reduction of gs was related to decreased stomatal size and stomatal pore area in adaxial and abaxial surface which was ascribed to lower pore length and width. PRD-induced variation of gm was ascribed to the reduced liquid-phase resistance, due to increases in chloroplast area facing to intercellular airspaces and the ratio of chloroplast surface area to total mesophyll cell area exposed to intercellular airspaces, as well as to decreases in the distance between cell wall and chloroplast, and between adjacent chloroplasts. The above results demonstrate that PRD, through alterations to stomatal and mesophyll structures, decoupled gs and gm responses, which ultimately increased intrinsic WUE and maintained AN.


Subject(s)
Agricultural Irrigation , Gossypium , Mesophyll Cells , Photosynthesis , Plant Leaves , Plant Roots , Plant Stomata , Water , Gossypium/physiology , Gossypium/metabolism , Plant Stomata/physiology , Mesophyll Cells/metabolism , Mesophyll Cells/physiology , Water/metabolism , Plant Roots/physiology , Plant Roots/metabolism , Plant Leaves/physiology , Plant Leaves/metabolism , Plant Transpiration/physiology , Chloroplasts/metabolism , Desiccation
13.
Plant Biol (Stuttg) ; 26(5): 842-854, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38743618

ABSTRACT

Mesophyll resistance for CO2 diffusion (rm) is one of the main limitations for photosynthesis and plant growth. Breeding new varieties with lower rm requires knowledge of its distinct components. We tested new method for estimating the relative drawdowns of CO2 concentration (c) across hypostomatous leaves of Fagus sylvatica. This technique yields values of the ratio of the internal CO2 concentrations at the adaxial and abaxial leaf side, cd/cb, the drawdown in the intercellular air space (IAS), and intracellular drawdown between IAS and chloroplast stroma, cc/cbd. The method is based on carbon isotope composition of leaf dry matter and epicuticular wax isolated from upper and lower leaf sides. We investigated leaves from tree-canopy profile to analyse the effects of light and leaf anatomy on the drawdowns and partitioning of rm into its inter- (rIAS) and intracellular (rliq) components. Validity of the new method was tested by independent measurements of rm using conventional isotopic and gas exchange techniques. 73% of investigated leaves had adaxial epicuticular wax enriched in 13C compared to abaxial wax (by 0.50‰ on average), yielding 0.98 and 0.70 for average of cd/cb and cc/cbd, respectively. The rIAS to rliq proportion were 5.5:94.5% in sun-exposed and 14.8:85.2% in shaded leaves. cc dropped to less than half of the atmospheric value in the sunlit and to about two-thirds of it in shaded leaves. This method shows that rIAS is minor but not negligible part of rm and reflects leaf anatomy traits, i.e. leaf mass per area and thickness.


Subject(s)
Carbon Dioxide , Fagus , Light , Mesophyll Cells , Photosynthesis , Plant Leaves , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Plant Leaves/radiation effects , Carbon Dioxide/metabolism , Fagus/physiology , Fagus/anatomy & histology , Mesophyll Cells/physiology , Mesophyll Cells/metabolism , Carbon Isotopes/analysis , Waxes/metabolism
14.
J Plant Physiol ; 299: 154258, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38761672

ABSTRACT

Vacuoles account for 90% of plant cell volume and play important roles in maintaining osmotic pressure, storing metabolites and lysosomes, compartmentalizing harmful ions, and storing and reusing minerals. These functions closely relay on the ion channels and transporters located on the tonoplast. The separation of intact vacuoles from plant cells is the key technology utilized in the study of tonoplast-located ion channels and transporters. However, the current vacuole separation methods are available for Arabidopsis and some other dicotyledons but are lacking for monocot crops. In this study, we established a new method for the vacuole separation from wheat mesophyll cells and investigated the transmembrane proton flux of tonoplasts with non-invasive micro-test technology (NMT). Moreover, our study provides a technology for the study of vacuole functions in monocot crops.


Subject(s)
Mesophyll Cells , Triticum , Vacuoles , Triticum/metabolism , Vacuoles/metabolism , Mesophyll Cells/metabolism
15.
New Phytol ; 243(6): 2102-2114, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38634162

ABSTRACT

Mesophyll conductance (gm) is a crucial plant trait that can significantly limit photosynthesis. Measurement of photosynthetic C18O16O discrimination (Δ18O) has proved to be the only viable means of resolving gm in both C3 and C4 plants. However, the currently available methods to exploit Δ18O for gm estimation are error prone due to their inadequacy in constraining the degree of oxygen isotope exchange (θ) during mesophyll CO2 hydration. Here, we capitalized on experimental manipulation of leaf water isotopic dynamics to establish a novel, nonsteady state, regression-based approach for simultaneous determination of gm and θ from online Δ18O measurements. We demonstrated the methodological and theoretical robustness of this new Δ18O-gm estimation approach and showed through measurements on several C3 and C4 species that this approach can serve as a benchmark method against which to identify previously-unrecognized biases of the existing Δ18O-gm methods. Our results highlight the unique value of this nonsteady state-based approach for contributing to ongoing efforts toward quantitative understanding of mesophyll conductance for crop yield improvement and carbon cycle modeling.


Subject(s)
Mesophyll Cells , Oxygen Isotopes , Photosynthesis , Plant Leaves , Water , Mesophyll Cells/metabolism , Mesophyll Cells/physiology , Photosynthesis/physiology , Water/metabolism , Plant Leaves/physiology , Plant Leaves/metabolism , Regression Analysis , Carbon Dioxide/metabolism
16.
Curr Opin Plant Biol ; 79: 102542, 2024 06.
Article in English | MEDLINE | ID: mdl-38688201

ABSTRACT

As the main location of photosynthesis, leaf mesophyll cells are one of the most abundant and essential cell types on earth. Forming the bulk of the internal tissues of the leaf, their size, shape, and patterns of interconnectivity define the internal structure and surface area of the leaf, which in turn determines the efficiency of light capture and carbon fixation. Understanding how these cellular traits are controlled and translated into tissue- and organ-scale traits, and how they influence photosynthetic performance will be key to our ability to improve crop plants in the face of a changing climate. In contrast to the extensive literature on the anatomical and physiological aspects of mesophyll function, our understanding of the cell-level morphogenetic processes underpinning mesophyll cell growth and differentiation is scant. In this review, we focus on how cell division, expansion, and separation are coordinated to create the intricate architecture of the spongy mesophyll.


Subject(s)
Cell Division , Mesophyll Cells , Mesophyll Cells/metabolism , Plant Leaves/growth & development , Plant Leaves/anatomy & histology , Plant Leaves/cytology , Photosynthesis
17.
Plant Biotechnol J ; 22(9): 2504-2517, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38687118

ABSTRACT

Mesophyll conductance (gm) describes the ease with which CO2 passes from the sub-stomatal cavities of the leaf to the primary carboxylase of photosynthesis, Rubisco. Increasing gm is suggested as a means to engineer increases in photosynthesis by increasing [CO2] at Rubisco, inhibiting oxygenation and accelerating carboxylation. Here, tobacco was transgenically up-regulated with Arabidopsis Cotton Golgi-related 3 (CGR3), a gene controlling methylesterification of pectin, as a strategy to increase CO2 diffusion across the cell wall and thereby increase gm. Across three independent events in tobacco strongly expressing AtCGR3, mesophyll cell wall thickness was decreased by 7%-13%, wall porosity increased by 75% and gm measured by carbon isotope discrimination increased by 28%. Importantly, field-grown plants showed an average 8% increase in leaf photosynthetic CO2 uptake. Up-regulating CGR3 provides a new strategy for increasing gm in dicotyledonous crops, leading to higher CO2 assimilation and a potential means to sustainable crop yield improvement.


Subject(s)
Carbon Dioxide , Cell Wall , Mesophyll Cells , Nicotiana , Photosynthesis , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Carbon Dioxide/metabolism , Cell Wall/metabolism , Gene Expression Regulation, Plant , Mesophyll Cells/metabolism , Nicotiana/cytology , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/physiology , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Leaves/genetics , Plants, Genetically Modified , Porosity
18.
Plant Cell Environ ; 47(9): 3393-3410, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38488802

ABSTRACT

Understanding the short-term responses of mesophyll conductance (gm) and stomatal conductance (gsc) to environmental changes remains a challenging yet central aspect of plant physiology. This review synthesises our current knowledge of these short-term responses, which underpin CO2 diffusion within leaves. Recent methodological advances in measuring gm using online isotopic discrimination and chlorophyll fluorescence have improved our confidence in detecting short-term gm responses, but results need to be carefully evaluated. Environmental factors like vapour pressure deficit and CO2 concentration indirectly impact gm through gsc changes, highlighting some of the complex interactions between the two parameters. Evidence suggests that short-term responses of gm are not, or at least not fully, mechanistically linked to changes in gsc, cautioning against using gsc as a reliable proxy for gm. The overarching challenge lies in unravelling the mechanistic basis of short-term gm responses, which will contribute to the development of accurate models bridging laboratory insights with broader ecological implications. Addressing these gaps in understanding is crucial for refining predictions of gm behaviour under changing environmental conditions.


Subject(s)
Mesophyll Cells , Plant Stomata , Mesophyll Cells/physiology , Mesophyll Cells/metabolism , Plant Stomata/physiology , Carbon Dioxide/metabolism , Environment , Plant Leaves/physiology , Plant Leaves/metabolism , Plant Transpiration/physiology
19.
Plant Physiol Biochem ; 209: 108565, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38537380

ABSTRACT

Numerous studies have clarified the impacts of magnesium (Mg) on leaf photosynthesis from the perspectives of protein synthesis, enzymes activation and carbohydrate partitioning. However, it still remains largely unknown how stomatal and mesophyll conductances (gs and gm, respectively) are regulated by Mg. In the present study, leaf gas exchanges, leaf hydraulic parameters, leaf structural traits and cell wall composition were examined in rice plants grown under high and low Mg treatments to elucidate the impacts of Mg on gs and gm. Our results showed that reduction of leaf photosynthesis under Mg deficiency was mainly caused by the decreased gm, followed by reduced leaf biochemical capacity and gs, and leaf outside-xylem hydraulic conductance (Kox) was the major factor restricting gs under Mg deficiency. Moreover, increased leaf hemicellulose, lignin and pectin contents and decreased cell wall effective porosity were observed in low Mg plants relative to high Mg plants. These results suggest that Kox and cell wall composition play important roles in regulating gs and gm, respectively, in rice plants under Mg shortages.


Subject(s)
Magnesium Deficiency , Oryza , Oryza/metabolism , Plant Stomata/physiology , Water/metabolism , Plant Leaves/metabolism , Photosynthesis/physiology , Mesophyll Cells/metabolism , Carbon Dioxide/metabolism
20.
Funct Plant Biol ; 512024 02.
Article in English | MEDLINE | ID: mdl-38326232

ABSTRACT

Drought stress is increasing in frequency and severity with the progression of global climate change, thereby becoming a major concern for the growth and yield of crop plants, including wheat. The current challenge is to explore different ways of developing wheat genotypes with increased tolerance to drought. Therefore, we renewed interest in 'ancient' varieties expected to be more tolerant to environmental stress than the few elite varieties nowadays cultivated. This study aimed to perform comparative analysis of the effect of drought-simulating polyethylene glycol (PEG-6000) treatment on morpho-anatomical and physiological foliar traits of two durum wheat seedlings cultivars, Saragolla and Svevo, as these can reflect the adaptability of the plant to the environment to a certain extent. Results demonstrated that drought-stressed Saragolla leaves exhibited a greater reduction of stomatal density, a minor reduction of stomatal pore width, a wider xylem vessel mean area, greater compactness of mesophyll cells, a minor loss of chlorophyll content, as well as better photosynthetic and growth performance compared to the other variety. From such behaviours, we consider the Saragolla cultivar more drought tolerant than Svevo and therefore probably very promising for cultivation in dry areas.


Subject(s)
Droughts , Triticum , Triticum/genetics , Plant Leaves , Photosynthesis , Mesophyll Cells
SELECTION OF CITATIONS
SEARCH DETAIL