Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 754
1.
Biomed Mater ; 19(4)2024 May 28.
Article En | MEDLINE | ID: mdl-38740038

Bacterial infections pose a serious threat to human health, with emerging antibiotic resistance, necessitating the development of new antibacterial agents. Cu2+and Ag+are widely recognized antibacterial agents with a low propensity for inducing bacterial resistance; however, their considerable cytotoxicity constrains their clinical applications. Rare-earth ions, owing to their unique electronic layer structure, hold promise as promising alternatives. However, their antibacterial efficacy and biocompatibility relative to conventional antibacterial agents remain underexplored, and the variations in activity across different rare-earth ions remain unclear. Here, we systematically evaluate the antibacterial activity of five rare-earth ions (Yb3+, Gd3+, Sm3+, Tb3+, and La3+) againstStaphylococcus aureusandPseudomonas aeruginosa, benchmarked against well-established antibacterial agents (Cu2+, Ag+) and the antibiotic norfloxacin. Cytotoxicity is also assessed via live/dead staining of fibroblasts after 24 h rare-earth ion exposure. Our findings reveal that rare-earth ions require higher concentrations to match the antibacterial effects of traditional agents but offer the advantage of significantly lower cytotoxicity. In particular, Gd3+demonstrates potent bactericidal efficacy against both planktonic and biofilm bacteria, while maintaining the lowest cytotoxicity toward mammalian cells. Moreover, the tested rare-earth ions also exhibited excellent antifungal activity againstCandida albicans. This study provides a critical empirical framework to guide the selection of rare-earth ions for biomedical applications, offering a strategic direction for the development of novel antimicrobial agents.


Anti-Bacterial Agents , Biofilms , Ions , Metals, Rare Earth , Microbial Sensitivity Tests , Plankton , Pseudomonas aeruginosa , Metals, Rare Earth/chemistry , Metals, Rare Earth/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Plankton/drug effects , Pseudomonas aeruginosa/drug effects , Humans , Staphylococcus aureus/drug effects , Animals , Norfloxacin/pharmacology , Norfloxacin/chemistry
2.
Chemosphere ; 357: 142090, 2024 Jun.
Article En | MEDLINE | ID: mdl-38648983

The growing utilization of rare earth elements (REEs) in industrial and technological applications has captured global interest, leading to the development of high-performance technologies in medical diagnosis, agriculture, and other electronic industries. This accelerated utilization has also raised human exposure levels, resulting in both favourable and unfavourable impacts. However, the effects of REEs are dependent on their concentration and molecular species. Therefore, scientific interest has increased in investigating the molecular interactions of REEs with biomolecules. In this current review, particular attention was paid to the molecular mechanism of interactions of Lanthanum (La), Cerium (Ce), and Gadolinium (Gd) with biomolecules, and the biological consequences were broadly interpreted. The review involved gathering and evaluating a vast scientific collection which primarily focused on the impact associated with REEs, ranging from earlier reports to recent discoveries, including studies in human and animal models. Thus, understanding the molecular interactions of each element with biomolecules will be highly beneficial in elucidating the consequences of REEs accumulation in the living organisms.


Lanthanum , Metals, Rare Earth , Metals, Rare Earth/chemistry , Humans , Lanthanum/chemistry , Animals , Cerium/chemistry , Gadolinium/chemistry , Macromolecular Substances/chemistry
3.
ACS Appl Bio Mater ; 7(5): 3136-3142, 2024 May 20.
Article En | MEDLINE | ID: mdl-38668729

We present a luminescence study investigating the dissolution of rare-earth-doped hydroxyapatite scaffolds in simulated body fluid (SBF), aiming to assess the luminescence stability of Tb-, Ce-, and Eu-doped scaffolds over time. Our findings reveal a consistent decrease in luminescence emission intensity across all samples over a four-week period in which the scaffolds were immersed in the SBF. In addition, energy-dispersive spectroscopy confirms a decrease in rare-earth ion concentration in the scaffolds with respect to time, whereas fluorescence spectroscopy shows the presence of rare-earth ions in the SBF, indicating the partial dissolution of the scaffolds over time. The use of rare-earth ions as luminescence markers provides insights into the mechanisms of apatite formation in hydroxyapatites. Thus, these scaffolds may find wider use in regenerative medicine, particularly in targeted drug delivery systems, where their luminescent properties have the potential to noninvasively track drug release.


Biocompatible Materials , Body Fluids , Durapatite , Materials Testing , Particle Size , Durapatite/chemistry , Body Fluids/chemistry , Biocompatible Materials/chemistry , Luminescence , Tissue Scaffolds/chemistry , Metals, Rare Earth/chemistry
4.
Dalton Trans ; 53(19): 8429-8442, 2024 May 14.
Article En | MEDLINE | ID: mdl-38686445

Recently, layered rare-earth hydroxides (LRHs) have received growing attention in the field of theranostics. We have previously reported the hydrothermal synthesis of layered terbium hydroxide (LTbH), which exhibited high biocompatibility, reversible uptake of a range of model drugs, and release-sensitive phosphorescence. Despite these favourable properties, LTbH particles produced by the reported method suffered from poor size-uniformity (670 ± 564 nm), and are thus not suitable for therapeutic applications. To ameliorate this issue, we first derive an optimised hydrothermal synthesis method to generate LTbH particles with a high degree of homogeneity and reproducibility, within a size range appropriate for in vivo applications (152 ± 59 nm, n = 6). Subsequently, we apply this optimised method to synthesise a selected range of LRH materials (R = Pr, Nd, Gd, Dy, Er, Yb), four of which produced particles with an average size under 200 nm (Pr, Nd, Gd, and Dy) without the need for further optimisation. Finally, we incorporate Gd and Tb into LRHs in varying molar ratios (1 : 3, 1 : 1, and 3 : 1) and assess the combined magnetic relaxivity and phosphorescence properties of the resultant LRH materials. The lead formulation, LGd1.41Tb0.59H, was demonstrated to significantly shorten the T2 relaxation time of water (r2 = 52.06 mM-1 s-1), in addition to exhibiting a strong phosphorescence signal (over twice that of the other LRH formulations, including previously reported LTbH), therefore holding great promise as a potential multi-modal medical imaging probe.


Hydroxides , Metals, Rare Earth , Particle Size , Hydroxides/chemistry , Metals, Rare Earth/chemistry , Magnetic Resonance Imaging , Multimodal Imaging , Humans
5.
Environ Sci Pollut Res Int ; 31(20): 28856-28869, 2024 Apr.
Article En | MEDLINE | ID: mdl-38564133

This study investigates the impact of three key variables on the performance of nanoporous AM-3 and layered AM-4 titanosilicates in removing nine REEs (Y, La, Ce, Pr, Nd, Eu, Gd, Tb, and Dy) from natural mineral water and identifies optimal operational conditions using Response Surface Methodology (RSM). The experimental conditions were determined by a Box-Behnken Design of 3 factors-3 levels (pH 4, 6, and 8; sorbent dose 20, 100, and 180 mg/L; and element concentration 1, 3, and 5 µmol/L). Three-dimensional response surfaces were used to assess the linear, quadratic, and interaction influences of each factor on the REEs' removal percentage. The pH was the most significant factor in the removal process using AM-3, while the sorbent dose was more important for AM-4. The results highlighted the sorbents' strong capacity for REE removal. The optimal operating conditions obtained by RSM were applied to aqueous solutions with salinity 10 (common in coastal and transitional systems) and 30 (average seawater salinity). The results showed that AM-3 has a strong potential for removing REEs in solutions with salinity 10 and 30, while AM-4 was less efficient due to competition between REEs and other ions present in the solution.


Metals, Rare Earth , Water Pollutants, Chemical , Metals, Rare Earth/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Water Purification/methods
6.
Chemosphere ; 356: 141897, 2024 May.
Article En | MEDLINE | ID: mdl-38582156

Global water pollution and scarcity of water resources are turning increasingly into serious threats to the survival of all living organisms on Earth. This study offers an influent strategy for the electrosynthesis of reduced graphene oxide/polyaniline/ß-cyclodextrin (rGO/PAni/ßCD) nanocomposite and its application to the removal/recovery of heavy elements (HEs) and rare-earth elements (REEs). Besides physicochemical and electrochemical studies, the surface morphological and statistical properties of fabricated nanocomposite electrode were examined. The textural and morphological characteristics of nanocomposite electrode were investigated via AFM data based on statistical, stereometric, and fractal theory. The cohesive, porous, and well-developed morphology of fabricated nanocomposite electrode has enabled the electrodeposition technique to achieve significant simultaneous removal/recovery efficiency of HE and REE ions such as Pb(II), Cu(II), Cd(II), Hg(II), Ce(IV), and Nb(V). Therefore, using rGO/PAni/ßCD, considerable removal of HEs and REEs was achieved under optimized pH, 0.1 M KNO3, and 35 mg L-1 metal ion initial concentration during 20 min. Removal capacity of the nanocomposite electrode is preserved subsequent to 10 cycles of electrodeposition/desorption, according to the desorption investigation through eluted adsorbent at time intervals in deionized water and adjusted acidic pH values. Then, using rGO/PAni/CD nanocomposite, simulated seawater remediation was accomplished successfully. This interdisciplinary approach reveals that the removal/recovery efficiency enhance linearly along with the improvement of well-developed morphology for electrosynthesized composites. Thus, these results suggest how the morphological features of the polymer composites could improve remediation of water resources.


Aniline Compounds , Electrodes , Gold , Graphite , Metals, Rare Earth , Nanocomposites , Seawater , Water Pollutants, Chemical , beta-Cyclodextrins , Aniline Compounds/chemistry , Graphite/chemistry , beta-Cyclodextrins/chemistry , Seawater/chemistry , Water Pollutants, Chemical/chemistry , Nanocomposites/chemistry , Gold/chemistry , Metals, Rare Earth/chemistry , Metals, Heavy/chemistry , Adsorption
7.
Environ Sci Technol ; 58(16): 7217-7227, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38588505

The energy transition will have significant mineral demands and there is growing interest in recovering critical metals, including rare earth elements (REE), from secondary sources in aqueous and sedimentary environments. However, the role of clays in REE transport and deposition in these settings remains understudied. This work investigated REE adsorption to the clay minerals illite and kaolinite through pH adsorption experiments and extended X-ray absorption fine structure (EXAFS). Clay type, pH, and ionic strength (IS) affected adsorption, with decreased adsorption under acidic pH and elevated IS. Illite had a higher adsorption capacity than kaolinite; however, >95% adsorption was achieved at pH ∼7.5 regardless of IS or clay. These results were used to develop a surface complexation model with the derived binding constants used to predict REE speciation in the presence of competing sorbents. This demonstrated that clays become increasingly important as pH increases, and EXAFS modeling showed that REE can exist as both inner- and outer-sphere complexes. Together, this indicated that clays can be an important control on the transport and enrichment of REE in sedimentary systems. These findings can be applied to identify settings to target for resource extraction or to predict REE transport and fate as a contaminant.


Clay , Metals, Rare Earth , Minerals , Adsorption , Metals, Rare Earth/chemistry , Clay/chemistry , Minerals/chemistry , Hydrogen-Ion Concentration , Aluminum Silicates/chemistry
8.
Plant Physiol Biochem ; 208: 108519, 2024 Mar.
Article En | MEDLINE | ID: mdl-38490154

Rare earth elements (REE) have been extensively used in a variety of applications such as cell phones, electric vehicles, and lasers. REEs are also used as nanomaterials (NMs), which have distinctive features that make them suitable candidates for biomedical applications. In this review, we have highlighted the role of rare earth element nanomaterials (REE-NMs) in the growth of plants and physiology, including seed sprouting rate, shoot biomass, root biomass, and photosynthetic parameters. In addition, we discuss the role of REE-NMs in the biochemical and molecular responses of plants. Crucially, REE-NMs influence the primary metabolites of plants, namely sugars, amino acids, lipids, vitamins, enzymes, polyols, sorbitol, and mannitol, and secondary metabolites, like terpenoids, alkaloids, phenolics, and sulfur-containing compounds. Despite their protective effects, elevated concentrations of NMs are reported to induce toxicity and affect plant growth when compared with lower concentrations, and they not only induce toxicity in plants but also affect soil microbes, aquatic organisms, and humans via the food chain. Overall, we are still at an early stage of understanding the role of REE in plant physiology and growth, and it is essential to examine the interaction of nanoparticles with plant metabolites and their impact on the expression of plant genes and signaling networks.


Metals, Rare Earth , Nanostructures , Resilience, Psychological , Humans , Metals, Rare Earth/analysis , Metals, Rare Earth/chemistry , Metals, Rare Earth/metabolism , Plants/metabolism , Plant Development , Soil/chemistry
9.
ACS Appl Mater Interfaces ; 16(13): 16912-16926, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38527460

Bioinspired strategies have been given extensive attention for the recovery of rare earth elements (REEs) from waste streams because of their high selectivity, regeneration potential, and sustainability as well as low cost. Lanmodulin protein is an emerging biotechnology that is highly selective for REE binding. Mimicking lanmodulin with shorter peptides is advantageous because they are simpler and potentially easier to manipulate and optimize. Lanmodulin-derived peptides have been found to bind REEs, but their properties have not been explored when immobilized on solid substrates, which is required for many advanced separation technologies. Here, two peptides, LanM1 and scrambled LanM1, are designed from the EF-hand loop 1 of lanmodulin and investigated for their binding affinity toward different REEs when surface-bound. First, the ability of LanM1 to bind REEs was confirmed and characterized in solution using circular dichroism (CD), nuclear magnetic resonance (NMR), and molecular dynamics (MD) simulations for Ce(III) ions. Isothermal titration calorimetry (ITC) was used to further analyze the binding of the LanM1 to Ce(III), Nd(III), Eu(III), and Y(III) ions and in low-pH conditions. The performance of the immobilized peptides on a model gold surface was examined using a quartz crystal microbalance with dissipation (QCM-D). The studies show that the LanM1 peptide has a stronger REE binding affinity than that of scrambled LanM1 when in solution and when immobilized on a gold surface. QCM-D data were fit to the Langmuir adsorption model to estimate the surface-bound dissociation constant (Kd) of LanM1 with Ce(III) and Nd(III). The results indicate that LanM1 peptides maintain a high affinity for REEs when immobilized, and surface-bound LanM1 has no affinity for potential competitor calcium and copper ions. The utility of surface-bound LanM1 peptides was further demonstrated by immobilizing them to gold nanoparticles (GNPs) and capturing REEs from solution in experiments utilizing an Arsenazo III-based colorimetric dye displacement assay and ultraviolet-visible (UV-vis) spectrophotometry. The saturated adsorption capacity of GNPs was estimated to be around 3.5 µmol REE/g for Ce(III), Nd(III), Eu(III), and Y(III) ions, with no binding of non-REE Ca(II) ions observed.


Metal Nanoparticles , Metals, Rare Earth , Gold , Metals, Rare Earth/chemistry , Peptides , Ions
10.
Dalton Trans ; 53(9): 4204-4213, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38323916

Marbofloxacin (MB) is a newly developed fluoroquinolone antibiotic used especially as a veterinary drug. It may be regarded as the improved version of enrofloxacin owing to its antibacterial activity, enhanced bioavailability, and pharmacokinetic-pharmacodynamic (PK-PD) properties. In this study, nine heavy rare-earth ions (Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) were selected in light of their potential antibacterial activity and satisfactory biosafety to afford the corresponding rare-earth metal complexes of MB: the MB-Ln series. Their chemical structures and coordination patterns were characterized using IR spectroscopy, HRMS, TGA, and X-ray single-crystal diffraction analysis. Our results confirmed that all the MB-Ln complexes yielded the coincident coordination modes with four MB ligands coordinating to the Ln(III) center. In vitro antibacterial screening on five typical bacteria strains revealed that the MB-Ln complexes exhibited antibacterial activities comparable with MB, as indicated by the MIC/MBC values, in which Escherichia coli and Salmonella typhi were the most sensitive ones to MB-Ln. Furthermore, the MB-Ln complexes were found to be much less toxic in vivo than MB, as suggested by the evaluated LD50 (50% lethal dose) values. All the MB-Ln series complexes fell in the LD50 range of 5000-15 000 mg kg-1, while the LD50 value of MB was only 1294 mg kg-1. Furthermore, MB-Lu, as the selected representative of MB-Ln, could effectively inhibit the activity of DNA gyrase, the same as MB, suggesting the primary antibacterial mechanism of the MB-Ln series. The results demonstrated the good prospects and potential of metal-based veterinary drugs with better drug performance.


Metals, Rare Earth , Veterinary Drugs , Molecular Structure , Metals, Rare Earth/pharmacology , Metals, Rare Earth/chemistry , Fluoroquinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Ions/chemistry
11.
J Mater Chem B ; 12(8): 1947-1972, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38299679

Second near-infrared (NIR-II) fluorescence imaging (FLI) has gained widespread interest in the biomedical field because of its advantages of high sensitivity and high penetration depth. In particular, rare earth-doped nanoprobes (RENPs) have shown completely different physical and chemical properties from macroscopic substances owing to their unique size and structure. This paper reviews the synthesis methods and types of RENPs for NIR-II imaging, focusing on new methods to enhance the luminous intensity of RENPs and multi-band imaging and multi-mode imaging of RENPs in biological applications. This review also presents an overview of the challenges and future development prospects based on RENPs in NIR-II regional bioimaging.


Metals, Rare Earth , Metals, Rare Earth/chemistry , Optical Imaging/methods , Fluorescent Dyes/chemistry
12.
Water Res ; 252: 121184, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38377699

Singlet oxygen (1O2) is extensively employed in the fields of chemical, biomedical and environmental. However, it is still a challenge to produce high- concentration 1O2 by dioxygen activation. Herein, a system of carbon-supported rare-earth oxide nanocluster and single atom catalysts (named as RE2O3/RE-C, RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y) with similar morphology, structure, and physicochemical characteristic are constructed to activate dissolved oxygen (DO) to enhance 1O2 production. The catalytic activity trends and mechanisms are revealed experimentally and are also proven by theoretical analyses and calculations. The 1O2 generation activity trend is Gd2O3/Gd-C>Er2O3/Er-C>Sm2O3/Sm-C>pristine carbon (C). More than 95.0% of common antibiotics (ciprofloxacin, ofloxacin, norfloxacin and carbamazepine) can be removed in 60 min by Gd2O3/Gd-C. Density functional theory calculations indicate that Gd2O3 nanoclusters and Gd single atoms exhibit the moderate adsorption energy of ·O2- to enhance 1O2 production. This study offers a universal strategy to enhance 1O2 production in dioxygen activation for future application and reveals the natural essence of basic mechanisms of 1O2 production via rare-earth oxide nanoclusters and rare-earth single atoms.


Metals, Rare Earth , Singlet Oxygen , Oxides/chemistry , Oxygen , Anti-Bacterial Agents , Metals, Rare Earth/analysis , Metals, Rare Earth/chemistry
13.
ACS Biomater Sci Eng ; 10(2): 1128-1138, 2024 Feb 12.
Article En | MEDLINE | ID: mdl-38221709

The physiological state of the human body can be indicated by analyzing the composition of sweat. In this research, a fluorescence-recovered wearable hydrogel patch has been designed and realized which can noninvasively monitor the glucose concentration in human sweat. Rare-earth nanoparticles (RENPs) of NaGdF4 doped with different elements (Yb, Er, and Ce) are synthesized and optimized for better luminescence in the near-infrared second (NIR-II) and visible region. In addition, RENPs are coated with CoOOH of which the absorbance has an extensive peak in the visible and NIR regions. The concentration of H2O2 in the environment can be detected by the fluorescence recovery degree of CoOOH-modified RENPs based on the fluorescence resonance energy transfer effect. For in vivo detection, the physiological state of oxidative stress at tumor sites can be visualized through its fluorescence in NIR-II with low background noise and high penetration depth. For the in vitro detection, CoOOH-modified RENP and glucose oxidase (GOx) were doped into a polyacrylamide hydrogel, and a patch that can emit green upconversion fluorescence under a 980 nm laser was prepared. Compared with the conventional electrochemical detection method, the fluorescence we presented has higher sensitivity and linear detection region to detect the glucose. This improved anti-interference sweat patch that can work in the dark environment was obtained, and the physiological state of the human body is conveniently monitored, which provides a new facile and convenient method to monitor the sweat status.


Cobalt , Metals, Rare Earth , Nanoparticles , Oxides , Wearable Electronic Devices , Humans , Fluorescence , Glucose , Hydrogels , Hydrogen Peroxide , Metals, Rare Earth/chemistry , Nanoparticles/chemistry
14.
Luminescence ; 39(1): e4591, 2024 Jan.
Article En | MEDLINE | ID: mdl-37675627

Cerium has been widely used as a dopant in luminescent materials due to its unique electronic configurations. It is generally anticipated that the luminescence properties of rare-earth-doped materials are closely related to the local environment of activators, especially for Ce3+ . In addition, it is convenient to modulate its emission wavelength by adjusting the composition and structure. In this study, we systematically analyzed the microstructure of the Ce-doped CaYAlO4 system at atomic resolution. The quantitive results indicated that the structure distortion greatly influenced the valence state of the Ce dopant, which is critical to its luminescence efficiency. In addition, valence variations also exist from surface to inner structure due to the big distortion area around the surface. Our results unravel the interplay of local structure and valence transitions in Ce-doped aluminate phosphors, which has the potential to be applied in other luminescent materials.


Cerium , Luminescent Agents , Metals, Rare Earth , Luminescence , Luminescent Agents/chemistry , Metals, Rare Earth/chemistry , Cerium/chemistry
15.
Luminescence ; 39(1): e4612, 2024 Jan.
Article En | MEDLINE | ID: mdl-37927204

Red and green rare-earth ion (RE3+ ) (RE = Eu, Tb):MgLa2 V2 O9 micro-powder phosphors were produced utilizing a standard solid-state chemical process. The X-ray diffraction examination performed on the phosphors showed that they were crystalline and had a monoclinic structure. The particles grouped together, as shown in the scanning electron microscopy (SEM) images. Powder phosphors were examined using a variety of spectroscopic techniques, including photoluminescence (PL), Fourier-transform infrared, and energy dispersive X-ray spectroscopy. Brilliant red emission at 615 nm (5 D0  â†’ 7 F2 ) having an excitation wavelength (λexci ) of 396 nm (7 F0  â†’ 5 L6 ) and green emission at 545 nm (5 D4  â†’ 7 F5 ) having an λexci  = 316 nm (5 D4  â†’ 7 F2 ) have both been seen in the emission spectra of Tb3+ :MgLa2 V2 O9 nano-phosphors. The emission mechanism that is raised in Eu3+ :MgLa2 V2 O9 and Tb3+ :MgLa2 V2 O9 powder phosphors has been explained in an energy level diagram.


Luminescent Agents , Metals, Rare Earth , Luminescent Agents/chemistry , Powders , Metals, Rare Earth/chemistry , Microscopy, Electron, Scanning , Spectrometry, X-Ray Emission
16.
Bioorg Chem ; 143: 107040, 2024 Feb.
Article En | MEDLINE | ID: mdl-38141331

Rare earth elements (REEs) are a group of critical minerals and extensively employed in new material manufacturing. However, separation of lanthanides is difficult because of their similar chemical natures. Current lanthanide leaching and separation methods require hazardous compounds, resulting in severe environmental concerns. Bioprocessing of lanthanides offers an emerging class of tools for REE separation due to mild leaching conditions and highly selective separation scenarios. In the course of biopreparation, engineered microbes not only dissolve REEs from ores but also allow for selective separation of the lanthanides. In this review, we present an overview of recent advances in microbes and proteins used for the biomanufacturing of lanthanides and discuss high value-added applications of REE-derived biomaterials. We begin by introducing the fundamental interactions between natural microbes and REEs. Then we discuss the rational design of chassis microbes for bioleaching and biosorption. We also highlight the investigations on REE binding proteins and their applications in the synthesis of high value-added biomaterials. Finally, future opportunities and challenges for the development of next generation lanthanide-binding biological systems are discussed.


Lanthanoid Series Elements , Metals, Rare Earth , Metals, Rare Earth/chemistry
17.
Int J Mol Sci ; 24(23)2023 Dec 03.
Article En | MEDLINE | ID: mdl-38069403

A specialized empirical (Spec-zd Emp) system of ionic radii (SIR) for R = Y3+, La3+, Ln3+, and F1- (R rare earth elements (REE)) was derived from the dependence of lanthanide contraction (LC) on the atomic number (Z) of lanthanides (Ln). LC decreased the radius of the cation with increasing Z. The structures of t-RF3 (LaF3-NdF3, "pseudot-SmF3") of the LaF3 type, 11 ß-LnF3 (Ln = Sm-Lu), and ß-YF3 of the ß-YF3 type were studied. The empirical basis of the shortest (F-F)min and (R-F)min distances was calculated from the structural data for the RF3 complete series. The dependence of (F-F)min on Z reached saturation at Z = 67 (Ho). The base F1- radius r- = 1.2539(16) Å was calculated as the arithmetic mean of five (F-F)min in LnF3 with Ln = Ho-Lu. For the LnF3 series with Ln contributions up to 75 % wt., the dependence of (Ln-F)min on Z reflected the non-uniformity of the 4f orbital filling. SIR was calculated as the difference in the empirical constants of RF3 (ionic radii of (R,Ln)3+ (r+) and F1- (r-)), the change in which was continuous over the series and did not depend on the type of structure: r+ = (ZR-F)min - ½(F-F)min (Z = 57-71). The changes in LC in the LnF3 series were described by a third-degree polynomial. LC reduced r+ by 24% (percentage relative to less) from 1.1671(16) Å (La3+) to 0.9439(17) Å (Lu3+). In the Spec-zd Emp SIR, r+ were constants that did not require corrections for a coordination number (CN). A comparison of r+ in the Spec-zd Emp SIR with other SIRs was performed.


Lanthanoid Series Elements , Metals, Rare Earth , Lanthanoid Series Elements/chemistry , Radius , Metals, Rare Earth/chemistry , Ions
18.
Nano Lett ; 23(23): 11203-11210, 2023 Dec 13.
Article En | MEDLINE | ID: mdl-38088357

Intravital luminescence imaging in the second near-infrared window (NIR-II) enables noninvasive deep-tissue imaging with high spatiotemporal resolution of live mammals because of the properties of suppressed light scattering and diminished autofluorescence in the long-wavelength region. Herein, we present the synthesis of a downconversion luminescence rare-earth nanocrystal with a core-shell-shell structure (NaYF4@NaYbF4:Er,Ce@NaYF4:Ca). The structure efficiently maximized the doping concentration of the sensitizers and increased Er3+ luminescence while preventing cross relaxation. Furthermore, Ce3+ doping in the middle layer efficiently limited the upconversion pathway and increased downconversion by 24-fold to produce bright 1550 nm luminescence under 975 nm excitation. Finally, optimizing the inert shell coating of NaYF4:Ca and liposome encapsulation reduced the luminescence quenching impact by water and improved biological metabolism. Thus, our synthesized biocompatible, ultrabright NIR-II probes provide high contrast and resolution for through-scalp and through-skull luminescence imaging of mice cerebral vasculature without craniotomy as well as imaging of mouse hindlimb microvessels.


Metals, Rare Earth , Nanoparticles , Mice , Animals , Metals, Rare Earth/chemistry , Diagnostic Imaging/methods , Nanoparticles/chemistry , Luminescence , Mammals
19.
Angew Chem Int Ed Engl ; 62(50): e202312665, 2023 12 11.
Article En | MEDLINE | ID: mdl-37903741

Aberrant expressions of biomolecules occur much earlier than tumor visualized size and morphology change, but their common measurement strategies such as biopsy suffer from invasive sampling process. In vivo imaging of slight biomolecule expression difference is urgently needed for early cancer detection. Fluorescence of rare earth nanoparticles (RENPs) in second near-infrared (NIR-II) region makes them appropriate tool for in vivo imaging. However, the incapacity to couple with signal amplification strategies, especially programmable signal amplification strategies, limited their application in lowly expressed biomarkers imaging. Here we develop a 980/808 nm NIR programmed in vivo microRNAs (miRNAs) magnifier by conjugating activatable DNAzyme walker set to RENPs, which achieves more effective NIR-II imaging of early stage tumor than size monitoring imaging technique. Dye FD1080 (FD1080) modified substrate DNA quenches NIR-II downconversion emission of RENPs under 808 nm excitation. The miRNA recognition region in DNAzyme walker is sealed by a photo-cleavable strand to avoid "false positive" signal in systemic circulation. Upconversion emission of RENPs under 980 nm irradiation activates DNAzyme walker for miRNA recognition and amplifies NIR-II fluorescence recovery of RENPs via DNAzyme catalytic reaction to achieve in vivo miRNA imaging. This strategy demonstrates good application potential in the field of early cancer detection.


DNA, Catalytic , Metals, Rare Earth , MicroRNAs , Neoplasms , Humans , Metals, Rare Earth/chemistry , Neoplasms/diagnostic imaging , Neoplasms/pathology , Spectroscopy, Near-Infrared/methods
20.
Luminescence ; 38(12): 2034-2047, 2023 Dec.
Article En | MEDLINE | ID: mdl-37675584

In this article, photoluminescence (PL) and thermoluminescence (TL) properties of ZrO2 , ZrO2 :Dy3+ , ZrO2 :Dy3+ -Gd3+ , ZrO2 :Dy3+ -Yb3+ , ZrO2 :Dy3+ -Er3+ , and ZrO2 :Dy3+ -Sm3+ phosphors synthesized by the Pechini method were investigated. The crystal structure, thermal properties, morphology, PL and TL properties were investigated using X-ray powder diffraction (XRD), differential thermal analysis/thermogravimetric analysis (DTA/TGA), scanning electron microscopy (SEM), PL and TL, respectively. The room temperature emission bands corresponding to 4 F9/2  â†’ 6 HJ (J = 9/2, 11/2, 13/2 and 15/2) transitions of Dy3+ ions were measured. The phosphors were analysed using Tm -TSTOP , variable dose, and computerized glow curve fitting methods. Reusability, dose-response, and fading characteristics were investigated. The phosphors have a natural TL emission that vanished by heating treatment. Moreover, new peaks with similar properties to the natural emissions were observed after high-dose irradiation and long-term fading experiments. The glow curves of the phosphors have 13 individual peaks and many low- and high-temperature satellite peaks. The origin of the peaks is ZrO2 host material and doping with rare-earth ions (Gd3+ , Dy3+ , Yb3+ , Er3+ and Sm3+ ) does not lead to a new glow peak. The dopants cause drastic changes in individual peak intensities of ZrO2 .The initial fading rates of all the phosphors are relatively fast, but they slow down as time goes on.


Luminescence , Metals, Rare Earth , Metals, Rare Earth/chemistry , X-Ray Diffraction , Microscopy, Electron, Scanning , Ions
...