Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Article in English | MEDLINE | ID: mdl-38658197

ABSTRACT

The dihydrogen (H2) sector is undergoing development and will require massive storage solutions. To minimize costs, the conversion of underground geological storage sites, such as deep aquifers, used for natural gas storage into future underground hydrogen storage sites is the favored scenario. However, these sites contain microorganisms capable of consuming H2, mainly sulfate reducers and methanogens. Methanogenesis is, therefore expected but its intensity must be evaluated. Here, in a deep aquifer used for underground geological storage, 17 sites were sampled, with low sulfate concentrations ranging from 21.9 to 197.8 µM and a slow renewal of formation water. H2-selected communities mainly were composed of the families Methanobacteriaceae and Methanothermobacteriaceae and the genera Desulfovibrio, Thermodesulfovibrio, and Desulforamulus. Experiments were done under different conditions, and sulfate reduction, as well as methanogenesis, were demonstrated in the presence of a H2 or H2/CO2 (80/20) gas phase, with or without calcite/site rock. These metabolisms led to an increase in pH up to 10.2 under certain conditions (without CO2). The results suggest competition for CO2 between lithoautotrophs and carbonate mineral precipitation, which could limit microbial H2 consumption.


Subject(s)
Groundwater , Hydrogen , Methane , Natural Gas , Methane/metabolism , Groundwater/microbiology , Hydrogen/metabolism , Sulfates/metabolism , Methanobacteriaceae/metabolism , Methanobacteriaceae/genetics , Methanobacteriaceae/growth & development , Carbon Dioxide/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Hydrogen-Ion Concentration , Water Microbiology
2.
Appl Environ Microbiol ; 90(5): e0026824, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38619268

ABSTRACT

A new variant of Methanothermobacter wolfeii was isolated from an anaerobic digester using enrichment cultivation in anaerobic conditions. The new isolate was taxonomically identified via 16S rRNA gene sequencing and tagged as M. wolfeii BSEL. The whole genome of the new variant was sequenced and de novo assembled. Genomic variations between the BSEL strain and the type strain were discovered, suggesting evolutionary adaptations of the BSEL strain that conferred advantages while growing under a low concentration of nutrients. M. wolfeii BSEL displayed the highest specific growth rate ever reported for the wolfeii species (0.27 ± 0.03 h-1) using carbon dioxide (CO2) as unique carbon source and hydrogen (H2) as electron donor. M. wolfeii BSEL grew at this rate in an environment with ammonium (NH4+) as sole nitrogen source. The minerals content required to cultivate the BSEL strain was relatively low and resembled the ionic background of tap water without mineral supplements. Optimum growth rate for the new isolate was observed at 64°C and pH 8.3. In this work, it was shown that wastewater from a wastewater treatment facility can be used as a low-cost alternative medium to cultivate M. wolfeii BSEL. Continuous gas fermentation fed with a synthetic biogas mimic along with H2 in a bubble column bioreactor using M. wolfeii BSEL as biocatalyst resulted in a CO2 conversion efficiency of 97% and a final methane (CH4) titer of 98.5%v, demonstrating the ability of the new strain for upgrading biogas to renewable natural gas.IMPORTANCEAs a methanogenic archaeon, Methanothermobacter wolfeii uses CO2 as electron acceptor, producing CH4 as final product. The metabolism of M. wolfeii can be harnessed to capture CO2 from industrial emissions, besides producing a drop-in renewable biofuel to substitute fossil natural gas. If used as biocatalyst in new-generation CO2 sequestration processes, M. wolfeii has the potential to accelerate the decarbonization of the energy generation sector, which is the biggest contributor of CO2 emissions worldwide. Nonetheless, the development of CO2 sequestration archaeal-based biotechnology is still limited by an uncertainty in the requirements to cultivate methanogenic archaea and the unknown longevity of archaeal cultures. In this study, we report the adaptation, isolation, and phenotypic characterization of a novel variant of M. wolfeii, which is capable of maximum growth with minimal nutrients input. Our findings demonstrate the potential of this variant for the production of renewable natural gas, paving the way for the development of more efficient and sustainable CO2 sequestration processes.


Subject(s)
Carbon Dioxide , Methanobacteriaceae , Methanobacteriaceae/genetics , Methanobacteriaceae/metabolism , Methanobacteriaceae/growth & development , Carbon Dioxide/metabolism , RNA, Ribosomal, 16S/genetics , Genome, Archaeal , Phylogeny , Phenotype , Wastewater/microbiology , Methane/metabolism , Nutrients/metabolism
3.
Microbiol Spectr ; 12(2): e0514122, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38189277

ABSTRACT

Methanosphaera stadtmanae was the sole Methanosphaera representative to be cultured and detected by molecular methods in the human gut microbiota, further associated with digestive and respiratory diseases, leaving unknown the actual diversity of human-associated Methanosphaera species. Here, a novel Methanosphaera species, Candidatus Methanosphaera massiliense (Ca. M. massiliense) sp. nov. was isolated by culture using a hydrogen- and carbon dioxide-free medium from one human feces sample. Ca. M. massiliense is a non-motile, 850 nm Gram-positive coccus autofluorescent at 420 nm. Whole-genome sequencing yielded a 29.7% GC content, gapless 1,785,773 bp genome sequence with an 84.5% coding ratio, encoding for alcohol and aldehyde dehydrogenases promoting the growth of Ca. M. massiliense without hydrogen. Screening additional mammal and human feces using a specific genome sequence-derived DNA-polymerase RT-PCR system yielded a prevalence of 22% in pigs, 12% in red kangaroos, and no detection in 149 other human samples. This study, extending the diversity of Methanosphaera in human microbiota, questions the zoonotic sources of Ca. M. massiliense and possible transfer between hosts.IMPORTANCEMethanogens are constant inhabitants in the human gut microbiota in which Methanosphaera stadtmanae was the only cultivated Methanosphaera representative. We grew Candidatus Methanosphaera massiliense sp. nov. from one human feces sample in a novel culture medium under a nitrogen atmosphere. Systematic research for methanogens in human and animal fecal samples detected Ca. M. massiliense in pig and red kangaroo feces, raising the possibility of its zoonotic acquisition. Host specificity, source of acquisition, and adaptation of methanogens should be further investigated.


Subject(s)
Macropodidae , Methanobacteriaceae , Humans , Animals , Swine , Macropodidae/genetics , Methanobacteriaceae/genetics , Methane , Feces , Hydrogen , Ethanol , Phylogeny , RNA, Ribosomal, 16S/genetics
4.
Appl Environ Microbiol ; 89(7): e0057523, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37310347

ABSTRACT

This study is a continuation by the Environmental Biotechnology Group of the University of Tübingen in memoriam to Reinhard Wirth, who initiated the work on Mth60 fimbriae at the University of Regensburg. Growth in biofilms or biofilm-like structures is the prevailing lifestyle for most microbes in nature. The first crucial step to initiate biofilms is the adherence of microbes to biotic and abiotic surfaces. Therefore, it is crucial to elucidate the initial step of biofilm formation, which is generally established through cell-surface structures (i.e., cell appendages), such as fimbriae or pili, that adhere to biotic and abiotic surfaces. The Mth60 fimbriae of Methanothermobacter thermautotrophicus ΔH are one of only a few known archaeal cell appendages that do not assemble via the type IV pili assembly mechanism. Here, we report the constitutive expression of Mth60 fimbria-encoding genes from a shuttle-vector construct and the deletion of the Mth60 fimbria-encoding genes from the genomic DNA of M. thermautotrophicus ΔH. For this, we expanded our system for genetic modification of M. thermautotrophicus ΔH using an allelic-exchange method. While overexpression of the respective genes increased the number of Mth60 fimbriae, deletion of the Mth60 fimbria-encoding genes led to a loss of Mth60 fimbriae in planktonic cells of M. thermautotrophicus ΔH compared to the wild-type strain. This, either increased or decreased, number of Mth60 fimbriae correlated with a significant increase or decrease of biotic cell-cell connections in the respective M. thermautotrophicus ΔH strains compared to the wild-type strain. IMPORTANCE Methanothermobacter spp. have been studied for the biochemistry of hydrogenotrophic methanogenesis for many years. However, a detailed investigation of certain aspects, such as regulatory processes, was impossible due to the lack of genetic tools. Here, we amend our genetic toolbox for M. thermautotrophicus ΔH with an allelic exchange method. We report the deletion of genes that encode the Mth60 fimbriae. Our findings provide the first genetic evidence of whether the expression of these genes underlies regulation and reveal a role of the Mth60 fimbriae in the formation of cell-cell connections of M. thermautotrophicus ΔH.


Subject(s)
Biofilms , Fimbriae, Bacterial , Fimbriae, Bacterial/genetics , Methanobacteriaceae/genetics , Methanobacteriaceae/metabolism
5.
J Microbiol ; 61(4): 411-421, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37071293

ABSTRACT

Toxin-antitoxin (TA) systems are widespread in bacteria and archaea plasmids and genomes to regulate DNA replication, gene transcription, or protein translation. Higher eukaryotic and prokaryotic nucleotide-binding (HEPN) and minimal nucleotidyltransferase (MNT) domains are prevalent in prokaryotic genomes and constitute TA pairs. However, three gene pairs (MTH304/305, 408/409, and 463/464) of Methanothermobacter thermautotropicus ΔH HEPN-MNT family have not been studied as TA systems. Among these candidates, our study characterizes the MTH463/MTH464 TA system. MTH463 expression inhibited Escherichia coli growth, whereas MTH464 did not and blocked MTH463 instead. Using site-directed MTH463 mutagenesis, we determined that amino acids R99G, H104A, and Y106A from the R[ɸX]4-6H motif are involved with MTH463 cell toxicity. Furthermore, we established that purified MTH463 could degrade MS2 phage RNA, whereas purified MTH464 neutralized MTH463 activity in vitro. Our results indicate that the endonuclease toxin MTH463 (encoding a HEPN domain) and its cognate antitoxin MTH464 (encoding the MNT domain) may act as a type II TA system in M. thermautotropicus ΔH. This study provides initial and essential information studying TA system functions, primarily archaea HEPN-MNT family.


Subject(s)
Antitoxins , Eukaryota , Nucleotidyltransferases/metabolism , Antitoxins/genetics , Prokaryotic Cells , Methanobacteriaceae/genetics , Bacterial Proteins/metabolism
6.
Methods Mol Biol ; 2522: 119-133, 2022.
Article in English | MEDLINE | ID: mdl-36125746

ABSTRACT

Methanogenic archaea of the order Methanobacteriales are widespread in anaerobic environments and play pivotal roles in microbial communities. The family of Methanobacteriaceae encompasses mesophilic and thermophilic hydrogenotrophic species. Mesophilic species are found in various natural and anthropogenic environments (e.g., are associated with the microbiome in animals and humans). Thermophilic species can be found in thermally active bogs and warm sulfuric springs, but also in anthropogenic environments, such as wastewater treatment plants and anaerobic digesters. Recently, genetic tools for Methanothermobacter thermautotrophicus ΔH, as the first representative of this order of methanogenic archaea, were successfully implemented. This protocol describes the methods for interdomain conjugational DNA transfer from Escherichia coli to M. thermautotrophicus ΔH with shuttle-vector plasmid DNA, which allows the genetic manipulation of this microbe, and provides a basis for the development of further genetic methods for this and potentially other representatives of Methanobacteriales.


Subject(s)
Methane , Methanobacteriaceae , Anaerobiosis , Chemical Phenomena , Humans , Methanobacteriaceae/genetics , Plasmids/genetics
7.
Microbiome ; 10(1): 117, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35918706

ABSTRACT

BACKGROUND: Carbon fixation through biological methanation has emerged as a promising technology to produce renewable energy in the context of the circular economy. The anaerobic digestion microbiome is the fundamental biological system operating biogas upgrading and is paramount in power-to-gas conversion. Carbon dioxide (CO2) methanation is frequently performed by microbiota attached to solid supports generating biofilms. Despite the apparent simplicity of the microbial community involved in biogas upgrading, the dynamics behind most of the interspecies interaction remain obscure. To understand the role of the microbial species in CO2 fixation, the biofilm generated during the biogas upgrading process has been selected as a case study. The present work investigates via genome-centric metagenomics, based on a hybrid Nanopore-Illumina approach the biofilm developed on the diffusion devices of four ex situ biogas upgrading reactors. Moreover, genome-guided metabolic reconstruction and flux balance analysis were used to propose a biological role for the dominant microbes. RESULTS: The combined microbiome was composed of 59 species, with five being dominant (> 70% of total abundance); the metagenome-assembled genomes representing these species were refined to reach a high level of completeness. Genome-guided metabolic analysis appointed Firmicutes sp. GSMM966 as the main responsible for biofilm formation. Additionally, species interactions were investigated considering their co-occurrence in 134 samples, and in terms of metabolic exchanges through flux balance simulation in a simplified medium. Some of the most abundant species (e.g., Limnochordia sp. GSMM975) were widespread (~ 67% of tested experiments), while others (e.g., Methanothermobacter wolfeii GSMM957) had a scattered distribution. Genome-scale metabolic models of the microbial community were built with boundary conditions taken from the biochemical data and showed the presence of a flexible interaction network mainly based on hydrogen and carbon dioxide uptake and formate exchange. CONCLUSIONS: Our work investigated the interplay between five dominant species within the biofilm and showed their importance in a large spectrum of anaerobic biogas reactor samples. Flux balance analysis provided a deeper insight into the potential syntrophic interaction between species, especially Limnochordia sp. GSMM975 and Methanothermobacter wolfeii GSMM957. Finally, it suggested species interactions to be based on formate and amino acids exchanges. Video Abstract.


Subject(s)
Biofuels , Metagenome , Anaerobiosis , Bioreactors , Carbon Dioxide/analysis , Firmicutes/metabolism , Formates , Methane/metabolism , Methanobacteriaceae/genetics , Methanobacteriaceae/metabolism
8.
Enzyme Microb Technol ; 159: 110067, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35617849

ABSTRACT

Phosphatases catalyze the irreversible dephosphorylation of phosphate-containing compounds, and hence can be applied as the final enzymatic step for the synthesis of various biochemicals. However, the extensive substrate spectrums of phosphatases impose a great challenge for efficient biomanufacturing. Characterization of phosphatases is therefore of extreme importance. In this study, MmPase, a putative HAD phosphatase from Methanothermobacter marburgensis, was expressed, purified, and characterized. Recombinant MmPase was readily expressed in Escherichia coli, and required metal ions such as Mn2+ or Mg2+ to function. MmPase worked optimally at 50 °C, pH 6.5, and exhibited a half-life of 6.5 h under this condition. Among all substrates tested, MmPase established the highest dephosphorylation activity against D-tagatose 6-phosphate, and was relatively specific for this substrate than for D-glucose 1-phosphate, D-glucose 6-phosphate, and D-fructose 6-phosphate. Therefore, MmPase was integrated into an in vitro synthetic enzymatic biosystem for the one-pot production of D-tagatose from maltodextrin, and achieved a product yield of 37.6%. Our studies of MmPase provided a promising strategy for the economic and efficient production of D-tagatose in the future.


Subject(s)
Hexoses , Phosphoric Monoester Hydrolases , Escherichia coli/genetics , Glucose , Methanobacteriaceae/genetics , Phosphates , Substrate Specificity
9.
mBio ; 12(6): e0276621, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34809461

ABSTRACT

Thermophilic Methanothermobacter spp. are used as model microbes to study the physiology and biochemistry of the conversion of molecular hydrogen and carbon dioxide into methane (i.e., hydrogenotrophic methanogenesis). Yet, a genetic system for these model microbes was missing despite intensive work for four decades. Here, we report the successful implementation of genetic tools for Methanothermobacter thermautotrophicus ΔH. We developed shuttle vectors that replicated in Escherichia coli and M. thermautotrophicus ΔH. For M. thermautotrophicus ΔH, a thermostable neomycin resistance cassette served as the selectable marker for positive selection with neomycin, and the cryptic plasmid pME2001 from Methanothermobacter marburgensis served as the replicon. The shuttle-vector DNA was transferred from E. coli into M. thermautotrophicus ΔH via interdomain conjugation. After the successful validation of DNA transfer and positive selection in M. thermautotrophicus ΔH, we demonstrated heterologous gene expression of a thermostable ß-galactosidase-encoding gene (bgaB) from Geobacillus stearothermophilus under the expression control of four distinct synthetic and native promoters. In quantitative in-vitro enzyme activity assay, we found significantly different ß-galactosidase activity with these distinct promoters. With a formate dehydrogenase operon-encoding shuttle vector, we allowed growth of M. thermautotrophicus ΔH on formate as the sole growth substrate, while this was not possible for the empty-vector control. IMPORTANCE The world economies are facing permanently increasing energy demands. At the same time, carbon emissions from fossil sources need to be circumvented to minimize harmful effects from climate change. The power-to-gas platform is utilized to store renewable electric power and decarbonize the natural gas grid. The microbe Methanothermobacter thermautotrophicus is already applied as the industrial biocatalyst for the biological methanation step in large-scale power-to-gas processes. To improve the biocatalyst in a targeted fashion, genetic engineering is required. With our shuttle-vector system for heterologous gene expression in M. thermautotrophicus, we set the cornerstone to engineer the microbe for optimized methane production but also for production of high-value platform chemicals in power-to-x processes.


Subject(s)
Gene Expression , Genetic Vectors/genetics , Geobacillus/enzymology , Methanobacteriaceae/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Conjugation, Genetic , Escherichia coli/genetics , Escherichia coli/metabolism , Galactosidases/genetics , Galactosidases/metabolism , Genetic Vectors/metabolism , Geobacillus/genetics , Methane/metabolism , Methanobacteriaceae/growth & development , Methanobacteriaceae/metabolism
10.
Nat Chem Biol ; 17(5): 585-592, 2021 05.
Article in English | MEDLINE | ID: mdl-33707784

ABSTRACT

YcaO enzymes catalyze several post-translational modifications on peptide substrates, including thioamidation, which substitutes an amide oxygen with sulfur. Most predicted thioamide-forming YcaO enzymes are encoded adjacent to TfuA, which when present, is required for thioamidation. While activation of the peptide amide backbone is well established for YcaO enzymes, the function of TfuA has remained enigmatic. Here we characterize the TfuA protein involved in methyl-coenzyme M reductase thioamidation and demonstrate that TfuA catalyzes the hydrolysis of thiocarboxylated ThiS (ThiS-COSH), a proteinaceous sulfur donor, and enhances the affinity of YcaO toward the thioamidation substrate. We also report a crystal structure of a TfuA, which displays a new protein fold. Our structural and mutational analyses of TfuA have uncovered conserved binding interfaces with YcaO and ThiS in addition to revealing a hydrolase-like active site featuring a Ser-Lys catalytic pair.


Subject(s)
Archaeal Proteins/chemistry , Euryarchaeota/enzymology , Methanobacteriaceae/enzymology , Methanocaldococcus/enzymology , Oxidoreductases/chemistry , Thioamides/chemistry , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Euryarchaeota/genetics , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Histidine/chemistry , Histidine/genetics , Histidine/metabolism , Kinetics , Mannose-Binding Lectin/chemistry , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/metabolism , Methanobacteriaceae/genetics , Methanocaldococcus/genetics , Models, Molecular , Mutation , Oligopeptides/chemistry , Oligopeptides/genetics , Oligopeptides/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Substrate Specificity , Thioamides/metabolism
11.
Biochem J ; 477(16): 2935-2947, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32706021

ABSTRACT

The DNA helicase Large helicase-related (Lhr) is present throughout archaea, including in the Asgard and Nanoarchaea, and has homologues in bacteria and eukaryotes. It is thought to function in DNA repair but in a context that is not known. Our data show that archaeal Lhr preferentially targets DNA replication fork structures. In a genetic assay, expression of archaeal Lhr gave a phenotype identical to the replication-coupled DNA repair enzymes Hel308 and RecQ. Purified archaeal Lhr preferentially unwound model forked DNA substrates compared with DNA duplexes, flaps and Holliday junctions, and unwound them with directionality. Single-molecule FRET measurements showed that binding of Lhr to a DNA fork causes ATP-independent distortion and base-pair melting at, or close to, the fork branchpoint. ATP-dependent directional translocation of Lhr resulted in fork DNA unwinding through the 'parental' DNA strands. Interaction of Lhr with replication forks in vivo and in vitro suggests that it contributes to DNA repair at stalled or broken DNA replication.


Subject(s)
Archaeal Proteins/metabolism , DNA Helicases/metabolism , DNA Repair , DNA Replication , DNA, Archaeal/metabolism , DNA, Single-Stranded/metabolism , Methanobacteriaceae/enzymology , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , DNA Helicases/chemistry , DNA Helicases/genetics , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , Methanobacteriaceae/genetics , Protein Conformation
12.
Anaerobe ; 64: 102216, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32504807

ABSTRACT

Methanothermobacter thermautotrophicus ΔH (MTH) is a thermophilic hydrogenotrophic methanogenic archaeon capable of reducing CO2 with H2 to produce methane gas. It is the potential candidate in the biomethanation of CO2 and CO in anaerobic reactors and biogas upgrading process. However, systematic studies addressing its genome conservation and function remain scant in this genome. In this study, we have evaluated its evolutionary resemblance and metabolic discrepancy, particularly in starvation survival systems by comparing the genomic contexts with Methanothermobacter marburgensis str. Marburg (MMG) and Methanobacterium formicicum DSM 1535 (MFO). The phylogenomic analysis of this study indicated that there was a strong phylogenomic signal among MTH, MMG, and MFO in the whole-genome tree. DNA replication machinery was conserved in the MTH genome and might have evolved at different evolution rates. Genome synteny analysis observed collinearity of either gene orders or gene families has to be maintained with syntenic blocks located in the syntenic out-paralogs. A genome-wide metabolic analysis identified some unique putative metabolic subsystems in MTH, which are proposed to determine its growth characteristics in diverse environments. MTH genome comprised of 93 unique genes-coding for starvation survival and stress-response proteins. These proteins confer its adaptation to nutritional deprivation and other abiotic stresses. MTH has a typical system to withstand its growth and cell viability during stable operation and recovery after prolonged starvation. Thus, the present work will provide an insight to improve the genome refinement and metabolic reconstruction in parallel to other closely related species.


Subject(s)
Metabolic Networks and Pathways/genetics , Methanobacteriaceae/genetics , Stress, Physiological/genetics , Comparative Genomic Hybridization , DNA, Archaeal/genetics , Genome, Archaeal , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S/genetics , Sequence Analysis, DNA
13.
J Biotechnol ; 319: 1-7, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32470462

ABSTRACT

Gas fermentation for the production of building block molecules and biofuels is lately gaining attention as a means to eliminate the greenhouse gases emissions. Especially CO2 capture and recycling are in focus. Thus, the biological coupling of CO2 and H2 is of high interest. Therefore, the focus of the present work was to evaluate the performances of two up-flow reactors for CO2 and H2 assimilation. Process monitoring showed that the gas-liquid H2 transfer was highly affected by reactor design. A reactor filled with Raschig rings could lift up gases utilization leading to a CH4 content of 81% at 6 h gas retention time and 8.8 L/LR.h gas recirculation rate. In contrast, limited biomethanation was achieved in the absence of Raschig rings highlighting the positive role of packing material to the performance of up-flow-reactors. Additionally, high-throughput 16S rRNA sequencing revealed that the microbial community was ultimately resided by Methanothermobacter methanogens.


Subject(s)
Bioreactors/microbiology , Carbon Cycle/physiology , Carbon Dioxide/metabolism , Hydrogen/metabolism , Anaerobiosis , Biofuels , Methane/metabolism , Methanobacteriaceae/genetics , Methanobacteriaceae/metabolism
14.
PLoS One ; 15(4): e0231759, 2020.
Article in English | MEDLINE | ID: mdl-32330150

ABSTRACT

Ruminant methane production is a significant energy loss to the animal and major contributor to global greenhouse gas emissions. However, it also seems necessary for effective rumen function, so studies of anti-methanogenic treatments must also consider implications for feed efficiency. Between-animal variation in feed efficiency represents an alternative approach to reducing overall methane emissions intensity. Here we assess the effects of dietary additives designed to reduce methane emissions on the rumen microbiota, and explore relationships with feed efficiency within dietary treatment groups. Seventy-nine finishing steers were offered one of four diets (a forage/concentrate mixture supplemented with nitrate (NIT), lipid (MDDG) or a combination (COMB) compared to the control (CTL)). Rumen fluid samples were collected at the end of a 56 d feed efficiency measurement period. DNA was extracted, multiplexed 16s rRNA libraries sequenced (Illumina MiSeq) and taxonomic profiles were generated. The effect of dietary treatments and feed efficiency (within treatment groups) was conducted both overall (using non-metric multidimensional scaling (NMDS) and diversity indexes) and for individual taxa. Diet affected overall microbial populations but no overall difference in beta-diversity was observed. The relative abundance of Methanobacteriales (Methanobrevibacter and Methanosphaera) increased in MDDG relative to CTL, whilst VadinCA11 (Methanomassiliicoccales) was decreased. Trimethylamine precursors from rapeseed meal (only present in CTL) probably explain the differences in relative abundance of Methanomassiliicoccales. There were no differences in Shannon indexes between nominal low or high feed efficiency groups (expressed as feed conversion ratio or residual feed intake) within treatment groups. Relationships between the relative abundance of individual taxa and feed efficiency measures were observed, but were not consistent across dietary treatments.


Subject(s)
Animal Feed , Animal Husbandry/methods , Gastrointestinal Microbiome/physiology , Greenhouse Effect/prevention & control , Rumen/microbiology , Animals , Cattle , DNA, Bacterial/isolation & purification , Dietary Fats/administration & dosage , Dietary Supplements , Greenhouse Gases/metabolism , Male , Methane/metabolism , Methanobacteriaceae/genetics , Methanobacteriaceae/isolation & purification , Methanobacteriaceae/metabolism , Methanobacteriales/genetics , Methanobacteriales/isolation & purification , Methanobacteriales/metabolism , Methanobrevibacter/genetics , Methanobrevibacter/isolation & purification , Methanobrevibacter/metabolism , RNA, Ribosomal, 16S/genetics , Rumen/drug effects , Scotland
15.
Microb Biotechnol ; 13(4): 962-973, 2020 07.
Article in English | MEDLINE | ID: mdl-32154666

ABSTRACT

Glycerol-rich waste streams produced by the biodiesel, bioethanol and oleochemical industries can be treated and valorized by anaerobic microbial communities to produce methane. As current knowledge of the microorganisms involved in thermophilic glycerol conversion to methane is scarce, thermophilic glycerol-degrading methanogenic communities were enriched. A co-culture of Thermoanaerobacter and Methanothermobacter species was obtained, pointing to a non-obligately syntrophic glycerol degradation. This hypothesis was further studied by incubating Thermoanaerobacter brockii subsp. finnii and T. wiegelii with glycerol (10 mM) in pure culture and with different hydrogenotrophic methanogens. The presence of the methanogen accelerated glycerol fermentation by the two Thermoanaerobacter strains up to 3.3 mM day-1 , corresponding to 12 times higher volumetric glycerol depletion rates in the methanogenic co-cultures than in the pure bacterial cultures. The catabolic pathways of glycerol conversion were identified by genome analysis of the two Thermoanaerobacter strains. NADH and reduced ferredoxin formed in the pathway are linked to proton reduction, which becomes thermodynamically favourable when the hydrogen partial pressure is kept low by the hydrogenotrophic methanogenic partner.


Subject(s)
Glycerol , Thermoanaerobacter , Anaerobiosis , Methane , Methanobacteriaceae/genetics , Thermoanaerobacter/genetics
16.
Biosci Biotechnol Biochem ; 84(5): 1047-1055, 2020 May.
Article in English | MEDLINE | ID: mdl-31900061

ABSTRACT

The thermophilic hydrogenotrophic methanogen Methanothermobacter sp. CaT2 aggregates by itself. CaT2 is known to have a surface sugar layer and extracellular proteins that may be related to its aggregation. Aggregation-enhanced mutants, CHA001 and CHA002, were isolated after repeated cultivation for more than two years. When treated with proteinase K, CHA001 and CaT2 similarly exhibited a very low degree of aggregation and CHA002 exhibited less aggregation but still retained aggregation, suggesting protein-based aggregation via extracellular proteins in both CHA001 and CHA002, presumably via a putative membrane-bound and extracellularly protruding protein, MTCT_1020, identified previously. Genomic analysis revealed that CHA001 and CHA002 shared a missense mutation of MTCT_1348 and had distinct mutations. These results suggested that the MTCT_1348 mutation provides subsidiary support to the adhesive function of extracellular proteins and that there is an additional mutation(s) in CHA002 for the non-proteinous aggregation capability.


Subject(s)
Genome, Archaeal , Methanobacteriaceae/genetics , Methanobacteriaceae/metabolism , Mutation , Archaeal Proteins/metabolism , DNA, Archaeal/genetics , DNA, Archaeal/isolation & purification , Extracellular Space/metabolism , Methane/metabolism , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Microscopy, Phase-Contrast , Whole Genome Sequencing
17.
Microbes Environ ; 34(3): 244-251, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31189768

ABSTRACT

The thermophilic hydrogenotrophic methanogen, Methanothermobacter sp. CaT2, which possesses an extracellular sugar layer, commonly aggregates by itself or with other microorganisms. To elucidate the molecular mechanisms responsible for this aggregation, the aggregation-defective mutant, CLA160, was isolated. Optical and electron microscopy observations revealed that the mutant exhibited a significant reduction in aggregation. Genomic sequencing showed that CLA160 has a single point mutation, causing a nonsense mutation in MTCT_1020, which encodes a hypothetical protein. Motif and domain analyses indicated that the hypothetical protein bears two membrane-spanning segments at the N- and C-terminal regions and a large middle repeat-containing region. The results of a bioinformatic analysis suggested that the first middle region (RII) of the protein or the whole structure is responsible for the function of the product of MTCT_1020 in the aggregation of CaT2. A treatment with proteinase K suppressed sedimentation in CaT2, indicating a reduction in aggregation, with almost no effect on sedimentation in CLA160. The addition of Ca2+ or Mg2+ ions enhanced sedimentation in CaT2, whereas a DNase treatment had no effect on sedimentation in either strain. These results suggest that the hypothetical protein encoded by MTCT_1020 plays a key role as a membrane-bound adhesion protein in the aggregation of CaT2, which is enhanced by the addition of Ca2+ or Mg2+ ions.


Subject(s)
Bacterial Adhesion/genetics , Bacterial Proteins/genetics , Methanobacteriaceae/genetics , Bacterial Adhesion/drug effects , Bacterial Proteins/chemistry , Cations, Divalent/pharmacology , Endopeptidase K/pharmacology , Genome, Bacterial/genetics , Hot Temperature , Methane/metabolism , Methanobacteriaceae/classification , Methanobacteriaceae/ultrastructure , Mutation , Phylogeny , Protein Domains , Sequence Analysis, DNA
18.
Sci Rep ; 9(1): 6560, 2019 04 25.
Article in English | MEDLINE | ID: mdl-31024021

ABSTRACT

Microbial communities are key drivers of ecosystem processes, but their behavior in disturbed environments is difficult to measure. How microbial community composition and function respond disturbances is a common challenge in biomedical, environmental, agricultural, and bioenergy research. A novel way to solve this problem is to use a systems-level perspective and describe microbial communities as networks. Based on a mesophilic anaerobic digestion system of swine manure as a tool, we propose a simple framework to investigate changes in microbial communities via compositions, metabolic pathways, genomic properties and interspecies relationships in response to a long-term temperature disturbance. After temperature disturbance, microbial communities tend towards a competitive interaction network with higher GC content and larger genome size. Based on microbial interaction networks, communities responded to the disturbance by showing a transition from acetotrophic (Methanotrichaceae and Methanosarcinaceae) to methylotrophic methanogens (Methanomassiliicoccaceae and Methanobacteriaceae) and a fluctuation in rare biosphere taxa. To conclude, this study may be important for exploring the dynamic relationships between disturbance and microbial communities as a whole, as well as for providing researchers with a better understanding of how changes in microbial communities relate to ecological processes.


Subject(s)
Microbiota/physiology , Anaerobiosis/genetics , Anaerobiosis/physiology , Animals , Base Composition/genetics , Base Composition/physiology , Bioreactors/microbiology , Genome, Bacterial/genetics , Methanobacteriaceae/genetics , Methanobacteriaceae/physiology , Methanomicrobiaceae/genetics , Methanomicrobiaceae/physiology , RNA, Ribosomal, 16S/genetics , Swine , Temperature
19.
Int J Biol Macromol ; 123: 350-362, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30445075

ABSTRACT

Methanothermobacter thermautotrophicus ΔH (MTH) is a potential methanogen known to reduce CO2 with H2 for producing methane biofuel in thermophilic digesters. The genome of this organism contains ~50.5% conserved hypothetical proteins (HPs; operome) whose function is still not determined precisely. Here, we employed a combined bioinformatics approach to annotate a precise function to HPs and categorize them as enzymes, binding proteins, and transport proteins. Results of our study show that 315 (35.6%) HPs have exhibited well-defined functions contributing imperative roles in diverse cellular metabolism. Some of them are responsible for stress-response mechanisms and cell cycle, membrane transport, and regulatory processes. The genome-neighborhood analysis found five important gene clusters (dsr, ehb, kaiC, cmr, and gas) involving in the energetic metabolism and defense systems. MTH operome contains 223 enzymes with 15 metabolic subsystems, 15 cell cycle proteins, 17 transcriptional regulators and 33 binding proteins. Functional annotation of its operome is thus more fundamental to a profound understanding of the molecular and cellular machinery at systems-level.


Subject(s)
Bacterial Proteins , Molecular Sequence Annotation , Multigene Family , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Methanobacteriaceae/genetics , Methanobacteriaceae/metabolism
20.
Microbiologyopen ; 8(5): e00715, 2019 05.
Article in English | MEDLINE | ID: mdl-30260585

ABSTRACT

The growth of all methanogens is limited to a specific temperature range. However, Methanothermobacter thermautotrophicus can be found in a variety of natural and artificial environments, the temperatures of which sometimes even exceed the temperature growth ranges of thermophiles. As a result, the extent to which methane production and survival are affected by temperature remains unclear. To investigate the mechanisms of methanogenesis that Archaea have evolved to cope with drastic temperature shifts, the responses of Methanothermobacter thermautotrophicus to temperature were investigated under a high temperature growth (71°C) and cold shock (4°C) using Isobaric tags for relative and absolute quantitation (iTRAQ). The results showed that methane formation is decreased and that protein folding and degradation are increased in both high- and low-temperature treatments. In addition, proteins predicted to be involved in processing environmental information processing and in cell membrane/wall/envelope biogenesis may play key roles in affecting methane formation and enhancing the response of M. thermautotrophicus to temperature stress. Analysis of the genomic locations of the genes corresponding to these temperature-dependent proteins predicted that 77 of the genes likely to form 32 gene clusters. Here, we assess the response of M. thermautotrophicus to different temperatures and provide a new level of understanding of methane formation and cellular putative adaptive responses.


Subject(s)
Carbon Dioxide/metabolism , Cold Temperature , Hot Temperature , Hydrogen/metabolism , Methane/metabolism , Methanobacteriaceae/metabolism , Proteome/analysis , Archaeal Proteins/analysis , Genes, Archaeal , Genetic Loci , Methanobacteriaceae/genetics , Methanobacteriaceae/growth & development , Methanobacteriaceae/radiation effects , Multigene Family , Protein Folding , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...