Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
Add more filters










Publication year range
1.
Appl Environ Microbiol ; 90(6): e0069124, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38809047

ABSTRACT

Methanogenic archaea play a key role in the global carbon cycle because these microorganisms remineralize organic compounds in various anaerobic environments. The microorganism Methanosarcina barkeri is a metabolically versatile methanogen, which can utilize acetate, methanol, and H2/CO2 to synthesize methane. However, the regulatory mechanisms underlying methanogenesis for different substrates remain unknown. In this study, RNA-seq analysis was used to investigate M. barkeri growth and gene transcription under different substrate regimes. According to the results, M. barkeri showed the best growth under methanol, followed by H2/CO2 and acetate, and these findings corresponded well with the observed variations in genes transcription abundance for different substrates. In addition, we identified a novel regulator, MSBRM_RS03855 (designated as HdrR), which specifically activates the transcription of the heterodisulfide reductase hdrBCA operon in M. barkeri. HdrR was able to bind to the hdrBCA operon promoter to regulate transcription. Furthermore, the structural model analyses revealed a helix-turn-helix domain, which is likely involved in DNA binding. Taken together, HdrR serves as a model to reveal how certain regulatory factors control the expression of key enzymes in the methanogenic pathway.IMPORTANCEThe microorganism Methanosarcina barkeri has a pivotal role in the global carbon cycle and contributes to global temperature homeostasis. The consequences of biological methanogenesis are far-reaching, including impacts on atmospheric methane and CO2 concentrations, agriculture, energy production, waste treatment, and human health. As such, reducing methane emissions is crucial to meeting set climate goals. The methanogenic activity of certain microorganisms can be drastically reduced by inhibiting the transcription of the hdrBCA operon, which encodes heterodisulfide reductases. Here, we provide novel insight into the mechanisms regulating hdrBCA operon transcription in the model methanogen M. barkeri. The results clarified that HdrR serves as a regulator of heterodisulfide reductase hdrBCA operon transcription during methanogenesis, which expands our understanding of the unique regulatory mechanisms that govern methanogenesis. The findings presented in this study can further our understanding of how genetic regulation can effectively reduce the methane emissions caused by methanogens.


Subject(s)
Archaeal Proteins , Methanosarcina barkeri , Operon , Oxidoreductases , Methanosarcina barkeri/genetics , Methanosarcina barkeri/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Gene Expression Regulation, Archaeal , Transcription, Genetic , Methane/metabolism , Methanol/metabolism , Carbon Dioxide/metabolism , Acetates/metabolism , Hydrogen/metabolism
2.
Microbiol Spectr ; 12(2): e0041823, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38179920

ABSTRACT

Iron (Fe) and sulfur (S) are required elements for life, and changes in their availability can limit the ecological distribution and function of microorganisms. In anoxic environments, soluble Fe typically exists as ferrous iron [Fe(II)] and S as sulfide (HS-). These species exhibit a strong affinity that ultimately drives the formation of sedimentary pyrite (FeS2). Recently, paradigm-shifting studies indicate that Fe and S in FeS2 can be made bioavailable by methanogens through a reductive dissolution process. However, the impact of the utilization of FeS2, as opposed to canonical Fe and S sources, on the phenotype of cells is not fully understood. Here, shotgun proteomics was utilized to measure changes in the phenotype of Methanosarcina barkeri MS grown with FeS2, Fe(II)/HS-, or Fe(II)/cysteine. Shotgun proteomics tracked 1,019 proteins overall, with 307 observed to change between growth conditions. Functional characterization and pathway analyses revealed these changes to be systemic and largely tangential to Fe/S metabolism. As a final step, the proteomics data were viewed with respect to previously collected transcriptomics data to deepen the analysis. Presented here is evidence that M. barkeri adopts distinct phenotypes to exploit specific sources of Fe and S in its environment. This is supported by observed protein abundance changes across broad categories of cellular biology. DNA adjacent metabolism, central carbon metabolism methanogenesis, metal trafficking, quorum sensing, and porphyrin biosynthesis pathways are all features in the phenotypic differentiation. Differences in trace metal availability attributed to complexation with HS-, either as a component of the growth medium [Fe(II)/HS-] or generated through reduction of FeS2, were likely a major factor underpinning these phenotypic differences.IMPORTANCEThe methanogenic archaeon Methanosarcina barkeri holds great potential for industrial bio-mining and energy generation technologies. Much of the biochemistry of this microbe is poorly understood, and its characterization will provide a glimpse into biological processes that evolved close to life's origin. The discovery of its ability to extract iron and sulfur from bulk, solid-phase minerals shifted a longstanding paradigm that these elements were inaccessible to biological systems. The full elucidation of this process has the potential to help scientists and engineers extract valuable metals from low-grade ore and mine waste generating energy in the form of methane while doing so.


Subject(s)
Methanosarcina barkeri , Proteome , Methanosarcina barkeri/genetics , Methanosarcina barkeri/metabolism , Proteome/metabolism , Iron/metabolism , Minerals/metabolism , Sulfur/metabolism , Ferrous Compounds/metabolism
3.
Appl Environ Microbiol ; 89(10): e0099123, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37830848

ABSTRACT

Nickel (Ni) is a key component of the active site metallocofactors of numerous enzymes required for methanogenesis, including [NiFe]-hydrogenase, carbon monoxide dehydrogenase, and methyl CoM reductase, leading to a high demand for Ni among methanogens. However, methanogens often inhabit euxinic environments that favor the sequestration of nickel as metal-sulfide minerals, such as nickelian pyrite [(Ni,Fe)S2], that have low solubilities and that are not considered bioavailable. Recently, however, several different model methanogens (Methanosarcina barkeri, Methanococcus voltae, Methanococcus maripaludis) were shown to reductively dissolve pyrite (FeS2) and to utilize dissolution products to meet iron and sulfur biosynthetic demands. Here, using M. barkeri Fusaro, and laboratory-synthesized (Ni,Fe)S2 that was physically isolated from cells using dialysis membranes, we show that trace nickel (<20 nM) abiotically solubilized from the mineral can support methanogenesis and limited growth, roughly fivefold less than the minimum concentration known to support methanogenesis. Furthermore, when provided direct contact with (Ni,Fe)S2, M. barkeri promoted the reductive dissolution of (Ni,Fe)S2 and assimilated solubilized nickel, iron, and sulfur as its sole source of these elements. Cells that reductively dissolved (Ni,Fe)S2 bioaccumulated approximately fourfold more nickel than those grown with soluble nickel and sulfide but had similar metabolic coupling efficiencies. While the mechanism for Ni uptake in archaeal methanogens is not known, homologs of the bacterial Nik uptake system were shown to be ubiquitous across methanogen genomes. Collectively, these observations indicate that (Ni,Fe)S2 is bioavailable in anoxic environments and that methanogens can convert this mineral into nickel-, iron-, and sulfur-containing metalloenzymes to support methanogenesis and growth. IMPORTANCE Nickel is an essential metal, and its availability has changed dramatically over Earth history due to shifts in the predominant type of volcanism in the late Archean that limited its availability and an increase in euxinic conditions in the early Proterozoic that favored its precipitation as nickel sulfide minerals. Observations presented herein indicate that the methanogen, Methanosarcina barkeri, can acquire nickel at low concentration (<20 nM) from soluble and mineral sources. Furthermore, M. barkeri was shown to actively reduce nickelian pyrite; use dissolution products to meet their iron, sulfur, and nickel demands; and bioaccumulate nickel. These data help to explain how M. barkeri (and possibly other methanogens and anaerobes) can acquire nickel in contemporary and past anoxic or euxinic environments.


Subject(s)
Iron , Nickel , Nickel/metabolism , Solubility , Iron/metabolism , Minerals/metabolism , Methanosarcina barkeri/metabolism , Sulfides/metabolism , Sulfur/metabolism , Methane/metabolism
4.
Adv Mater ; 35(52): e2304920, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37689983

ABSTRACT

To significantly advance the bio-electrochemical CO2 -conversion rate and unfold the correlation between the abiotic electrode and the attached microorganisms, an atomic-nanoparticle bridge of Co-N4 @Co-NP crafted in metal-organic frameworks-derived nanosheets is integrated with a model methanogen of Methanosarcina barkeri (M. barkeri). The direct bonding of N in Co-N4 and Fe in member protein of Cytochrome b (Cytb) activates a fast direct electron transfer path while the Co nanoparticles further strengthen this bonding via decreasing the energy gap between the p-band center of N and the d-band center of Fe. This multiorbital tuning operation of Co nanoparticles also enhances the coenzyme F420-mediated electron transfer by enabling the electron flow direct to the hydrogenation sites. Particularly, the increased surface electric field of the Co-N4 @Co-NP bridge-based nanosheet electrode facilitates the interfacial Na+ accumulation to expedite ATPase transport for powering intracellular CO2 conversion. Remarkably, the self-assembled M.barkeri-Co-N4 @Co-NP biohybrid achieves a high methane production rate of 3860 mmol m-2 day-1 , which greatly outperforms other reported biohybrid systems. This work demonstrates a comprehensive scrutinization of biotic-abiotic energy transfer, which may serve as a guiding principle for efficient bio-electrochemical system design.


Subject(s)
Carbon Dioxide , Methanosarcina barkeri , Methanosarcina barkeri/metabolism , Methane , Electron Transport
5.
Water Res ; 232: 119664, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36775717

ABSTRACT

Ammonia is a ubiquitous potential inhibitor of anaerobic digestion processes, mainly exhibiting inhibition towards methanogenic activity. However, knowledge as to how ammonia affects the methanogens is still limited. In this study, we cultured a multitrophic methanogen, Methanosarcina barkeri DSM 800, with acetate, H2/CO2, and methanol to evaluate the influence of ammonia on different methanogenic pathways. Aceticlastic methanogenesis was more sensitive to increased ammonia concentrations than hydrogenotrophic and methylotrophic methanogenesis. Theoretical maximum NH3 tolerances of M. barkeri fed with acetate, H2/CO2, and methanol were calculated to be 39.1 ± 9.0, 104.3 ± 7.4, and 85.7 ± 1.0 mg/L, respectively. The order of the ΔG range of M. barkeri under three methanogenic pathways reflected the order of ammonia tolerance of M. barkeri. Our results provide insights into the role of the thermodynamic potential of methanogenesis on the tolerance of ammonia stress; and shed light on the mechanism of ammonia inhibition on anaerobic digestion.


Subject(s)
Methanol , Methanosarcina barkeri , Methanosarcina barkeri/metabolism , Ammonia/metabolism , Methane/metabolism , Carbon Dioxide/metabolism , Acetates/metabolism , Methanosarcina/metabolism
6.
Environ Sci Technol ; 57(9): 3917-3929, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36820857

ABSTRACT

Acetotrophic methanogens' dysfunction in anaerobic digestion under ammonia pressure has been widely concerned. Lipids, the main cytomembrane structural biomolecules, normally play indispensable roles in guaranteeing cell functionality. However, no studies explored the effects of high ammonia on acetotrophic methanogens' lipids. Here, a high-throughput lipidomic interrogation deciphered lipid reprogramming in representative acetoclastic methanogen (Methanosarcina barkeri) upon high ammonia exposure. The results showed that high ammonia conspicuously reduced polyunsaturated lipids and longer-chain lipids, while accumulating lipids with shorter chains and/or more saturation. Also, the correlation network analysis visualized some sphingolipids as the most active participant in lipid-lipid communications, implying that the ammonia-induced enrichment in these sphingolipids triggered other lipid changes. In addition, we discovered the decreased integrity, elevated permeability, depolarization, and diminished fluidity of lipid-supported membranes under ammonia restraint, verifying the noxious ramifications of lipid abnormalities. Additional analysis revealed that high ammonia destabilized the structure of extracellular polymeric substances (EPSs) capable of protecting lipids, e.g., declining α-helix/(ß-sheet + random coil) and 3-turn helix ratios. Furthermore, the abiotic impairment of critical EPS bonds, including C-OH, C═O-NH-, and S-S, and the biotic downregulation of functional proteins involved in transcription, translation, and EPS building blocks' supply were unraveled under ammonia stress and implied as the crucial mechanisms for EPS reshaping.


Subject(s)
Ammonia , Methanosarcina barkeri , Humans , Methanosarcina barkeri/metabolism , Ammonia/metabolism , Lipids , Methanosarcina/metabolism
7.
Nat Commun ; 13(1): 6612, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36329056

ABSTRACT

Integration of methanogens with semiconductors is an effective approach to sustainable solar-driven methanogenesis. However, the H2 production rate by semiconductors largely exceeds that of methanogen metabolism, resulting in abundant H2 as side product. Here, we report that binary metallic active sites (namely, NiCu alloys) are incorporated into the interface between CdS semiconductors and Methanosarcina barkeri. The self-assembled Methanosarcina barkeri-NiCu@CdS exhibits nearly 100% CH4 selectivity with a quantum yield of 12.41 ± 0.16% under light illumination, which not only exceeds the reported biotic-abiotic hybrid systems but also is superior to most photocatalytic systems. Further investigation reveal that the Ni-Cu-Cu hollow sites in NiCu alloys can directly supply hydrogen atoms and electrons through photocatalysis to the Methanosarcina barkeri for methanogenesis via both extracellular and intracellular hydrogen cycles, effectively turning down the H2 production. This work provides important insights into the biotic-abiotic hybrid interface, and offers an avenue for engineering the methanogenesis process.


Subject(s)
Euryarchaeota , Methane , Methane/metabolism , Methanosarcina barkeri/metabolism , Euryarchaeota/metabolism , Hydrogen/metabolism , Alloys
8.
Sci Total Environ ; 844: 157235, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-35817105

ABSTRACT

Fe(III) has been recognized as a potential electron sink for the anaerobic oxidation of methane (Fe-AOM) in diverse environments. However, most of previous Fe-AOM processes are limited to ANME archaea and the Fe-AOM mechanism remains unclear. Here we investigate, for the first time, the Fe-AOM performance and mechanisms by a single methanogen Methanosarcina barkeri. The results showed that M. barkeri was capable of oxidizing methane to CO2 and reducing ferrihydrite to siderite simultaneously. The presence of methane enhanced both the abundances of redox-active species (such as cytochromes) and electrochemical activity of M. barkeri. The proteomic analyses revealed that M. barkeri up-regulated the expressions of a number of methanogenic enzymes during Fe-AOM, and significantly enriched metabolic pathways of amino acid synthesis and nitrogen fixation. Metabolic inhibition experiments indicated that membrane-bound redox-active components (cytochromes, methanophenazine and F420H2:quinone oxidoreductase) were probably involved in extracellular electron transfer (EET) from cells to ferrihydrite. Overall, these results provide a deep insight into the single­carbon metabolism and survival strategy for methanogens and suggest that methanogens may play an important role in linking methane and iron cycling in the substrate-limited environments.


Subject(s)
Methane , Methanosarcina barkeri , Anaerobiosis , Archaea/metabolism , Cytochromes/metabolism , Ferric Compounds/metabolism , Methane/metabolism , Methanosarcina barkeri/metabolism , Oxidation-Reduction , Proteomics
9.
Environ Sci Technol ; 56(12): 8897-8907, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35588324

ABSTRACT

Undesirable ammonium concentrations can lead to unstable anaerobic digestion processes, and Methanosarcina spp. are the representative methanogens under inhibition. However, no known work seems to exist for directly exploring the detailed metabolic regulation of pure cultured representative Methanosarcina spp. to ammonium inhibition. We used transcriptomics and proteomics to profile the metabolic regulation of Methanosarcina barkeri to 1, 4, and 7 g N/L of total ammoniacal nitrogen (TAN), where free ammonia concentrations were between 1.5 and 36.1 mg N/L. At the initial stages of ammonium inhibition, the genes participating in the acquisition and assimilation of reduced nitrogen sources showed significant upregulation where the minimal fold change of gene transcription was about 2. Apart from nitrogen metabolism, the transcription of some genes in methanogenesis also significantly increased at the initial stages. For example, the genes encoding alternative heterodisulfide reductase subunits (HdrAB), energy-converting hydrogenase subunit (EchC), and methanophenazine-dependent hydrogenase subunits (VhtAC) were significantly upregulated by at least 2.05 times. For the element translocation at the initial stages, the genes participating in the uptake of ferrous iron, potassium ion, and molybdate were significantly upregulated with a minimal fold change of 2.10. As the cultivation proceeded, the gene encoding the cell division protein subunit (FtsH) was significantly upregulated by 13.0 times at 7 g N/L of TAN; meanwhile, an increment in OD600 was observed at the terminal sampling point of 7 g N/L of TAN. The present study explored the metabolic regulation of M. barkeri in stress response, protein synthesis, signal transduction, nitrogen metabolism, methanogenesis, and element translocation. The results would contribute to the understanding of the metabolic effects of ammonium inhibition on methanogens and have significant practical implication in inhibited anaerobic digestion.


Subject(s)
Ammonium Compounds , Hydrogenase , Ammonium Compounds/metabolism , Hydrogenase/genetics , Hydrogenase/metabolism , Methane/metabolism , Methanosarcina/genetics , Methanosarcina/metabolism , Methanosarcina barkeri/genetics , Methanosarcina barkeri/metabolism , Nitrogen/metabolism
10.
ISME J ; 16(2): 370-377, 2022 02.
Article in English | MEDLINE | ID: mdl-34341507

ABSTRACT

The direct conversion of CO2 to value-added chemical commodities, thereby storing solar energy, offers a promising option for alleviating both the current energy crisis and global warming. Semiconductor-biological hybrid systems are novel approaches. However, the inherent defects of photocorrosion, photodegradation, and the toxicity of the semiconductor limit the application of these biohybrid systems. We report here that Rhodopseudomonas palustris was able to directly act as a living photosensitizer to drive CO2 to CH4 conversion by Methanosarcina barkeri under illumination after coculturing. Specifically, R. palustris formed a direct electric syntrophic coculture with M. barkeri. Here, R. palustris harvested solar energy, performed anoxygenic photosynthesis using sodium thiosulfate as an electron donor, and transferred electrons extracellularly to M. barkeri to drive methane generation. The methanogenesis of M. barkeri in coculture was a light-dependent process with a production rate of 4.73 ± 0.23 µM/h under light, which is slightly higher than that of typical semiconductor-biohybrid systems (approximately 4.36 µM/h). Mechanistic and transcriptomic analyses showed that electrons were transferred either directly or indirectly (via electron shuttles), subsequently driving CH4 production. Our study suggests that R. palustris acts as a natural photosensitizer that, in coculture with M. barkeri, results in a new way to harvest solar energy that could potentially replace semiconductors in biohybrid systems.


Subject(s)
Methane , Methanosarcina barkeri , Carbon Dioxide/metabolism , Coculture Techniques , Methane/metabolism , Methanosarcina barkeri/genetics , Methanosarcina barkeri/metabolism , Photosynthesis
11.
Environ Microbiol Rep ; 12(5): 555-567, 2020 10.
Article in English | MEDLINE | ID: mdl-32783290

ABSTRACT

Dual stable isotope probing has been used to infer rates of microbial biomass production and modes of carbon fixation. In order to validate this approach for assessing archaeal production, the methanogenic archaeon Methanosarcina barkeri was grown either with H2 , acetate or methanol with D2 O and 13 C-dissolved inorganic carbon (DIC). Our results revealed unexpectedly low D incorporation into lipids, with the net fraction of water-derived hydrogen amounting to 0.357 ± 0.042, 0.226 ± 0.003 and 0.393 ± 0.029 for growth on H2 /CO2 , acetate and methanol respectively. The variability in net water H assimilation into lipids during the growth of M. barkeri on different substrates is possibly attributed to different Gibbs free energy yields, such that higher energy yield promoted the exchange of hydrogen between medium water and lipids. Because NADPH likely serves as the portal for H transfer, increased NADPH production and/or turnover associated with high energy yield may explain the apparent differences in net water H assimilation into lipids. The variable DIC and water H incorporation into M. barkeri lipids imply systematic, metabolic patterns of isotope incorporation and suggest that the ratio of 13 C-DIC versus D2 O assimilation in environmental samples may serve as a proxy for microbial energetics in addition to microbial production and carbon assimilation pathways.


Subject(s)
Carbon/metabolism , Hydrogen/metabolism , Lipids/biosynthesis , Methanosarcina barkeri/metabolism , Acetates/metabolism , Carbon Dioxide/metabolism , Methanol/metabolism , Methanosarcina barkeri/growth & development
12.
Biotechnol Appl Biochem ; 67(5): 744-750, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32282086

ABSTRACT

Methanogens are responsible for the last step in anaerobic digestion (AD), in which methane (a biofuel) is produced. Some methanogens can cometabolize chlorinated pollutants, contributing for their removal during AD. Methanogenic cofactors involved in cometabolic reductive dechlorination, such as F430 and cobalamin, contain metal ions (nickel, cobalt, iron) in their structure. We hypothesized that the supplementation of trace metals could improve methane production and the cometabolic dechlorination of 1,2-dichloroethene (DCE) by pure cultures of Methanosarcina barkeri. Nickel, cobalt, and iron were added to cultures of M. barkeri growing on methanol and methanol plus DCE. Metal amendment improved DCE dechlorination to vinyl chloride (VC): assays with 20 µM of Fe3+ showed the highest final concentration of VC (5× higher than in controls without Fe3+ ), but also in assays with 5.5 µM of Co2+ and 5 µM of Ni2+ VC formation was improved (3.5-4× higher than in controls without the respective metals). Dosing of metals could be useful to improve anaerobic removal of chlorinated compounds, and more importantly decrease the detrimental effect of DCE on methane production in anaerobic digesters.


Subject(s)
Dichloroethylenes/metabolism , Methane/metabolism , Methanol/metabolism , Methanosarcina barkeri/metabolism , Biodegradation, Environmental , Cobalt/metabolism , Halogenation , Iron/metabolism , Nickel/metabolism
13.
J R Soc Interface ; 16(154): 20190129, 2019 05 31.
Article in English | MEDLINE | ID: mdl-31064258

ABSTRACT

Methane-producing microbial communities are of ecological and biotechnological interest. Syntrophic interactions among sulfate reducers and aceto/hydrogenotrophic and obligate hydrogenotrophic methanogens form a key component of these communities, yet, the impact of these different syntrophic routes on methane production and their stability against sulfate availability are not well understood. Here, we construct model synthetic communities using a sulfate reducer and two types of methanogens representing different methanogenesis routes. We find that tri-cultures with both routes increase methane production by almost twofold compared to co-cultures and are stable in the absence of sulfate. With increasing sulfate, system stability and productivity decreases and does so faster in communities with aceto/hydrogenotrophic methanogens despite the continued presence of acetate. We show that this is due to a shift in the metabolism of these methanogens towards co-utilization of hydrogen with acetate. These findings indicate the important role of hydrogen dynamics in the stability and productivity of syntrophic communities.


Subject(s)
Desulfovibrio vulgaris/metabolism , Methane/metabolism , Methanococcus/metabolism , Methanosarcina barkeri/metabolism , Sulfates/metabolism , Oxidation-Reduction
14.
mBio ; 10(2)2019 03 12.
Article in English | MEDLINE | ID: mdl-30862748

ABSTRACT

The Methanosarcinales, a lineage of cytochrome-containing methanogens, have recently been proposed to participate in direct extracellular electron transfer interactions within syntrophic communities. To shed light on this phenomenon, we applied electrochemical techniques to measure electron uptake from cathodes by Methanosarcina barkeri, which is an important model organism that is genetically tractable and utilizes a wide range of substrates for methanogenesis. Here, we confirm the ability of M. barkeri to perform electron uptake from cathodes and show that this cathodic current is linked to quantitative increases in methane production. The underlying mechanisms we identified include, but are not limited to, a recently proposed association between cathodes and methanogen-derived extracellular enzymes (e.g., hydrogenases) that can facilitate current generation through the formation of reduced and diffusible methanogenic substrates (e.g., hydrogen). However, after minimizing the contributions of such extracellular enzymes and using a mutant lacking hydrogenases, we observe a lower-potential hydrogen-independent pathway that facilitates cathodic activity coupled to methane production in M. barkeri Our electrochemical measurements of wild-type and mutant strains point to a novel and hydrogenase-free mode of electron uptake with a potential near -484 mV versus standard hydrogen electrode (SHE) (over 100 mV more reduced than the observed hydrogenase midpoint potential under these conditions). These results suggest that M. barkeri can perform multiple modes (hydrogenase-mediated and free extracellular enzyme-independent modes) of electrode interactions on cathodes, including a mechanism pointing to a direct interaction, which has significant applied and ecological implications.IMPORTANCE Methanogenic archaea are of fundamental applied and environmental relevance. This is largely due to their activities in a wide range of anaerobic environments, generating gaseous reduced carbon that can be utilized as a fuel source. While the bioenergetics of a wide variety of methanogens have been well studied with respect to soluble substrates, a mechanistic understanding of their interaction with solid-phase redox-active compounds is limited. This work provides insight into solid-phase redox interactions in Methanosarcina spp. using electrochemical methods. We highlight a previously undescribed mode of electron uptake from cathodes that is potentially informative of direct interspecies electron transfer interactions in the Methanosarcinales.


Subject(s)
Bioelectric Energy Sources , Electrodes/microbiology , Electron Transport , Methane/metabolism , Methanosarcina barkeri/metabolism , Gene Deletion , Hydrogen/metabolism , Hydrogenase/genetics , Hydrogenase/metabolism
15.
mBio ; 9(4)2018 07 03.
Article in English | MEDLINE | ID: mdl-29970471

ABSTRACT

Energy conservation via hydrogen cycling, which generates proton motive force by intracellular H2 production coupled to extracellular consumption, has been controversial since it was first proposed in 1981. It was hypothesized that the methanogenic archaeon Methanosarcina barkeri is capable of energy conservation via H2 cycling, based on genetic data that suggest that H2 is a preferred, but nonessential, intermediate in the electron transport chain of this organism. Here, we characterize a series of hydrogenase mutants to provide direct evidence of H2 cycling. M. barkeri produces H2 during growth on methanol, a phenotype that is lost upon mutation of the cytoplasmic hydrogenase encoded by frhADGB, although low levels of H2, attributable to the Ech hydrogenase, accumulate during stationary phase. In contrast, mutations that conditionally inactivate the extracellular Vht hydrogenase are lethal when expression of the vhtGACD operon is repressed. Under these conditions, H2 accumulates, with concomitant cessation of methane production and subsequent cell lysis, suggesting that the inability to recapture extracellular H2 is responsible for the lethal phenotype. Consistent with this interpretation, double mutants that lack both Vht and Frh are viable. Thus, when intracellular hydrogen production is abrogated, loss of extracellular H2 consumption is no longer lethal. The common occurrence of both intracellular and extracellular hydrogenases in anaerobic microorganisms suggests that this unusual mechanism of energy conservation may be widespread in nature.IMPORTANCE ATP is required by all living organisms to facilitate essential endergonic reactions required for growth and maintenance. Although synthesis of ATP by substrate-level phosphorylation is widespread and significant, most ATP is made via the enzyme ATP synthase, which is energized by transmembrane chemiosmotic gradients. Therefore, establishing this gradient across the membrane is of central importance to sustaining life. Experimental validation of H2 cycling adds to a short list of mechanisms for generating a transmembrane electrochemical gradient that is likely to be widespread, especially among anaerobic microorganisms.


Subject(s)
Energy Metabolism , Hydrogen/metabolism , Methanosarcina barkeri/metabolism , Gene Deletion , Methane/metabolism , Methanol/metabolism , Methanosarcina barkeri/genetics , Methanosarcina barkeri/growth & development , Microbial Viability
16.
Appl Microbiol Biotechnol ; 102(13): 5685-5694, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29725720

ABSTRACT

Wetlands contribute to 30% of global methane emissions due to an imbalance between microbial methane production and consumption. Methanogenesis and methanotrophy have mainly been studied separately, and little is known about their potential interactions in aquatic environments. To mimic the interaction between methane producers and oxidizers in the environment, we co-cultivated the methanogenic archaeon Methanosarcina barkeri with aerobic Methylocystaceae methanotrophs in an oxygen-limited bioreactor using acetate as methanogenic substrate. Methane, acetate, dissolved oxygen, available nitrogen, pH, temperature, and cell density were monitored to follow system stability and activity. Stable reactor operation was achieved for two consecutive periods of 2 months. Fluorescence in situ hybridization micrographs indicated close association between both groups of microorganisms. This association suggests that the methanotrophs profit from direct access to the methane that is produced from acetate, while methanogens are protected by the concomitant oxygen consumption of the methanotrophs. This proof of principle study can be used to set up systems to study their responses to environmental changes.


Subject(s)
Bioreactors , Environmental Microbiology , Methanosarcina barkeri/growth & development , Methylocystaceae/growth & development , Microbial Interactions , In Situ Hybridization, Fluorescence , Methane/analysis , Methanosarcina barkeri/metabolism , Methylocystaceae/metabolism , Oxygen/metabolism
18.
J Bioinform Comput Biol ; 15(6): 1750025, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29187029

ABSTRACT

A metabolic network model provides a computational framework for studying the metabolism of a cell at the system level. The organization of metabolic networks has been investigated in different studies. One of the organization aspects considered in these studies is the decomposition of a metabolic network. The decompositions produced by different methods are very different and there is no comprehensive evaluation framework to compare the results with each other. In this study, these methods are reviewed and compared in the first place. Then they are applied to six different metabolic network models and the results are evaluated and compared based on two existing and two newly proposed criteria. Results show that no single method can beat others in all criteria but it seems that the methods introduced by Guimera and Amaral and Verwoerd do better on among metabolite-based methods and the method introduced by Sridharan et al. does better among reaction-based ones. Also, the methods are applied to several artificial networks, each constructed from merging a few KEGG pathways. Then, their capability to recover those pathways are compared. Results show that among metabolite-based methods, the method of Guimera and Amaral does better again, however, no notable difference between the performances of reaction-based methods was detected.


Subject(s)
Computational Biology/methods , Metabolic Networks and Pathways , Animals , Arabidopsis/metabolism , Databases, Factual , Escherichia coli/metabolism , Gene Ontology , Helicobacter pylori/metabolism , Methanosarcina barkeri/metabolism , Mice , Saccharomyces cerevisiae/metabolism
19.
ACS Chem Biol ; 12(9): 2362-2370, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28758722

ABSTRACT

The incorporation of noncanonical amino acids (ncAAs) with different side chains into a peptide is a promising technique for changing the functional properties of that peptide. Of particular interest is the incorporation of ncAAs into peptide-derived natural products to optimize their biophysical properties for medical and industrial applications. Here, we present the first instance of ncAA incorporation into the natural product cinnamycin in streptomycetes using the orthogonal pyrrolysyl-tRNA synthetase/tRNAPyl pair from Methanosarcina barkeri. This approach allows site-specific incorporation of ncAAs via the read-through of a stop codon by the suppressor tRNAPyl, which can carry different pyrrolysine analogues. Five new deoxycinnamycin derivatives were obtained with three distinct pyrrolysine analogues incorporated into diverse positions of the antibiotic. The combination of partial hydrolysis and MS/MS fragmentation analysis was used to verify the exact position of the incorporation events. The introduction of ncAAs into different positions of the peptide had opposite effects on the peptide's biological activity.


Subject(s)
Amino Acyl-tRNA Synthetases/metabolism , Bacteriocins/metabolism , Biological Products/metabolism , Lysine/analogs & derivatives , Methanosarcina barkeri/enzymology , Peptides, Cyclic/metabolism , Streptomyces/metabolism , Amino Acyl-tRNA Synthetases/genetics , Bacteriocins/chemistry , Bacteriocins/genetics , Biological Products/chemistry , Cloning, Molecular , Industrial Microbiology , Lysine/chemistry , Lysine/genetics , Lysine/metabolism , Methanosarcina barkeri/genetics , Methanosarcina barkeri/metabolism , Multigene Family , Peptides, Cyclic/chemistry , Peptides, Cyclic/genetics , Protein Biosynthesis , Ribosomes/genetics , Ribosomes/metabolism , Streptomyces/chemistry , Streptomyces/cytology , Streptomyces/genetics
20.
Appl Microbiol Biotechnol ; 101(19): 7303-7316, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28828628

ABSTRACT

Methanosarcina barkeri (DSM 800) is a metabolically versatile methanogen and shows distinct metabolic status under different substrate regimes. However, the mechanisms underlying distinct transcriptional profiles under different substrate regimes remain elusive. In this study, based on transcriptional analysis, the growth performances and gene expressions of M. barkeri fed on acetate, H2 + CO2, and methanol, respectively, were investigated. M. barkeri showed higher growth performances under methanol, followed by H2 + CO2 and acetate, which corresponded well with the variations of gene expressions. The α diversity (evenness) of gene expressions was highest under the acetate regime, followed by H2 + CO2 and methanol, and significantly and negatively correlated with growth performances. The gene co-expression analysis showed that "Energy production and conversion," "Coenzyme transport and metabolism," and "Translation, ribosomal structure, and biogenesis" showed deterministic cooperation patterns of intra- and inter-functional classes. However, "Posttranslational modification, protein turnover, chaperones" showed exclusion with other functional classes. The gene expressions and especially the relationships among them potentially drove the shifts of metabolic status under different substrate regimes. Consequently, this study revealed the diversity-related ecological strategies that a high α diversity probably provided more fitness and tolerance under natural environments and oppositely a low α diversity strengthened some specific physiological functions, as well as the co-responses of gene expressions to different substrate regimes.


Subject(s)
Culture Media/chemistry , Euryarchaeota/genetics , Methanosarcina barkeri/genetics , Transcriptome , Acetic Acid/chemistry , Carbon Dioxide/chemistry , Euryarchaeota/metabolism , Gene Expression Regulation, Archaeal , Hydrogen/chemistry , Hydrogen-Ion Concentration , Methanol/chemistry , Methanosarcina barkeri/metabolism , RNA, Archaeal/genetics , Sequence Analysis, RNA , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...