Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.529
Filter
1.
Sci Rep ; 14(1): 20565, 2024 09 04.
Article in English | MEDLINE | ID: mdl-39232000

ABSTRACT

Studies on MECP2 function and its implications in Rett Syndrome (RTT) have traditionally centered on neurons. Here, using human embryonic stem cell (hESC) lines, we modeled MECP2 loss-of-function to explore its effects on astrocyte (AST) development and dysfunction in the brain. Ultrastructural analysis of RTT hESC-derived cerebral organoids revealed significantly smaller mitochondria compared to controls (CTRs), particularly pronounced in glia versus neurons. Employing a multiomics approach, we observed increased gene expression and accessibility of a subset of nuclear-encoded mitochondrial genes upon mutation of MECP2 in ASTs compared to neurons. Analysis of hESC-derived ASTs showed reduced mitochondrial respiration and altered key proteins in the tricarboxylic acid cycle and electron transport chain in RTT versus CTRs. Additionally, RTT ASTs exhibited increased cytosolic amino acids under basal conditions, which were depleted upon increased energy demands. Notably, mitochondria isolated from RTT ASTs exhibited increased reactive oxygen species and influenced neuronal activity when transferred to cortical neurons. These findings underscore MECP2 mutation's differential impact on mitochondrial and metabolic pathways in ASTs versus neurons, suggesting that dysfunctional AST mitochondria may contribute to RTT pathophysiology by affecting neuronal health.


Subject(s)
Astrocytes , Methyl-CpG-Binding Protein 2 , Mitochondria , Mutation , Neurons , Reactive Oxygen Species , Rett Syndrome , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Mitochondria/metabolism , Astrocytes/metabolism , Reactive Oxygen Species/metabolism , Humans , Neurons/metabolism , Rett Syndrome/genetics , Rett Syndrome/metabolism , Rett Syndrome/pathology , Human Embryonic Stem Cells/metabolism , Cell Line
2.
Theranostics ; 14(11): 4256-4277, 2024.
Article in English | MEDLINE | ID: mdl-39113793

ABSTRACT

Rationale: Posttranslational modifications of proteins have not been addressed in studies aimed at elucidating the cardioprotective effect of exercise in atherosclerotic cardiovascular disease (ASCVD). In this study, we reveal a novel mechanism by which exercise ameliorates atherosclerosis via lactylation. Methods: Using ApoE-/- mice in an exercise model, proteomics analysis was used to identify exercise-induced specific lactylation of MeCP2 at lysine 271 (K271). Mutation of the MeCP2 K271 lactylation site in aortic plaque macrophages was achieved by recombinant adenoviral transfection. Explore the molecular mechanisms by which motility drives MeCP2 K271 lactylation to improve plaque stability using ATAC-Seq, CUT &Tag and molecular biology. Validation of the potential target RUNX1 for exercise therapy using Ro5-3335 pharmacological inhibition. Results: we showed that in ApoE-/- mice, methyl-CpG-binding protein 2 (MeCP2) K271 lactylation was observed in aortic root plaque macrophages, promoting pro-repair M2 macrophage polarization, reducing the plaque area, shrinking necrotic cores, reducing plaque lipid deposition, and increasing collagen content. Adenoviral transfection, by introducing a mutant at lysine 271, overexpressed MeCP2 K271 lactylation, which enhanced exercise-induced M2 macrophage polarization and increased plaque stability. Mechanistically, the exercise-induced atheroprotective effect requires an interaction between MeCP2 K271 lactylation and H3K36me3, leading to increased chromatin accessibility and transcriptional repression of RUNX1. In addition, the pharmacological inhibition of the transcription factor RUNX1 exerts atheroprotective effects by promoting the polarization of plaque macrophages towards the pro-repair M2 phenotype. Conclusions: These findings reveal a novel mechanism by which exercise ameliorates atherosclerosis via MeCP2 K271 lactylation-H3K36me3/RUNX1. Interventions that enhance MeCP2 K271 lactylation have been shown to increase pro-repair M2 macrophage infiltration, thereby promoting plaque stabilization and reducing the risk of atherosclerotic cardiovascular disease. We also established RUNX1 as a potential drug target for exercise therapy, thereby providing guidance for the discovery of new targets.


Subject(s)
Apolipoproteins E , Atherosclerosis , Macrophages , Methyl-CpG-Binding Protein 2 , Animals , Humans , Male , Mice , Apolipoproteins E/metabolism , Apolipoproteins E/genetics , Atherosclerosis/metabolism , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Disease Models, Animal , Macrophages/metabolism , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Mice, Inbred C57BL , Physical Conditioning, Animal , Plaque, Atherosclerotic/metabolism , Protein Processing, Post-Translational
3.
Cell Commun Signal ; 22(1): 416, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192337

ABSTRACT

Bone cancer pain (BCP) represents a prevalent symptom among cancer patients with bone metastases, yet its underlying mechanisms remain elusive. This study investigated the transcriptional regulation mechanism of Kv7(KCNQ)/M potassium channels in DRG neurons and its involvement in the development of BCP in rats. We show that HDAC2-mediated transcriptional repression of kcnq2/kcnq3 genes, which encode Kv7(KCNQ)/M potassium channels in dorsal root ganglion (DRG), contributes to the sensitization of DRG neurons and the pathogenesis of BCP in rats. Also, HDAC2 requires the formation of a corepressor complex with MeCP2 and Sin3A to execute transcriptional regulation of kcnq2/kcnq3 genes. Moreover, EREG is identified as an upstream signal molecule for HDAC2-mediated kcnq2/kcnq3 genes transcription repression. Activation of EREG/EGFR-ERK-Runx1 signaling, followed by the induction of HDAC2-mediated transcriptional repression of kcnq2/kcnq3 genes in DRG neurons, leads to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. Consequently, the activation of EREG/EGFR-ERK-Runx1 signaling, along with the subsequent transcriptional repression of kcnq2/kcnq3 genes by HDAC2 in DRG neurons, underlies the sensitization of DRG neurons and the pathogenesis of BCP in rats. These findings uncover a potentially targetable mechanism contributing to bone metastasis-associated pain in cancer patients.


Subject(s)
Bone Neoplasms , Cancer Pain , ErbB Receptors , Ganglia, Spinal , Histone Deacetylase 2 , KCNQ2 Potassium Channel , Animals , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , KCNQ2 Potassium Channel/genetics , KCNQ2 Potassium Channel/metabolism , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Bone Neoplasms/pathology , Rats , Cancer Pain/genetics , Cancer Pain/metabolism , Cancer Pain/pathology , ErbB Receptors/metabolism , ErbB Receptors/genetics , KCNQ3 Potassium Channel/genetics , KCNQ3 Potassium Channel/metabolism , Transcription, Genetic , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Sin3 Histone Deacetylase and Corepressor Complex/genetics , Signal Transduction/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Humans , Female , Extracellular Signal-Regulated MAP Kinases/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Rats, Sprague-Dawley , MAP Kinase Signaling System/genetics
4.
Respir Physiol Neurobiol ; 328: 104314, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39117159

ABSTRACT

Rett syndrome (RTT) is an autism spectrum disorder caused by loss-of-function mutations in the methyl-CPG-binding protein 2 (Mecp2) gene. Frequent apneas and irregular breathing are prevalent in RTT, and also occur in rodent models of the disorder, including Mecp2Bird and Mecp2R168X mice. Sarizotan, a serotonin 5-HT1a and dopamine D2-like receptor agonist, reduces the incidence of apneas and irregular breathing in mouse models of RTT (Abdala et al., 2014). Targeting the 5HT1a receptor alone also improves respiration in RTT mice (Levitt et al., 2013). However, the contribution of D2-like receptors in correcting these respiratory disturbances remains untested. PAOPA, a dopamine D2-like receptor positive allosteric modulator, and quinpirole, a dopamine D2-like receptor orthosteric agonist, were used in conjunction with whole-body plethysmography to evaluate whether activation of D2-like receptors is sufficient to improve breathing disturbances in female heterozygous Mecp2Bird/+ and Mecp2R168X/+ mice. PAOPA did not significantly change apnea incidence or irregularity score in RTT mice. PAOPA also had no effect on the ventilatory response to hypercapnia (7 % CO2). In contrast, quinpirole reduced apnea incidence and irregularity scores and improved the hypercapnic ventilatory response in Mecp2R168X/+ and Mecp2Bird/+ mice, while also reducing respiratory rate. These results suggest that D2-like receptors could contribute to the positive effects of sarizotan in the correction of respiratory abnormalities in Rett syndrome. However, positive allosteric modulation of D2-like receptors alone was not sufficient to evoke these effects.


Subject(s)
Disease Models, Animal , Dopamine Agonists , Methyl-CpG-Binding Protein 2 , Quinpirole , Receptors, Dopamine D2 , Rett Syndrome , Animals , Rett Syndrome/drug therapy , Rett Syndrome/metabolism , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D2/agonists , Dopamine Agonists/pharmacology , Female , Mice , Quinpirole/pharmacology , Methyl-CpG-Binding Protein 2/genetics , Respiration/drug effects , Mice, Transgenic , Allosteric Regulation/drug effects , Mice, Inbred C57BL
5.
Genes (Basel) ; 15(8)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39202466

ABSTRACT

Although long-term survival in Rett syndrome (RTT) has been observed, limited information on older people with RTT exists. We hypothesized that increased longevity in RTT would be associated with genetic variants in MECP2 associated with milder severity, and that clinical features would not be static in older individuals. To address these hypotheses, we compared the distribution of MECP2 variants and clinical severity between younger individuals with Classic RTT (under 30 years old) and older individuals (over 30 years old). Contrary to expectation, enrichment of a severe MECP2 variant (R106W) was observed in the older cohort. Overall severity was not different between the cohorts, but specific clinical features varied between the cohorts. Overall severity from first to last visit increased in the younger cohort but not in the older cohort. While some specific clinical features in the older cohort were stable from the first to the last visit, others showed improvement or worsening. These data do not support the hypothesis that mild MECP2 variants or less overall severity leads to increased longevity in RTT but demonstrate that clinical features change with increasing age in adults with RTT. Additional work is needed to understand disease progression in adults with RTT.


Subject(s)
Disease Progression , Methyl-CpG-Binding Protein 2 , Rett Syndrome , Rett Syndrome/genetics , Rett Syndrome/pathology , Humans , Methyl-CpG-Binding Protein 2/genetics , Adult , Female , Adolescent , Young Adult , Male , Middle Aged , Child , Child, Preschool , Aged , Longevity/genetics , Cohort Studies , Mutation
7.
Nat Commun ; 15(1): 7259, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179542

ABSTRACT

Safely and efficiently controlling gene expression is a long-standing goal of biomedical research, and CRISPR/Cas system can be harnessed to create powerful tools for epigenetic editing. Adeno-associated-viruses (AAVs) represent the delivery vehicle of choice for therapeutic platform. However, their small packaging capacity isn't suitable for large constructs including most CRISPR/dCas9-effector vectors. Thus, AAV-based CRISPR/Cas systems have been delivered via two separate viral vectors. Here we develop a compact CRISPR/dCas9-based repressor system packaged in AAV as a single optimized vector. The system comprises the small Staphylococcus aureus (Sa)dCas9 and an engineered repressor molecule, a fusion of MeCP2's transcription repression domain (TRD) and KRAB. The dSaCas9-KRAB-MeCP2(TRD) vector platform repressed robustly and sustainably the expression of multiple genes-of-interest, in vitro and in vivo, including ApoE, the strongest genetic risk factor for late onset Alzheimer's disease (LOAD). Our platform broadens the CRISPR/dCas9 toolset available for transcriptional manipulation of gene expression in research and therapeutic settings.


Subject(s)
CRISPR-Cas Systems , Dependovirus , Gene Editing , Genetic Vectors , Gene Editing/methods , Dependovirus/genetics , CRISPR-Cas Systems/genetics , Humans , Animals , Genetic Vectors/genetics , Mice , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/therapy , Genetic Therapy/methods , Epigenome , HEK293 Cells , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Epigenesis, Genetic , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Apolipoproteins E/genetics , Staphylococcus aureus/genetics
8.
Epilepsy Res ; 205: 107399, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39003968

ABSTRACT

OBJECTIVES: This study aimed to evaluate seizure semiology, electroencephalogram (EEG), magnetic resonance imaging (MRI), and genetic findings, as well as treatment choices in Rett syndrome (RTT). METHODS: A retrospective analysis was conducted on one hundred and twenty cases diagnosed with RTT with a genetic mutation. Data were obtained from nine participating centers. RESULTS: In this study, 93.3 % of patients were female, with typical RTT found in 70 % of cases. Genetic etiology revealed MECP2, FoxG1, and CDKL5 in 93.8 %, 2.7 %, and 1.8 % of cases, respectively. Atypical RTT clinics were observed in 50 % of male cases, with the first EEG being normal in atypical RTT cases (p = 0.01). Generalized tonic-clonic and myoclonic epilepsy were the most common seizure semiologies, while absence and focal epilepsy were less prevalent. Valproate, levetiracetam, lamotrigine, and clobazam were the most commonly used antiepileptic drugs, affecting the severity and frequency of seizures (p = 0.015, p=<0.001, p = 0.022, and p=<0.001, respectively). No significant differences were observed in EEG findings. The initiation of anti-seizure medications significantly altered seizure characteristics (Table 4). A ketogenic diet and vagal nerve stimulation (VNS) correlated with a 50 % improvement in cognitive function, while steroid treatment showed a 60 % improvement. Remarkably, seizures were substantially reduced after VNS application. CONCLUSION: This study underscores the importance of genetic diagnosis in RTT cases with a clinical diagnosis. These preliminary results will be further validated with the inclusion of clinically diagnosed RTT cases in our ongoing study.


Subject(s)
Anticonvulsants , Electroencephalography , Magnetic Resonance Imaging , Methyl-CpG-Binding Protein 2 , Rett Syndrome , Seizures , Humans , Rett Syndrome/genetics , Rett Syndrome/physiopathology , Female , Male , Retrospective Studies , Electroencephalography/methods , Child , Magnetic Resonance Imaging/methods , Child, Preschool , Seizures/genetics , Seizures/physiopathology , Anticonvulsants/therapeutic use , Adolescent , Methyl-CpG-Binding Protein 2/genetics , Infant , Mutation/genetics , Nerve Tissue Proteins/genetics , Forkhead Transcription Factors/genetics , Protein Serine-Threonine Kinases
9.
Eur J Pediatr ; 183(9): 4085-4091, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38960904

ABSTRACT

PURPOSE: Rett syndrome is a rare neurodevelopmental disorder associated with methyl CpG binding protein 2 (MECP2) gene mutations. We aimed to characterize the long-term nutritional and gastrointestinal course of Rett syndrome in a large national patient population. METHODS: We conducted a retrospective cohort study of patients followed during 1991-2021 at a national center for Rett syndrome. The data retrieved included clinical features, laboratory and genetic analyses. Continuous anthropometric measurements were calculated for the closest visit to the median ages: 2.5, 7.5, 12.5 and 17.5 years. Kaplan Meier curves were used to describe the appearance of clinical manifestations during the follow up period. Generalized estimating equation models were used to compare repeated measurements. RESULTS: Included were 141 patients (139 females), the median age at the first visit was 3.2 years (interquartile range [IQR] 2.3-5.7), and the median length of follow-up was 94.5 months (IQR 28.6-153.3). Mean weight, height and BMI Z-scores were -1.09, -1.03 and -0.56, respectively, at median age 2.5 years; and deteriorated to -3.95, -3.01 and -1.19, respectively, at median age 17.5 years (P < 0.001). Gastrointestinal features included constipation (47.5%, 67/141) and chewing/feeding difficulties (20%, 28/141) at presentation; and an additional 47 (33.3%) and 24 (17.0%), respectively, during follow up. Twenty-eight patients (20%) developed aerophagia and 44 (31.2%) gastroesophageal reflux. No relation was found between genetic mutation types and clinical manifestations. GI manifestations were more prevalent in patients with typical form of Rett syndrome. CONCLUSIONS: Anthropometric parameters were shown to deteriorate with age, regardless of the specific genetic mutation. Chewing/feeding difficulties, constipation and gastroesophageal reflux are common in Rett patients.


Subject(s)
Gastrointestinal Diseases , Rett Syndrome , Humans , Rett Syndrome/genetics , Rett Syndrome/complications , Rett Syndrome/physiopathology , Female , Retrospective Studies , Child , Child, Preschool , Adolescent , Male , Follow-Up Studies , Gastrointestinal Diseases/etiology , Methyl-CpG-Binding Protein 2/genetics , Nutritional Status , Mutation
10.
Nat Microbiol ; 9(8): 2051-2072, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39075233

ABSTRACT

Delivering macromolecules across biological barriers such as the blood-brain barrier limits their application in vivo. Previous work has demonstrated that Toxoplasma gondii, a parasite that naturally travels from the human gut to the central nervous system (CNS), can deliver proteins to host cells. Here we engineered T. gondii's endogenous secretion systems, the rhoptries and dense granules, to deliver multiple large (>100 kDa) therapeutic proteins into neurons via translational fusions to toxofilin and GRA16. We demonstrate delivery in cultured cells, brain organoids and in vivo, and probe protein activity using imaging, pull-down assays, scRNA-seq and fluorescent reporters. We demonstrate robust delivery after intraperitoneal administration in mice and characterize 3D distribution throughout the brain. As proof of concept, we demonstrate GRA16-mediated brain delivery of the MeCP2 protein, a putative therapeutic target for Rett syndrome. By characterizing the potential and current limitations of the system, we aim to guide future improvements that will be required for broader application.


Subject(s)
Brain , Neurons , Protozoan Proteins , Toxoplasma , Toxoplasma/genetics , Toxoplasma/metabolism , Animals , Neurons/metabolism , Neurons/parasitology , Mice , Humans , Brain/metabolism , Brain/parasitology , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Drug Delivery Systems
11.
J Cell Mol Med ; 28(13): e18510, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953409

ABSTRACT

In recent years, inflammatory disorders have emerged as a significant concern for human health. Through ongoing research on anti-inflammatory agents, alpinetin has shown promising anti-inflammatory properties, including involvement in epigenetic modification pathways. As a crucial regulator of epigenetic modifications, Mecp2 may play a role in modulating the epigenetic effects of alpinetin, potentially impacting its anti-inflammatory properties. To test this hypothesis, two key components, p65 (a member of NF-KB family) and p300 (a type of co-activator), were screened by the expression profiling microarray, which exhibited a strong correlation with the intensity of LPS stimulation in mouse macrophages. Meanwhile, alpinetin demonstrates the anti-inflammatory properties through its ability to disrupt the synthesis of p65 and its interaction with promoters of inflammatory genes, yet it did not exhibit similar effects on p300. Additionally, Mecp2 can inhibit the binding of p300 by attaching to the methylated inflammatory gene promoter induced by alpinetin, leading to obstacles in promoter acetylation and subsequently impacting the binding of p65, ultimately enhancing the anti-inflammatory capabilities of alpinetin. Similarly, in a sepsis mouse model, it was observed that homozygotes overexpressing Mecp2 showed a greater reduction in organ damage and improved survival rates compared to heterozygotes when administered by alpinetin. However, blocking the expression of DNA methyltransferase 3A (DNMT3A) resulted in the loss of Mecp2's anti-inflammatory assistance. In conclusion, Mecp2 may augment the anti-inflammatory effects of alpinetin through epigenetic 'crosstalk', highlighting the potential efficacy of a combined therapeutic strategy involving Mecp2 and alpinetin for anti-inflammatory intervention.


Subject(s)
Anti-Inflammatory Agents , Epigenesis, Genetic , Flavanones , Methyl-CpG-Binding Protein 2 , Promoter Regions, Genetic , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Animals , Flavanones/pharmacology , Epigenesis, Genetic/drug effects , Mice , Anti-Inflammatory Agents/pharmacology , RAW 264.7 Cells , DNA Methylation/drug effects , Lipopolysaccharides/pharmacology , Transcription Factor RelA/metabolism , Sepsis/drug therapy , Sepsis/genetics , Sepsis/metabolism , Macrophages/metabolism , Macrophages/drug effects , Inflammation/drug therapy , Inflammation/pathology , Inflammation/genetics , Inflammation/metabolism , DNA Methyltransferase 3A/metabolism , Male , E1A-Associated p300 Protein/metabolism , Disease Models, Animal , Mice, Inbred C57BL , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics
12.
Stem Cell Reports ; 19(8): 1074-1091, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39059378

ABSTRACT

Although microglia are macrophages of the central nervous system, their involvement is not limited to immune functions. The roles of microglia during development in humans remain poorly understood due to limited access to fetal tissue. To understand how microglia can impact human neurodevelopment, the methyl-CpG binding protein 2 (MECP2) gene was knocked out in human microglia-like cells (MGLs). Disruption of the MECP2 in MGLs led to transcriptional and functional perturbations, including impaired phagocytosis. The co-culture of healthy MGLs with MECP2-knockout (KO) neurons rescued synaptogenesis defects, suggesting a microglial role in synapse formation. A targeted drug screening identified ADH-503, a CD11b agonist, restored phagocytosis and synapse formation in spheroid-MGL co-cultures, significantly improved disease progression, and increased survival in MeCP2-null mice. These results unveil a MECP2-specific regulation of human microglial phagocytosis and identify a novel therapeutic treatment for MECP2-related conditions.


Subject(s)
Methyl-CpG-Binding Protein 2 , Microglia , Neurodevelopmental Disorders , Phagocytosis , Microglia/metabolism , Humans , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Animals , Mice , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/pathology , Coculture Techniques , Disease Models, Animal , Mice, Knockout , Synapses/metabolism , Neurons/metabolism
14.
Medicina (Kaunas) ; 60(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38929606

ABSTRACT

Background and Objectives: This study aimed to investigate the relationship between neuropathic pain and CREB-binding protein (CBP) and methyl-CpG-binding protein 2 (MeCP2) expression levels in a rat model with spared nerve injury (SNI). Materials and Methods: Rat (male Sprague-Dawley white rats) models with surgical SNI (n = 6) were prepared, and naive rats (n = 5) were used as controls. The expression levels of CBP and MeCP2 in the spinal cord and dorsal root ganglion (DRG) were compared through immunohistochemistry at 7 and 14 days after surgery. The relationship between neuropathic pain and CBP/MeCP2 was also analyzed through intrathecal siRNA administration. Results: SNI induced a significant increase in the number of CBPs in L4 compared with contralateral DRG as well as with naive rats. The number of MeCP2 cells in the dorsal horn on the ipsilateral side decreased significantly compared with the contralateral dorsal horn and the control group. SNI induced a significant decrease in the number of MeCP2 neurons in the L4 ipsilateral DRG compared with the contralateral DRG and naive rats. The intrathecal injection of CBP siRNA significantly inhibited mechanical allodynia induced by SNI compared with non-targeting siRNA treatment. MeCP2 siRNA injection showed no significant effect on mechanical allodynia. Conclusions: The results suggest that CBP and MeCP2 may play an important role in the generation of neuropathic pain following peripheral nerve injury.


Subject(s)
CREB-Binding Protein , Disease Models, Animal , Methyl-CpG-Binding Protein 2 , Neuralgia , Rats, Sprague-Dawley , Animals , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Neuralgia/metabolism , Neuralgia/etiology , Male , Rats , CREB-Binding Protein/metabolism , Ganglia, Spinal/metabolism , RNA, Small Interfering , Peripheral Nerve Injuries/complications , Peripheral Nerve Injuries/metabolism , Spinal Cord/metabolism , Immunohistochemistry
15.
Nat Commun ; 15(1): 5136, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879605

ABSTRACT

Coordination of neuronal differentiation with expansion of the neuroepithelial/neural progenitor cell (NEPC/NPC) pool is essential in early brain development. Our in vitro and in vivo studies identify independent and opposing roles for two neural-specific and differentially expressed non-coding RNAs derived from the same locus: the evolutionarily conserved lncRNA Rncr3 and the embedded microRNA miR124a-1. Rncr3 regulates NEPC/NPC proliferation and controls the biogenesis of miR124a, which determines neuronal differentiation. Rncr3 conserved exons 2/3 are cytosine methylated and bound by methyl-CpG binding protein MeCP2, which restricts expression of miR124a embedded in exon 4 to prevent premature neuronal differentiation, and to orchestrate proper brain growth. MeCP2 directly binds cytosine-methylated Rncr3 through previously unrecognized lysine residues and suppresses miR124a processing by recruiting PTBP1 to block access of DROSHA-DGCR8. Thus, miRNA processing is controlled by lncRNA m5C methylation along with the defined m5C epitranscriptomic RNA reader protein MeCP2 to coordinate brain development.


Subject(s)
Methyl-CpG-Binding Protein 2 , MicroRNAs , Neural Stem Cells , Neurogenesis , RNA, Long Noncoding , MicroRNAs/metabolism , MicroRNAs/genetics , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Neurogenesis/genetics , Animals , Mice , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Brain/metabolism , Brain/embryology , Humans , Cell Differentiation , DNA Methylation , Polypyrimidine Tract-Binding Protein/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Cell Proliferation , Mice, Inbred C57BL , 5-Methylcytosine/metabolism , 5-Methylcytosine/analogs & derivatives , Male , Exons/genetics , Neurons/metabolism , Ribonuclease III
16.
J Neurol Sci ; 462: 123077, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38850769

ABSTRACT

Nodding syndrome is an epileptic encephalopathy associated with neuroinflammation and tauopathy. This initially pediatric brain disease, which has some clinical overlap with Methyl-CpG-binding protein 2 (MECP2) Duplication Syndrome, has impacted certain impoverished East African communities coincident with local civil conflict and internal displacement, conditions that forced dependence on contaminated food and water. A potential role in Nodding syndrome for certain biotoxins (freshwater cyanotoxins plus/minus mycotoxins) with neuroinflammatory, excitotoxic, tauopathic, and MECP2-dysregulating properties, is considered here for the first time.


Subject(s)
Methyl-CpG-Binding Protein 2 , Nodding Syndrome , Humans , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Nodding Syndrome/genetics
17.
Cells ; 13(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38891120

ABSTRACT

Methyl-CpG-binding protein 2 (Mecp2) is an epigenetic modulator and numerous studies have explored its impact on the central nervous system manifestations. However, little attention has been given to its potential contributions to the peripheral nervous system (PNS). To investigate the regulation of Mecp2 in the PNS on specific central regions, we generated Mecp2fl/flAdvillincre mice with the sensory-neuron-specific deletion of the Mecp2 gene and found the mutant mice had a heightened sensitivity to temperature, which, however, did not affect the sense of motion, social behaviors, and anxiety-like behavior. Notably, in comparison to Mecp2fl/fl mice, Mecp2fl/flAdvillincre mice exhibited improved learning and memory abilities. The levels of hippocampal synaptophysin and PSD95 proteins were higher in Mecp2fl/flAdvillincre mice than in Mecp2fl/fl mice. Golgi staining revealed a significant increase in total spine density, and dendritic arborization in the hippocampal pyramidal neurons of Mecp2fl/flAdvillincre mice compared to Mecp2fl/fl mice. In addition, the activation of the BDNF-TrkB-CREB1 pathway was observed in the hippocampus and spinal cord of Mecp2fl/flAdvillincre mice. Intriguingly, the hippocampal BDNF/CREB1 signaling pathway in mutant mice was initiated within 5 days after birth. Our findings suggest a potential therapeutic strategy targeting the BDNF-TrkB-CREB1 signaling pathway and peripheral somasensory neurons to treat learning and cognitive deficits associated with Mecp2 disorders.


Subject(s)
Brain-Derived Neurotrophic Factor , Cognition , Dendritic Spines , Hippocampus , Methyl-CpG-Binding Protein 2 , Animals , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/deficiency , Hippocampus/metabolism , Hippocampus/pathology , Dendritic Spines/metabolism , Mice , Brain-Derived Neurotrophic Factor/metabolism , Sensory Receptor Cells/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Male , Signal Transduction , Mice, Inbred C57BL , Receptor, trkB/metabolism , Receptor, trkB/genetics
18.
Dis Model Mech ; 17(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38881329

ABSTRACT

MECP2 duplication syndrome (MDS) is a neurodevelopmental disorder caused by tandem duplication of the MECP2 locus and its surrounding genes, including IRAK1. Current MDS mouse models involve transgenic expression of MECP2 only, limiting their applicability to the study of the disease. Herein, we show that an efficient and precise CRISPR/Cas9 fusion proximity-based approach can be utilized to generate an Irak1-Mecp2 tandem duplication mouse model ('Mecp2 Dup'). The Mecp2 Dup mouse model recapitulates the genomic landscape of human MDS by harboring a 160 kb tandem duplication encompassing Mecp2 and Irak1, representing the minimal disease-causing duplication, and the neighboring genes Opn1mw and Tex28. The Mecp2 Dup model exhibits neuro-behavioral abnormalities, and an abnormal immune response to infection not previously observed in other mouse models, possibly owing to Irak1 overexpression. The Mecp2 Dup model thus provides a tool to investigate MDS disease mechanisms and develop potential therapies applicable to patients.


Subject(s)
Disease Models, Animal , Gene Duplication , Interleukin-1 Receptor-Associated Kinases , Mental Retardation, X-Linked , Methyl-CpG-Binding Protein 2 , Animals , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , Interleukin-1 Receptor-Associated Kinases/metabolism , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/pathology , Humans , Mice, Inbred C57BL , Mice , CRISPR-Cas Systems/genetics , Behavior, Animal , Male
19.
Eur J Neurosci ; 60(2): 4004-4018, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38746988

ABSTRACT

MECP2 duplication syndrome (MDS) is an X-linked neurodevelopmental disorder caused by the gain of dose of at least the genes MECP2 and IRAK1 and is characterised by intellectual disability (ID), developmental delay, hypotonia, epilepsy and recurrent infections. It mainly affects males, and females can be affected or asymptomatic carriers. Rett syndrome (RTT) is mainly triggered by loss of function mutations in MECP2 and is a well described syndrome that presents ID, epilepsy, lack of purposeful hand use and impaired speech, among others. As a result of implementing omics technology, altered biological pathways in human RTT samples have been reported, but such molecular characterisation has not been performed in patients with MDS. We gathered human skin fibroblasts from 17 patients with MDS, 10 MECP2 duplication carrier mothers and 21 patients with RTT, and performed multi-omics (RNAseq and proteomics) analysis. Here, we provide a thorough description and compare the shared and specific dysregulated biological processes between the cohorts. We also highlight the genes TMOD2, SRGAP1, COPS2, CNPY2, IGF2BP1, MOB2, VASP, FZD7, ECSIT and KIF3B as biomarker and therapeutic target candidates due to their implication in neuronal functions. Defining the RNA and protein profiles has shown that our four cohorts are less alike than expected by their shared phenotypes.


Subject(s)
Mental Retardation, X-Linked , Methyl-CpG-Binding Protein 2 , Proteomics , Rett Syndrome , Humans , Female , Methyl-CpG-Binding Protein 2/genetics , Male , Mental Retardation, X-Linked/genetics , Rett Syndrome/genetics , Child , Adult , Adolescent , Heterozygote , Child, Preschool , Fibroblasts/metabolism , Young Adult , Multiomics
20.
Am J Hum Genet ; 111(6): 1140-1164, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38776926

ABSTRACT

Detection of structural variants (SVs) is currently biased toward those that alter copy number. The relative contribution of inversions toward genetic disease is unclear. In this study, we analyzed genome sequencing data for 33,924 families with rare disease from the 100,000 Genomes Project. From a database hosting >500 million SVs, we focused on 351 genes where haploinsufficiency is a confirmed disease mechanism and identified 47 ultra-rare rearrangements that included an inversion (24 bp to 36.4 Mb, 20/47 de novo). Validation utilized a number of orthogonal approaches, including retrospective exome analysis. RNA-seq data supported the respective diagnoses for six participants. Phenotypic blending was apparent in four probands. Diagnostic odysseys were a common theme (>50 years for one individual), and targeted analysis for the specific gene had already been performed for 30% of these individuals but with no findings. We provide formal confirmation of a European founder origin for an intragenic MSH2 inversion. For two individuals with complex SVs involving the MECP2 mutational hotspot, ambiguous SV structures were resolved using long-read sequencing, influencing clinical interpretation. A de novo inversion of HOXD11-13 was uncovered in a family with Kantaputra-type mesomelic dysplasia. Lastly, a complex translocation disrupting APC and involving nine rearranged segments confirmed a clinical diagnosis for three family members and resolved a conundrum for a sibling with a single polyp. Overall, inversions play a small but notable role in rare disease, likely explaining the etiology in around 1/750 families across heterogeneous clinical cohorts.


Subject(s)
Chromosome Inversion , Rare Diseases , Humans , Rare Diseases/genetics , Male , Female , Chromosome Inversion/genetics , Pedigree , Genome, Human , Whole Genome Sequencing , Methyl-CpG-Binding Protein 2/genetics , Mutation , Homeodomain Proteins/genetics , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL