Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 16.896
1.
Oncoimmunology ; 13(1): 2348254, 2024.
Article En | MEDLINE | ID: mdl-38737793

Metastatic (m) colorectal cancer (CRC) is an incurable disease with a poor prognosis and thus remains an unmet clinical need. Immune checkpoint blockade (ICB)-based immunotherapy is effective for mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) mCRC patients, but it does not benefit the majority of mCRC patients. NK cells are innate lymphoid cells with potent effector responses against a variety of tumor cells but are frequently dysfunctional in cancer patients. Memory-like (ML) NK cells differentiated after IL-12/IL-15/IL-18 activation overcome many challenges to effective NK cell anti-tumor responses, exhibiting enhanced recognition, function, and in vivo persistence. We hypothesized that ML differentiation enhances the NK cell responses to CRC. Compared to conventional (c) NK cells, ML NK cells displayed increased IFN-γ production against both CRC cell lines and primary patient-derived CRC spheroids. ML NK cells also exhibited improved killing of CRC target cells in vitro in short-term and sustained cytotoxicity assays, as well as in vivo in NSG mice. Mechanistically, enhanced ML NK cell responses were dependent on the activating receptor NKG2D as its blockade significantly decreased ML NK cell functions. Compared to cNK cells, ML NK cells exhibited greater antibody-dependent cytotoxicity when targeted against CRC by cetuximab. ML NK cells from healthy donors and mCRC patients exhibited increased anti-CRC responses. Collectively, our findings demonstrate that ML NK cells exhibit enhanced responses against CRC targets, warranting further investigation in clinical trials for mCRC patients, including those who have failed ICB.


Cell Differentiation , Colorectal Neoplasms , Immunologic Memory , Killer Cells, Natural , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Humans , Animals , Mice , Cell Differentiation/drug effects , Cell Line, Tumor , Interferon-gamma/metabolism , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Mice, Inbred NOD , Female
2.
Pathol Oncol Res ; 30: 1611586, 2024.
Article En | MEDLINE | ID: mdl-38689823

Mounting evidence suggests that the immune landscape within prostate tumors influences progression, metastasis, treatment response, and patient outcomes. In this study, we investigated the spatial density of innate immune cell populations within NOD.SCID orthotopic prostate cancer xenografts following microinjection of human DU145 prostate cancer cells. Our laboratory has previously developed nanoscale liposomes that attach to leukocytes via conjugated E-selectin (ES) and kill cancer cells via TNF-related apoptosis inducing ligand (TRAIL). Immunohistochemistry (IHC) staining was performed on tumor samples to identify and quantify leukocyte infiltration for different periods of tumor growth and E-selectin/TRAIL (EST) liposome treatments. We examined the spatial-temporal dynamics of three different immune cell types infiltrating tumors using QuPath image analysis software. IHC staining revealed that F4/80+ tumor-associated macrophages (TAMs) were the most abundant immune cells in all groups, irrespective of time or treatment. The density of TAMs decreased over the course of tumor growth and decreased in response to EST liposome treatments. Intratumoral versus marginal analysis showed a greater presence of TAMs in the marginal regions at 3 weeks of tumor growth which became more evenly distributed over time and in tumors treated with EST liposomes. TUNEL staining indicated that EST liposomes significantly increased cell apoptosis in treated tumors. Additionally, confocal microscopy identified liposome-coated TAMs in both the core and periphery of tumors, highlighting the ability of liposomes to infiltrate tumors by "piggybacking" on macrophages. The results of this study indicate that TAMs represent the majority of innate immune cells within NOD.SCID orthotopic prostate tumors, and spatial density varies widely as a function of tumor size, duration of tumor growth, and treatment of EST liposomes.


Liposomes , Mice, Inbred NOD , Mice, SCID , Prostatic Neoplasms , Tumor-Associated Macrophages , Animals , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/immunology , Mice , Humans , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology , Xenograft Model Antitumor Assays , Apoptosis , Disease Models, Animal , TNF-Related Apoptosis-Inducing Ligand/metabolism , E-Selectin/metabolism , Tumor Microenvironment/immunology
3.
PLoS One ; 19(5): e0303863, 2024.
Article En | MEDLINE | ID: mdl-38781241

Type 1 diabetes (T1D)-associated hyperglycemia develops, in part, from loss of insulin-secreting beta cells. The degree of glycemic dysregulation and the age at onset of disease can serve as indicators of the aggressiveness of the disease. Tracking blood glucose levels in prediabetic mice may demonstrate the onset of diabetes and, along with animal age, also presage disease severity. In this study, an analysis of blood glucose levels obtained from female NOD mice starting at 4 weeks until diabetes onset was undertaken. New onset diabetic mice were orally vaccinated with a Salmonella-based vaccine towards T1D-associated preproinsulin combined with TGFß and IL10 along with anti-CD3 antibody. Blood glucose levels were obtained before and after development of disease and vaccination. Animals were classified as acute disease if hyperglycemia was confirmed at a young age, while other animals were classified as progressive disease. The effectiveness of the oral T1D vaccine was greater in mice with progressive disease that had less glucose excursion compared to acute disease mice. Overall, the Salmonella-based vaccine reversed disease in 60% of the diabetic mice due, in part, to lessening of islet inflammation, improving residual beta cell health, and promoting tolerance. In summary, the age of disease onset and severity of glucose dysregulation in NOD mice predicted response to vaccine therapy. This suggests a similar disease categorization in the clinic may predict therapeutic response.


Blood Glucose , Diabetes Mellitus, Type 1 , Mice, Inbred NOD , Animals , Female , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/microbiology , Mice , Administration, Oral , Blood Glucose/metabolism , Salmonella Vaccines/immunology , Salmonella Vaccines/administration & dosage , Salmonella/immunology , Insulin/immunology , Disease Progression , Acute Disease , Protein Precursors
4.
Nat Commun ; 15(1): 4557, 2024 May 29.
Article En | MEDLINE | ID: mdl-38811530

Glucocorticoid (GC) resistance in childhood relapsed B-cell acute lymphoblastic leukemia (B-ALL) represents an important challenge. Despite decades of clinical use, the mechanisms underlying resistance remain poorly understood. Here, we report that in B-ALL, GC paradoxically induce their own resistance by activating a phospholipase C (PLC)-mediated cell survival pathway through the chemokine receptor, CXCR4. We identify PLC as aberrantly activated in GC-resistant B-ALL and its inhibition is able to induce cell death by compromising several transcriptional programs. Mechanistically, dexamethasone (Dex) provokes CXCR4 signaling, resulting in the activation of PLC-dependent Ca2+ and protein kinase C signaling pathways, which curtail anticancer activity. Treatment with a CXCR4 antagonist or a PLC inhibitor improves survival of Dex-treated NSG mice in vivo. CXCR4/PLC axis inhibition significantly reverses Dex resistance in B-ALL cell lines (in vitro and in vivo) and cells from Dex resistant ALL patients. Our study identifies how activation of the PLC signalosome in B-ALL by Dex limits the upfront efficacy of this chemotherapeutic agent.


Dexamethasone , Drug Resistance, Neoplasm , Glucocorticoids , Receptors, CXCR4 , Signal Transduction , Type C Phospholipases , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Humans , Animals , Signal Transduction/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Dexamethasone/pharmacology , Type C Phospholipases/metabolism , Cell Line, Tumor , Glucocorticoids/pharmacology , Mice , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Mice, Inbred NOD , Cell Survival/drug effects
5.
Nat Commun ; 15(1): 4653, 2024 May 31.
Article En | MEDLINE | ID: mdl-38821942

Patient-derived xenograft (PDX) models are widely used in cancer research. To investigate the genomic fidelity of non-small cell lung cancer PDX models, we established 48 PDX models from 22 patients enrolled in the TRACERx study. Multi-region tumor sampling increased successful PDX engraftment and most models were histologically similar to their parent tumor. Whole-exome sequencing enabled comparison of tumors and PDX models and we provide an adapted mouse reference genome for improved removal of NOD scid gamma (NSG) mouse-derived reads from sequencing data. PDX model establishment caused a genomic bottleneck, with models often representing a single tumor subclone. While distinct tumor subclones were represented in independent models from the same tumor, individual PDX models did not fully recapitulate intratumor heterogeneity. On-going genomic evolution in mice contributed modestly to the genomic distance between tumors and PDX models. Our study highlights the importance of considering primary tumor heterogeneity when using PDX models and emphasizes the benefit of comprehensive tumor sampling.


Carcinoma, Non-Small-Cell Lung , Genetic Heterogeneity , Lung Neoplasms , Mice, Inbred NOD , Mice, SCID , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Animals , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Female , Exome Sequencing , Genomics/methods , Male , Xenograft Model Antitumor Assays , Heterografts , Disease Models, Animal , Aged , Middle Aged
6.
Int J Mol Sci ; 25(10)2024 May 11.
Article En | MEDLINE | ID: mdl-38791299

Type 1 diabetes (T1D) affects gastrointestinal (GI) motility, favoring gastroparesis, constipation, and fecal incontinence, which are more prevalent in women. The mechanisms are unknown. Given the G-protein-coupled estrogen receptor's (GPER) role in GI motility, we investigated sex-related diabetes-induced epigenetic changes in GPER. We assessed GPER mRNA and protein expression levels using qPCR and Western blot analyses, and quantified the changes in nuclear DNA methyltransferases and histone modifications (H3K4me3, H3Ac, and H3K27Ac) by ELISA kits. Targeted bisulfite and chromatin immunoprecipitation assays were used to evaluate DNA methylation and histone modifications around the GPER promoter by chromatin immunoprecipitation assays in gastric and colonic smooth muscle tissues of male and female control (CTR) and non-obese diabetic (NOD) mice. GPER expression was downregulated in NOD, with sex-dependent variations. In the gastric smooth muscle, not in colonic smooth muscle, downregulation coincided with differences in methylation ratios between regions 1 and 2 of the GPER promoter of NOD. DNA methylation was higher in NOD male colonic smooth muscle than in NOD females. H3K4me3 and H3ac enrichment decreased in NOD gastric smooth muscle. H3K4me3 levels diminished in the colonic smooth muscle of NOD. H3K27ac levels were unaffected, but enrichment decreased in NOD male gastric smooth muscle; however, it increased in the NOD male colonic smooth muscle and decreased in the female NOD colonic smooth muscle. Male NOD colonic smooth muscle exhibited decreased H3K27ac levels, not female, whereas female NOD colonic smooth muscle demonstrated diminished enrichment of H3ac at the GPER promoter, contrary to male NOD. Sex-specific epigenetic mechanisms contribute to T1D-mediated suppression of GPER expression in the GI tract. These insights advance our understanding of T1D complications and suggest promising avenues for targeted therapeutic interventions.


Colon , DNA Methylation , Epigenesis, Genetic , Histones , Mice, Inbred NOD , Muscle, Smooth , Promoter Regions, Genetic , Receptors, G-Protein-Coupled , Animals , Female , Male , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Muscle, Smooth/metabolism , Mice , Histones/metabolism , Colon/metabolism , Colon/pathology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/genetics , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Stomach/pathology
7.
J Surg Res ; 298: 240-250, 2024 Jun.
Article En | MEDLINE | ID: mdl-38631173

INTRODUCTION: Neuroblastoma (NB) is the most common extra-cranial malignancy in children. Poor survival in high-risk NB is attributed to recurrent metastatic disease. To better study metastatic disease, we used a novel mouse model to investigate differential gene expression between primary tumor cells and metastatic cells. We hypothesized that metastatic NB cells have a different gene expression profile from primary tumor cells and cultured cells. METHODS: Using three human NB cell lines (NGP, CHLA255, and SH-SY5Y), orthotopic xenografts were established in immunodeficient nod/scid gamma mice via subcapsular renal injection. Mice were sacrificed and NB cells were isolated from the primary tumor and from sites of metastasis (bone marrow, liver). RNA sequencing, gene set analysis, and pathway analysis were performed to identify differentially expressed genes and molecular pathways in the metastatic cells compared to primary tumor cells. RESULTS: There were 266 differentially expressed genes in metastatic tumor cells (bone marrow and liver combined) compared to primary tumor cells. The top upregulated gene was KCNK1 and the top downregulated genes were PDE7B and NEBL. Top upregulated pathways in the metastatic cells were involved in ion transport, cell signaling, and cell proliferation. Top downregulated pathways were involved in DNA synthesis, transcription, and cellular metabolism. CONCLUSIONS: In metastatic NB cells, our study identified the upregulation of biologic processes involved in cell cycle regulation, cell proliferation, migration, and invasion. Ongoing studies aim to validate downstream translation of these genomic alterations, as well as target these pathways to more effectively suppress and inhibit recurrent metastatic disease in NB.


Gene Expression Regulation, Neoplastic , Mice, Inbred NOD , Mice, SCID , Neuroblastoma , Animals , Neuroblastoma/pathology , Neuroblastoma/genetics , Neuroblastoma/metabolism , Humans , Mice , Cell Line, Tumor , Liver Neoplasms/secondary , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Bone Marrow Neoplasms/secondary , Bone Marrow Neoplasms/genetics , Gene Expression Profiling , Transcriptome
8.
Nat Methods ; 21(5): 846-856, 2024 May.
Article En | MEDLINE | ID: mdl-38658646

CD4+ T cells recognize peptide antigens presented on class II major histocompatibility complex (MHC-II) molecules to carry out their function. The remarkable diversity of T cell receptor sequences and lack of antigen discovery approaches for MHC-II make profiling the specificities of CD4+ T cells challenging. We have expanded our platform of signaling and antigen-presenting bifunctional receptors to encode MHC-II molecules presenting covalently linked peptides (SABR-IIs) for CD4+ T cell antigen discovery. SABR-IIs can present epitopes to CD4+ T cells and induce signaling upon their recognition, allowing a readable output. Furthermore, the SABR-II design is modular in signaling and deployment to T cells and B cells. Here, we demonstrate that SABR-IIs libraries presenting endogenous and non-contiguous epitopes can be used for antigen discovery in the context of type 1 diabetes. SABR-II libraries provide a rapid, flexible, scalable and versatile approach for de novo identification of CD4+ T cell ligands from single-cell RNA sequencing data using experimental and computational approaches.


CD4-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Histocompatibility Antigens Class II , CD4-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Animals , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/chemistry , Mice , Humans , Diabetes Mellitus, Type 1/immunology , Peptides/immunology , Peptides/chemistry , Antigen Presentation/immunology , Receptors, Antigen, T-Cell/immunology , Mice, Inbred NOD , Single-Cell Analysis/methods
9.
Cancer Res ; 84(9): 1426-1442, 2024 May 02.
Article En | MEDLINE | ID: mdl-38588409

Desmoplastic small round cell tumors (DSRCT) are a type of aggressive, pediatric sarcoma characterized by the EWSR1::WT1 fusion oncogene. Targeted therapies for DSRCT have not been developed, and standard multimodal therapy is insufficient, leading to a 5-year survival rate of only 15% to 25%. Here, we depleted EWSR1::WT1 in DSRCT and established its essentiality in vivo. Transcriptomic analysis revealed that EWSR1::WT1 induces unique transcriptional alterations compared with WT1 and other fusion oncoproteins and that EWSR1::WT1 binding directly mediates gene upregulation. The E-KTS isoform of EWSR1::WT1 played a dominant role in transcription, and it bound to the CCND1 promoter and stimulated DSRCT growth through the cyclin D-CDK4/6-RB axis. Treatment with the CDK4/6 inhibitor palbociclib successfully reduced growth in two DSRCT xenograft models. As palbociclib has been approved by the FDA for the treatment of breast cancer, these findings demonstrate the sensitivity of DSRCT to palbociclib and support immediate clinical investigation of palbociclib for treating this aggressive pediatric cancer. SIGNIFICANCE: EWSR1::WT1 is essential for desmoplastic small round cell tumors and upregulates the cyclin D-CDK4/6-RB axis that can be targeted with palbociclib, providing a targeted therapeutic strategy for treating this deadly tumor type.


Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Desmoplastic Small Round Cell Tumor , Oncogene Proteins, Fusion , Piperazines , Pyridines , RNA-Binding Protein EWS , Xenograft Model Antitumor Assays , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/genetics , Desmoplastic Small Round Cell Tumor/genetics , Desmoplastic Small Round Cell Tumor/drug therapy , Desmoplastic Small Round Cell Tumor/pathology , Desmoplastic Small Round Cell Tumor/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Piperazines/pharmacology , Piperazines/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , WT1 Proteins/genetics , WT1 Proteins/metabolism , Mice, Inbred NOD
10.
Sci Rep ; 14(1): 9100, 2024 04 20.
Article En | MEDLINE | ID: mdl-38643275

Diabetes constitutes a major public health problem, with dramatic consequences for patients. Both genetic and environmental factors were shown to contribute to the different forms of the disease. The monogenic forms, found both in humans and in animal models, specially help to decipher the role of key genes in the physiopathology of the disease. Here, we describe the phenotype of early diabetes in a colony of NOD mice, with spontaneous invalidation of Akt2, that we called HYP. The HYP mice were characterised by a strong and chronic hyperglycaemia, beginning around the age of one month, especially in male mice. The phenotype was not the consequence of the acceleration of the autoimmune response, inherent to the NOD background. Interestingly, in HYP mice, we observed hyperinsulinemia before hyperglycaemia occurred. We did not find any difference in the pancreas' architecture of the NOD and HYP mice (islets' size and staining for insulin and glucagon) but we detected a lower insulin content in the pancreas of HYP mice compared to NOD mice. These results give new insights about the role played by Akt2 in glucose homeostasis and argue for the ß cell failure being the primary event in the course of diabetes.


Diabetes Mellitus, Type 1 , Hyperglycemia , Islets of Langerhans , Animals , Humans , Male , Mice , Diabetes Mellitus, Type 1/genetics , Hyperglycemia/genetics , Insulin , Islets of Langerhans/pathology , Mice, Inbred NOD , Pancreas/pathology , Proto-Oncogene Proteins c-akt/genetics
11.
DNA Cell Biol ; 43(5): 207-218, 2024 May.
Article En | MEDLINE | ID: mdl-38635961

Sjogren's syndrome (SS) is a complex systemic autoimmune disease. This study aims to elucidate a humanized NOD-PrkdcscidIl2rgem1/Smoc (NSG) murine model to better clarify the pathogenesis of SS. NSG female mice were adoptively transferred with 10 million peripheral blood mononuclear cells (PBMCs) through the tail vein from healthy controls (HCs), primary Sjogren's syndrome (pSS), and systemic lupus erythematosus (SLE) patients on D0. The mice were subcutaneously injected with C57/B6j submandibular gland (SG) protein or phosphate-buffered saline on D3, D17 and D31, respectively. NSG mice were successfully transplanted with human PBMCs. Compared with NSG-HC group, NSG-pSS and NSG-SLE mice exhibited a large number of lymphocytes infiltration in the SG, decreased salivary flow rate, lung involvement, decreased expression of genes related to salivary secretion, and the production of autoantibodies. Type I interferon-related genes were increased in the SG of NSG-pSS and NSG-SLE mice. The ratio of BAX/BCL2, BAX, cleaved caspase3, and TUNEL staining were increased in the SG of NSG-pSS and NSG-SLE mice. The expressions of p-MLKL and p-RIPK3 were increased in the SG of NSG-pSS and NSG-SLE mice. Increased expression of type I interferon-related genes, PANoptosis (apoptosis and necroptosis) were identified in the SG of this typical humanized NSG murine model of SS.


Disease Models, Animal , Mice, Inbred NOD , Sjogren's Syndrome , Sjogren's Syndrome/pathology , Sjogren's Syndrome/immunology , Animals , Humans , Female , Mice , Apoptosis , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/transplantation , Submandibular Gland/pathology , Submandibular Gland/metabolism , Lupus Erythematosus, Systemic/pathology , Lupus Erythematosus, Systemic/immunology , Mice, Inbred C57BL , Autoantibodies/immunology , Interferon Type I/metabolism
12.
J Immunother Cancer ; 12(4)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38677881

BACKGROUND: A bidirectional promoter-driven chimeric antigen receptor (CAR) cassette provides the simultaneous expression of two CARs, which significantly enhances dual antigen-targeted CAR T-cell therapy. METHODS: We developed a second-generation CAR directing CD19 and CD20 antigens, incorporating them in a head-to-head orientation from a bidirectional promoter using a single Sleeping Beauty transposon system. The efficacy of bidirectional promoter-driven dual CD19 and CD20 CAR T cells was determined in vitro against cell lines expressing either, or both, CD19 and CD20 antigens. In vivo antitumor activity was tested in Raji lymphoma-bearing immunodeficient NOD-scid IL2Rgammanull (NSG) mice. RESULTS: Of all tested promoters, the bidirectional EF-1α promoter optimally expressed transcripts from both sense (CD19-CAR) and antisense (GFP.CD20-CAR) directions. Superior cytotoxicity, cytokine production and antigen-specific activation were observed in vitro in the bidirectional EF-1α promoter-driven CD19/CD20 CAR T cells. In contrast, a unidirectional construct driven by the EF-1α promoter, but using self-cleaving peptide-linked CD19 and CD20 CARs, showed inferior expression and in vitro function. Treatment of mice bearing advanced Raji lymphomas with bidirectional EF-1α promoter-driven CD19/CD20 CAR T cells effectively controlled tumor growth and extended the survival of mice compared with group treated with single antigen targeted CAR T cells. CONCLUSION: The use of bidirectional promoters in a single vector offers advantages of size and robust CAR expression with the potential to expand use in other forms of gene therapies like CAR T cells.


Antigens, CD19 , Antigens, CD20 , DNA Transposable Elements , Immunotherapy, Adoptive , Promoter Regions, Genetic , Receptors, Chimeric Antigen , Antigens, CD19/immunology , Antigens, CD19/genetics , Humans , Animals , Antigens, CD20/genetics , Antigens, CD20/metabolism , Antigens, CD20/immunology , Mice , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Immunotherapy, Adoptive/methods , Mice, Inbred NOD , Cell Line, Tumor , Mice, SCID , Xenograft Model Antitumor Assays
13.
J Immunol ; 212(11): 1658-1669, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38587315

Chronic destruction of insulin-producing pancreatic ß cells by T cells results in autoimmune diabetes. Similar to other chronic T cell-mediated pathologies, a role for T cell exhaustion has been identified in diabetes in humans and NOD mice. The development and differentiation of exhausted T cells depends on exposure to Ag. In this study, we manipulated ß cell Ag presentation to target exhausted autoreactive T cells by inhibiting IFN-γ-mediated MHC class I upregulation or by ectopically expressing the ß cell Ag IGRP under the MHC class II promotor in the NOD8.3 model. Islet PD-1+TIM3+CD8+ (terminally exhausted [TEX]) cells were primary producers of islet granzyme B and CD107a, suggestive of cells that have entered the exhaustion program yet maintained cytotoxic capacity. Loss of IFN-γ-mediated ß cell MHC class I upregulation correlated with a significant reduction in islet TEX cells and diabetes protection in NOD8.3 mice. In NOD.TII/8.3 mice with IGRP expression induced in APCs, IGRP-reactive T cells remained exposed to high levels of IGRP in the islets and periphery. Consequently, functionally exhausted TEX cells, with reduced granzyme B expression, were significantly increased in these mice and this correlated with diabetes protection. These results indicate that intermediate Ag exposure in wild-type NOD8.3 islets allows T cells to enter the exhaustion program without becoming functionally exhausted. Moreover, Ag exposure can be manipulated to target this key cytotoxic population either by limiting the generation of cytotoxic TIM3+ cells or by driving their functional exhaustion, with both resulting in diabetes protection.


CD8-Positive T-Lymphocytes , Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Mice, Inbred NOD , Animals , Mice , CD8-Positive T-Lymphocytes/immunology , Insulin-Secreting Cells/immunology , Diabetes Mellitus, Type 1/immunology , Granzymes/metabolism , Interferon-gamma/immunology , Interferon-gamma/metabolism , Antigen Presentation/immunology , Female
14.
Cell Mol Immunol ; 21(6): 604-619, 2024 Jun.
Article En | MEDLINE | ID: mdl-38689020

Autoreactive CD8+ T cells play a key role in type 1 diabetes (T1D), but the antigen spectrum that activates autoreactive CD8+ T cells remains unclear. Endoplasmic reticulum stress (ERS) has been implicated in ß-cell autoantigen generation. Here, we analyzed the major histocompatibility complex class I (MHC-I)-associated immunopeptidome (MIP) of islet ß-cells under steady and ERS conditions and found that ERS reshaped the MIP of ß-cells and promoted the MHC-I presentation of a panel of conventional self-peptides. Among them, OTUB258-66 showed immunodominance, and the corresponding autoreactive CD8+ T cells were diabetogenic in nonobese diabetic (NOD) mice. High glucose intake upregulated pancreatic OTUB2 expression and amplified the OTUB258-66-specific CD8+ T-cell response in NOD mice. Repeated OTUB258-66 administration significantly reduced the incidence of T1D in NOD mice. Interestingly, peripheral blood mononuclear cells (PBMCs) from patients with T1D, but not from healthy controls, showed a positive IFN-γ response to human OTUB2 peptides. This study provides not only a new explanation for the role of ERS in promoting ß-cell-targeted autoimmunity but also a potential target for the prevention and treatment of T1D. The data are available via ProteomeXchange with the identifier PXD041227.


CD8-Positive T-Lymphocytes , Diabetes Mellitus, Type 1 , Endoplasmic Reticulum Stress , Insulin-Secreting Cells , Mice, Inbred NOD , Animals , Diabetes Mellitus, Type 1/immunology , Humans , CD8-Positive T-Lymphocytes/immunology , Endoplasmic Reticulum Stress/immunology , Mice , Insulin-Secreting Cells/immunology , Insulin-Secreting Cells/metabolism , Female , Autoantigens/immunology , Peptides/immunology , Peptides/pharmacology , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism
15.
Biomed Pharmacother ; 175: 116622, 2024 Jun.
Article En | MEDLINE | ID: mdl-38653114

BACKGROUND: Type 1 diabetes (T1D) is a challenging autoimmune disease, characterized by an immune system assault on insulin-producing ß-cells. As insulin facilitates glucose absorption into cells and tissues, ß-cell deficiency leads to elevated blood glucose levels on one hand and target-tissues starvation on the other. Despite efforts to halt ß-cell destruction and stimulate recovery, success has been limited. Our recent investigations identified Protease-Activated Receptor 2 (Par2) as a promising target in the battle against autoimmunity. We discovered that Par2 activation's effects depend on its initial activation site: exacerbating the disease within the immune system but fostering regeneration in affected tissue. METHODS: We utilized tissue-specific Par2 knockout mice strains with targeted Par2 mutations in ß-cells, lymphocytes, and the eye retina (as a control) in the NOD autoimmune diabetes model, examining T1D onset and ß-cell survival. RESULTS: We discovered that Par2 expression within the immune system accelerates autoimmune processes, while its presence in ß-cells offers protection against ß-cell destruction and T1D onset. This suggests a dual-strategy treatment for T1D: inhibiting Par2 in the immune system while activating it in ß-cells, offering a promising strategy for T1D. CONCLUSIONS: This study highlights Par2's potential as a drug target for autoimmune diseases, particularly T1D. Our results pave the way for precision medicine approaches in treating autoimmune conditions through targeted Par2 modulation.


Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Mice, Inbred NOD , Mice, Knockout , Receptor, PAR-2 , Receptor, PAR-2/metabolism , Animals , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/prevention & control , Diabetes Mellitus, Type 1/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Insulin-Secreting Cells/drug effects , Mice , Mice, Inbred C57BL , Autoimmunity , Female
16.
Mol Cell Endocrinol ; 589: 112251, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38670219

Differentiated thyroid cancer (DTC) is the predominant type of thyroid cancer, with some patients experiencing relapse, distant metastases, or refractoriness, revealing limited treatment options. Chimeric antigen receptor (CAR)-modified Natural Killer (NK) cells are revolutionary therapeutic agents effective against various resistant cancers. Thyroid-stimulating hormone receptor (TSHR) expression in DTC provides a unique tumor-specific target for CAR therapy. Here, we developed an innovative strategy for treating DTC using modified NK-92 cells armed with a TSHR-targeted CAR. The modified cells showed enhanced cytotoxicity against TSHR-positive DTC cell lines and exhibited elevated degranulation and cytokine release. After undergoing irradiation, the cells effectively halted their proliferative capacity while maintaining potent targeted killing ability. Transfer of these irradiation-treated cells into NSG mice with DTC tumors resulted in profound tumor suppression. NK-92 cells modified with TSHR-CAR offer a promising, off-the-shelf option for advancing DTC immunotherapy.


Killer Cells, Natural , Receptors, Chimeric Antigen , Receptors, Thyrotropin , Thyroid Neoplasms , Receptors, Thyrotropin/immunology , Receptors, Thyrotropin/metabolism , Thyroid Neoplasms/pathology , Thyroid Neoplasms/therapy , Thyroid Neoplasms/immunology , Humans , Animals , Killer Cells, Natural/immunology , Cell Line, Tumor , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Mice , Cell Differentiation , Xenograft Model Antitumor Assays , Mice, Inbred NOD , Cell Proliferation , Cytotoxicity, Immunologic , Immunotherapy, Adoptive/methods
17.
Int J Mol Sci ; 25(7)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38612760

IL-1α is a dual function cytokine that affects inflammatory and immune responses and plays a pivotal role in cancer. The effects of intracellular IL-1α on the development of triple negative breast cancer (TNBC) in mice were assessed using the CRISPR/Cas9 system to suppress IL-1α expression in 4T1 breast cancer cells. Knockout of IL-1α in 4T1 cells modified expression of multiple genes, including downregulation of cytokines and chemokines involved in the recruitment of tumor-associated pro-inflammatory cells. Orthotopical injection of IL-1α knockout (KO) 4T1 cells into BALB/c mice led to a significant decrease in local tumor growth and lung metastases, compared to injection of wild-type 4T1 (4T1/WT) cells. Neutrophils and myeloid-derived suppressor cells were abundant in tumors developing after injection of 4T1/WT cells, whereas more antigen-presenting cells were observed in the tumor microenvironment after injection of IL-1α KO 4T1 cells. This switch correlated with increased infiltration of CD3+CD8+ and NKp46+cells. Engraftment of IL-1α knockout 4T1 cells into immunodeficient NOD.SCID mice resulted in more rapid tumor growth, with increased lung metastasis in comparison to engraftment of 4T1/WT cells. Our results suggest that tumor-associated IL-1α is involved in TNBC progression in mice by modulating the interplay between immunosuppressive pro-inflammatory cells vs. antigen-presenting and cytotoxic cells.


Lung Neoplasms , Triple Negative Breast Neoplasms , Animals , Mice , Humans , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Triple Negative Breast Neoplasms/genetics , Tumor Microenvironment , Lung Neoplasms/genetics , Interleukin-1alpha/genetics
18.
Int Immunopharmacol ; 133: 112166, 2024 May 30.
Article En | MEDLINE | ID: mdl-38678673

Dendritic cells (DCs) are specialized antigen-presenting cells that play an important role in inducing and maintaining immune tolerance. The altered distribution and/or function of DCs contributes to defective tolerance in autoimmune diseases such as type 1 diabetes (T1D). In human T1D and in NOD mouse models, DCs share some defects and are often described as less tolerogenic and excessively immunogenic. In the NOD mouse model, the autoimmune response is associated with a defect in the Stat5b signaling pathway. We have reported that expressing a constitutively active form of Stat5b in DCs of transgenic NOD mice (NOD.Stat5b-CA), re-established their tolerogenic function, restored autoimmune tolerance and conferred protection from diabetes. However, the role and molecular mechanisms of Stat5b signaling in regulating splenic conventional DCs tolerogenic signature remained unclear. In this study, we reported that, compared to immunogenic splenic DCs of NOD, splenic DCs of NOD.Stat5b-CA mice exhibited a tolerogenic profile marked by elevated PD-L1 and PD-L2 expression, reduced pro-inflammatory cytokine production, increased frequency of the cDC2 subset and decreased frequency of the cDC1 subset. This tolerogenic profile was associated with increased Ezh2 and IRF4 but decreased IRF8 expression. We also found an upregulation of PD-L1 in the cDC1 subset and high PD-L1 and PD-L2 expression in cDC2 of NOD.Stat5b-CA mice. Mechanistically, we demonstrated that Ezh2 plays an important role in the maintenance of high PD-L1 expression in cDC1 and cDC2 subsets and that Ezh2 inhibition resulted in PD-L1 but not PD-L2 downregulation which was more drastic in the cDC2 subset. Additionally, Ezh2 inhibition severely reduced the cDC2 subset and increased the cDC1 subset and Stat5b-CA.DC pro-inflammatory cytokine production. Together our data suggest that the Stat5b-Ezh2 axis is critical for the maintenance of tolerogenic high PD-L1-expressing cDC2 and autoimmune tolerance in NOD.Stat5b-CA mice.


B7-H1 Antigen , Dendritic Cells , Diabetes Mellitus, Type 1 , Enhancer of Zeste Homolog 2 Protein , Immune Tolerance , Mice, Inbred NOD , STAT5 Transcription Factor , Animals , Dendritic Cells/immunology , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , STAT5 Transcription Factor/metabolism , STAT5 Transcription Factor/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Diabetes Mellitus, Type 1/immunology , Mice , Humans , Signal Transduction , Female , Mice, Transgenic , Cytokines/metabolism , Cells, Cultured
19.
Biochem Biophys Res Commun ; 715: 149984, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38688056

Epstein-Barr virus (EBV) and other viral infections are possible triggers of autoimmune diseases, such as rheumatoid arthritis (RA). To analyze the causative relationship between EBV infections and RA development, we performed experiment on humanized NOD/Shi-scid/IL-2RγCnull (hu-NOG) mice reconstituted human immune system components and infected with EBV. In EBV-infected hu-NOG mice, breakdown of knee joint bones was found to be accompanied by the accumulation of receptor activator of nuclear factor-κB (NF-κB) (RANK) ligand (RANKL), a key factor in osteoclastogenesis, human CD19 and EBV-encoded small RNA (EBER)-bearing cells. Accumulation of these cells expanded in the bone marrow adjacent to the bone breakage, showing a histological feature like to that in bone marrow edema. On the other hand, human RANK/human matrix metalloprotease-9 (MMP-9) positive, osteoclast-like cells were found at broken bone portion of EBV-infected mouse knee joint. In addition, human macrophage-colony stimulating factor (M-CSF), an essential factor in development of osteoclasts, evidently expressed in spleen and bone marrow of EBV-infected humanized mice. Furthermore, RANKL and M-CSF were identified at certain period of EBV-transformed B lymphoblastoid cells (BLBCs) derived from umbilical cord blood lymphocytes. Co-culturing bone marrow cells of hu-NOG mice with EBV-transformed BLBCs resulted in the induction of a multinucleated cell population positive for tartrate-resistant acid phosphatase and human MMP-9 which indicating human osteoclast-like cells. These findings suggest that EBV-infected BLBCs induce human aberrant osteoclastogenesis, which cause erosive arthritis in the joints.


Epstein-Barr Virus Infections , Mice, Inbred NOD , Mice, SCID , Osteoclasts , Animals , Mice , Humans , Osteoclasts/metabolism , Osteoclasts/pathology , Osteoclasts/virology , Osteoclasts/immunology , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/pathology , RANK Ligand/metabolism , Herpesvirus 4, Human/immunology , Osteogenesis , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/virology , Arthritis, Rheumatoid/metabolism
20.
Nat Commun ; 15(1): 3552, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38670972

Chimeric antigen receptor (CAR)-T cell therapy for solid tumors faces significant hurdles, including T-cell inhibition mediated by the PD-1/PD-L1 axis. The effects of disrupting this pathway on T-cells are being actively explored and controversial outcomes have been reported. Here, we hypothesize that CAR-antigen affinity may be a key factor modulating T-cell susceptibility towards the PD-1/PD-L1 axis. We systematically interrogate CAR-T cells targeting HER2 with either low (LA) or high affinity (HA) in various preclinical models. Our results reveal an increased sensitivity of LA CAR-T cells to PD-L1-mediated inhibition when compared to their HA counterparts by using in vitro models of tumor cell lines and supported lipid bilayers modified to display varying PD-L1 densities. CRISPR/Cas9-mediated knockout (KO) of PD-1 enhances LA CAR-T cell cytokine secretion and polyfunctionality in vitro and antitumor effect in vivo and results in the downregulation of gene signatures related to T-cell exhaustion. By contrast, HA CAR-T cell features remain unaffected following PD-1 KO. This behavior holds true for CD28 and ICOS but not 4-1BB co-stimulated CAR-T cells, which are less sensitive to PD-L1 inhibition albeit targeting the antigen with LA. Our findings may inform CAR-T therapies involving disruption of PD-1/PD-L1 pathway tailored in particular for effective treatment of solid tumors.


B7-H1 Antigen , Immunotherapy, Adoptive , Programmed Cell Death 1 Receptor , Receptors, Chimeric Antigen , T-Lymphocytes , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Animals , Humans , Immunotherapy, Adoptive/methods , Mice , Cell Line, Tumor , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/immunology , Xenograft Model Antitumor Assays , Female , CRISPR-Cas Systems , Mice, Inbred NOD
...