Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 747
Filter
1.
J Hazard Mater ; 475: 134891, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38878437

ABSTRACT

Sulfonamides have been widely detected in water treatment plants. Advanced wastewater treatment for sulfonamide removal based on microalgal cultivation can reduce the ecological risk after discharge, achieve carbon fixation, and simultaneously recover bioresource. However, the general removal performance, key factors and their impacts, degradation kinetics, and potential coupling technologies have not been systematically summarized. To guide the construction and enhance the efficient performance of the purification system, this study summarizes the quantified characteristics of sulfonamide removal based on more than 100 groups of data from the literature. The biodegradation potential of sulfonamides from different subclasses and their toxicity to microalgae were statistically analyzed; therefore, a preferred option for further application was proposed. The mechanisms by which the properties of both sulfonamides and microalgae affect sulfonamide removal were comprehensively summarized. Thereafter, multiple principles for choosing optimal microalgae were proposed from the perspective of engineering applications. Considering the microalgal density and growth status, a modified antibiotic removal kinetic model was proposed with significant physical meaning, thereby resulting in an optimal fit. Based on the mechanism and regulating effect of key factors on sulfonamide removal, sensitive and feasible factors (e.g., water quality regulation, other than initial algal density) and system coupling were screened to guide engineering applications. Finally, we suggested studying the long-term removal performance of antibiotics at environmentally relevant concentrations and toxicity interactions for further research.


Subject(s)
Biodegradation, Environmental , Microalgae , Sulfonamides , Water Pollutants, Chemical , Microalgae/metabolism , Microalgae/growth & development , Microalgae/drug effects , Sulfonamides/metabolism , Sulfonamides/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Kinetics , Water Purification/methods , Anti-Bacterial Agents/chemistry , Waste Disposal, Fluid/methods
2.
J Hazard Mater ; 474: 134644, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38838520

ABSTRACT

Nanoplastics, as emerging pollutants, have harmful effects on living organisms and the environment, the mechanisms and extent of which remain unclear. Microalgae, as one of the most important biological groups in the food chain and sensitive environmental indicators to various pollutants, are considered a suitable option for investigating the effects of nanoplastics. In this study, the effects of polystyrene nanoplastics on the growth rate, dry weight, chlorophyll a and carotenoid levels, proline, and lipid peroxidation in the Spirulina platensis were examined. Three concentrations of 0.1, 1, and 10 mg L-1 of PSNPs were used alongside a control sample with zero concentration, with four repetitions in one-liter containers for 20 days under optimal temperature and light conditions. Various analyses, including growth rate, dry weight, proline, chlorophyll a and carotenoid levels, and lipid peroxidation, were performed. The results indicated that exposure to PSNP stress led to a significant decrease in growth rate, dry weight, and chlorophyll a and carotenoid levels compared to the control sample. Furthermore, this stress increased the levels of proline and lipid peroxidation in Spirulina platensis. Morphological analysis via microscopy supported these findings, indicating considerable environmental risks associated with PSNPs.


Subject(s)
Carotenoids , Chlorophyll , Lipid Peroxidation , Microalgae , Polystyrenes , Proline , Spirulina , Spirulina/drug effects , Spirulina/growth & development , Spirulina/metabolism , Polystyrenes/toxicity , Carotenoids/metabolism , Lipid Peroxidation/drug effects , Proline/metabolism , Chlorophyll/metabolism , Microalgae/drug effects , Microalgae/growth & development , Chlorophyll A/metabolism , Nanoparticles/toxicity
3.
Aquat Toxicol ; 272: 106967, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38833998

ABSTRACT

Microplastics (MPs) are ubiquitous in aquatic environments, which can act as carriers to affect the bioavailability of heavy metals. The aging process in the environment changes the physicochemical properties of MPs, thereby affecting their environmental behavior and co-toxicity with other pollutants. However, relevant research is limited. In this study, we compared the properties and Cu2+ adsorption capacity of pristine and aged polytetrafluoroethylene (PTFE) MPs and further explored the influence on copper bioavailability and bio-effects on Microcystis aeruginosa. Aging process induced surface oxidation and cracks of PTFE MPs, and decreased the stability of MPs in water by increasing zeta potential. PTFE MPs had a strong adsorption capacity for Cu2+ and increased the bioavailability of copper to microalgae, which was not affected by the aging process. Pristine and aged PTFE MPs adhered to cyanobacterium surfaces and caused shrinkage and deformation of cells. Inhibition of cyanobacterium growth, photosynthesis and reduction of total antioxidant capacity were observed in the treatment of PTFE MPs. Combined exposure of pristine MPs and Cu2+ had stronger toxic effects to cyanobacterium, and increased Microcystin-LR release, which could cause harm to aquatic environment. Aging reduced the toxic effects of PTFE MPs on microalgae. Furthermore, soluble exopolysaccharide (EPS) content was significantly higher in co-exposure of aged MPs and Cu2+, which could reduce the toxicity to cyanobacterium cells. These results indicate that aging process alleviates the toxicity to microalgae and environmental risks caused by PTFE MPs. This study improves understanding of the combined toxicity of aged MPs and metals in freshwater ecosystems.


Subject(s)
Biological Availability , Copper , Microcystis , Microplastics , Polytetrafluoroethylene , Water Pollutants, Chemical , Microcystis/drug effects , Copper/toxicity , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Polytetrafluoroethylene/chemistry , Polytetrafluoroethylene/toxicity , Ultraviolet Rays , Adsorption , Microalgae/drug effects
4.
Aquat Toxicol ; 272: 106970, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838503

ABSTRACT

As well-known, microalgae have a pivotal role in aquatic environments, being the primary producer. In this study, we investigated the effects of Bisphenol A (BPA) analogues on cell ultrastructure, reactive oxygen species (ROS) production and photosynthetic pigment responses in the diatom Phaeodactylum tricornutum. Microalgae were exposed during both exponential and stationary growth phases to an environmental relevant concentration (300 ng/L) of three differing BPA analogues (BPAF, BPF, and BPS) and their mixture (100 ng/L of each compound). Bioaccumulation of such compounds in microalgae was also analysed. During the stationary growth phase, a significant increase in the percentage of cells with hydrogen peroxide production was recorded after exposure to both BPS and MIX. Conversely, no significant effects on total chlorophylls and carotenoids were observed. During exponential growth phase we observed that control cultures had chloroplasts with well-organized thylakoid membranes and a central pyrenoid. On the contrary, the culture cells treated with BPA analogues and MIX showed chloroplasts characterized by evident dilation of thylakoid membranes. The presence of degeneration areas in the cytoplasm was also recorded. During the stationary growth phase, control and culture cells were characterized by chloroplasts with a regular thylakoid system, whereas BPA analogues-exposed cells were characterized by a deep degradation of the cytoplasm but showed chloroplasts without evident alterations of the thylakoid system. Lipid bodies were visible in treated microalgae. Lastly, microalgae bioaccumulated mainly BPS and BPF, alone or in the MIX. Overall, results obtained revealed that BPA analogues can affect some important biochemical and ultrastructure features of microalgae, promoting ROS production. Lastly, the capability of microalgae to bioaccumulate bisphenols suggest a potential ecotoxicological risk for filter-feeders organisms.


Subject(s)
Benzhydryl Compounds , Diatoms , Microalgae , Phenols , Reactive Oxygen Species , Water Pollutants, Chemical , Phenols/toxicity , Diatoms/drug effects , Water Pollutants, Chemical/toxicity , Benzhydryl Compounds/toxicity , Microalgae/drug effects , Reactive Oxygen Species/metabolism , Bioaccumulation/drug effects , Chlorophyll/metabolism , Carotenoids/metabolism , Photosynthesis/drug effects
5.
J Hazard Mater ; 474: 134752, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38815390

ABSTRACT

Ubiquitous distribution of pharmaceutical contaminants in environment has caused unexpected adverse effects on ecological organisms; however, how microorganisms recover from their toxicities remains largely unknown. In this study, we comprehensively investigated the effect of a representative pollutant, doxylamine (DOX) on a freshwater microalgal species, Chlorella sp. by analyzing the growth patterns, biochemical changes (total chlorophyll, carotenoid, carbohydrate, protein, and antioxidant enzymes), and transcriptomics. We found toxicity of DOX on Chlorella sp. was mainly caused by disrupting synthesis of ribosomes in nucleolus, and r/t RNA binding and processing. Intriguingly, additional bicarbonate enhanced the toxicity of DOX with decreasing the half-maximum effective concentrations from 15.34 mg L-1 to 4.63 mg L-1, which can be caused by inhibiting fatty acid oxidation and amino acid metabolism. Microalgal cells can recover from this stress via upregulating antioxidant enzymatic activities to neutralize oxidative stresses, and photosynthetic pathways and nitrogen metabolism to supply more energies and cellular signaling molecules. This study extended our understanding on how microalgae can recover from chemical toxicity, and also emphasized the effect of environmental factors on the toxicity of these contaminants on aquatic microorganisms.


Subject(s)
Chlorella , Water Pollutants, Chemical , Chlorella/drug effects , Chlorella/metabolism , Chlorella/genetics , Water Pollutants, Chemical/toxicity , Transcriptome/drug effects , Microalgae/drug effects , Microalgae/genetics , Chlorophyll/metabolism , Photosynthesis/drug effects , Oxidative Stress/drug effects , Carotenoids/metabolism , Antioxidants/metabolism
6.
Environ Res ; 256: 119225, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38797461

ABSTRACT

Sulfadiazine (SDZ) is a kind of anti-degradable antibiotics that is commonly found in wastewater, but its removal mechanism and transformation pathway remain unclear in microalgal systems. This study investigated the effects of initial algae concentration and SDZ-induced stress on microalgal growth metabolism, SDZ removal efficiency, and transformation pathways during Chlorella sp. cultivation. Results showed that SDZ had an inhibitory effect on the growth of microalgae, and increasing the initial algal biomass could alleviate the inhibitory effect of SDZ. When the initial algal biomass of Chlorella sp. was increased to 0.25 g L-1, the SDZ removal rate could reach 53.27%-89.07%. The higher the initial algal biomass, the higher the SOD activity of microalgae, and the better the protective effect on microalgae, which was one of the reasons for the increase in SDZ removal efficiency. Meanwhile, SDZ stress causes changes in photosynthetic pigments, lipids, total sugars and protein content of Chlorella sp. in response to environmental changes. The main degradation mechanisms of SDZ by Chlorella sp. were biodegradation (37.82%) and photodegradation (23%). Most of the degradation products of SDZ were less toxic than the parent compound, and the green algae were highly susceptible to SDZ and its degradation products. The findings from this study offered valuable insights into the tradeoffs between accumulating microalgal biomass and antibiotic toxic risks during wastewater treatment, providing essential direction for the advancement in future research and full-scale application.


Subject(s)
Anti-Bacterial Agents , Biodegradation, Environmental , Chlorella , Microalgae , Sulfadiazine , Water Pollutants, Chemical , Chlorella/drug effects , Chlorella/metabolism , Water Pollutants, Chemical/toxicity , Anti-Bacterial Agents/toxicity , Microalgae/drug effects , Microalgae/metabolism , Stress, Physiological/drug effects , Biomass , Wastewater/chemistry
7.
Water Res ; 259: 121841, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38820734

ABSTRACT

The toxicity of microplastics (MPs) on freshwater plants has been widely studied, yet the influence of aged MPs remains largely unexplored. Herein, we investigated the influence of polyvinyl chloride (PVC) MPs, both before and after aging, at different environmentally relevant concentrations on Chlorella pyrenoidosa, a freshwater microalgae species widely recognized as a valuable biomass resource. During a 96-h period, both virgin and aged MPs hindered the growth of C. pyrenoidosa. The maximum growth inhibition rates were 32.40 % for virgin PVC at 250 mg/L and 44.72 % for aged PVC at 100 mg/L, respectively. Microalgae intracellular materials, i.e., protein and carbohydrate contents, consistently decreased after MP exposure, with more pronounced inhibition observed with aged PVC. Meanwhile, the MP aging significantly promoted the nitrogen uptake of C. pyrenoidosa, i.e., 1693.45 ± 42.29 mg/L (p < 0.01), contributing to the production of humic acid-like substances. Additionally, aged PVC induced lower chlorophyll a and Fv/Fm when compared to virgin PVC, suggesting a more serious inhibition of the photosynthesis process of microalgae. The toxicity of MPs to C. pyrenoidosa was strongly associated with intercellular oxidative stress levels. The results indicate that MP aging exacerbates the damage to photosynthetic performance and bioenergy production in microalgae, providing critical insights into the toxicity analysis of micro(nano)plastics on freshwater plants.


Subject(s)
Chlorella , Microalgae , Microplastics , Photosynthesis , Photosynthesis/drug effects , Chlorella/drug effects , Microalgae/drug effects , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Biomass , Chlorophyll/metabolism
8.
Environ Res ; 252(Pt 4): 119093, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723991

ABSTRACT

Regulating the microalgal initial adhesion in biofilm formation is a key approach to address the challenges of attached microalgae cultivation. As a type of phytohormone, Indole-3-acetic acid (IAA) can promote the growth and metabolism of microalgae. However, limited knowledge has been acquired of how IAA can change the initial adhesion of microalgae in biofilm formation. This study focused on investigating the initial adhesion of microalgae under different IAA concentrations exposure in biofilm formation. The results showed that IAA showed obvious hormesis-like effects on the initial adhesion ability of microalgae biofilm. Under exposure to the low concentration (0.1 mg/L) of IAA, the initial adhesion quantity of microalgae on the surface of the carrier reached the highest value of 7.2 g/m2. However, exposure to the excessively high concentration (10 mg/L) of IAA led to a decrease in the initial adhesion capability of microalgal biofilms. The enhanced adhesion of microalgal biofilms due to IAA was attributed to the upregulation of genes related to the Calvin Cycle, which promoted the synthesis of hydrophobic amino acids, leading to increased protein secretion and altering the surface electron donor characteristics of microalgal biofilms. This, in turn, reduced the energy barrier between the carriers and microalgae. The research findings would provide crucial support for the application of IAA in regulating the operation of microalgal biofilm systems.


Subject(s)
Biofilms , Indoleacetic Acids , Microalgae , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Biofilms/drug effects , Biofilms/growth & development , Microalgae/drug effects , Microalgae/physiology , Plant Growth Regulators/pharmacology
9.
Aquat Toxicol ; 272: 106964, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781690

ABSTRACT

According to the results of the experimental study, the main regularities of changes in morphological, structural-functional and fluorescent indices of P. cordatum were established when zinc oxide nanoparticles ZnO NPs (0.3-6.4 mg L-1) and Zn in form of salt (0.09-0.4 mg L-1) were added to the medium. The studied pollutants have cytotoxic (growth inhibition, development of oxidative stress, destruction of cytoplasmic organelles, disorganization of mitochondria) and genotoxic (changes in the morphology of nuclei, chromatin condensation) effects on microalgae, affecting almost all aspects of cell functioning. Despite the similar mechanism of action of zinc sulfate and ZnO NPs on P. cordatum cells, the negative effect of ZnO NPs is also due to the inhibition of photosynthetic activity of cells (significant decrease in the maximum quantum yield of photosynthesis and electron transport rate), reduction of chlorophyll concentration from 3.5 to 1.8 pg cell-1, as well as mechanical effect on cells: deformation and damage of cell membranes, aggregation of NPs on the cell surface. Apoptosis-like signs of cell death upon exposure to zinc sulfate and ZnO NPs were identified by flow cytometry and laser scanning confocal microscopy methods: changes in cell morphology, cytoplasm retraction, development of oxidative stress, deformation of nuclei, and disorganization of mitochondria. It was shown that the first signs of cell apoptosis appear at 0.02 mg L-1 Zn and 0.6 mg L-1 ZnO NPs after 72 h of exposure. At higher concentrations of pollutants, a dose-dependent decrease in algal enzymatic activity (up to 5 times relative to control) and mitochondrial membrane potential (up to 4 times relative to control), and an increase in the production of reactive oxygen species (up to 4-5 times relative to control) were observed. The results of the presented study contribute to the disclosure of fundamental mechanisms of toxic effects of pollutants and prediction of ways of phototrophic microorganisms reaction to this impact.


Subject(s)
Oxidative Stress , Water Pollutants, Chemical , Zinc Oxide , Zinc Sulfate , Zinc Oxide/toxicity , Zinc Sulfate/toxicity , Water Pollutants, Chemical/toxicity , Oxidative Stress/drug effects , Metal Nanoparticles/toxicity , Microalgae/drug effects , Dinoflagellida/drug effects , Photosynthesis/drug effects , Nanoparticles/toxicity , Nanoparticles/chemistry , Chlorophyll/metabolism
10.
Sci Total Environ ; 939: 173643, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38821282

ABSTRACT

Mariculture effluent polishing with microalgal biofilm could realize effective nutrients removal and resolve the microalgae-water separation issue via biofilm scraping or in-situ aquatic animal grazing. Ubiquitous existence of antibiotics in mariculture effluents may affect the remediation performances and arouse ecological risks. The influence of combined antibiotics exposure at environment-relevant concentrations towards attached microalgae suitable for mariculture effluent polishing is currently lack of research. Results from suspended cultures could offer limited guidance since biofilms are richer in extracellular polymeric substances that may protect the cells from antibiotics and alter their transformation pathways. This study, therefore, explored the effects of combined antibiotics exposure at environmental concentrations towards seawater Chlorella sp. biofilm in terms of microalgal growth characteristics, nutrients removal, anti-oxidative responses, and antibiotics removal and transformations. Sulfamethoxazole (SMX), tetracycline (TL), and clarithromycin (CLA) in single, binary, and triple combinations were investigated. SMX + TL displayed toxicity synergism while TL + CLA revealed toxicity antagonism. Phosphorus removal was comparable under all conditions, while nitrogen removal was significantly higher under SMX and TL + CLA exposure. Anti-oxidative responses suggested microalgal acclimation towards SMX, while toxicity antagonism between TL and CLA generated least cellular oxidative damage. Parent antibiotics removal was in the order of TL (74.5-85.2 %) > CLA (60.8-69.5 %) > SMX (13.5-44.1 %), with higher removal efficiencies observed under combined than single antibiotic exposure. Considering the impact of residual parent antibiotics, CLA involved cultures were identified of high ecological risks, while medium risks were indicated in other cultures. Transformation products (TPs) of SMX and CLA displayed negligible aquatic toxicity, the parent antibiotics themselves deserve advanced removal. Four out of eight TPs of TL could generate chronic toxicity, and the elimination of these TPs should be prioritized for TL involved cultures. This study expands the knowledge of combined antibiotics exposure upon microalgal biofilm based mariculture effluent polishing.


Subject(s)
Anti-Bacterial Agents , Biofilms , Chlorella , Seawater , Water Pollutants, Chemical , Chlorella/physiology , Chlorella/drug effects , Biofilms/drug effects , Anti-Bacterial Agents/toxicity , Water Pollutants, Chemical/toxicity , Seawater/chemistry , Risk Assessment , Waste Disposal, Fluid/methods , Aquaculture , Microalgae/drug effects , Microalgae/physiology
11.
Aquat Toxicol ; 272: 106960, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761586

ABSTRACT

Microplastics (MPs) pollution and seawater acidification have increasingly become huge threats to the ocean ecosystem. Their impacts on microalgae are of great importance, since microalgae are the main primary producers and play a critical role in marine ecosystems. However, the impact of microplastics and acidification on unicellular red algae, which have a unique phycobiliprotein antenna system, remains unclear. Therefore, the impacts of polystyrene-MPs alone and the combined effects of MPs and seawater acidification on the typical unicellular marine red algae Porphyridium purpureum were investigated in the current study. The result showed that, under normal seawater condition, microalgae densities were increased by 17.75-41.67 % compared to the control when microalgae were exposed to small-sized MPs (0.1 µm) at concentrations of 5-100 mg L-1. In addition, the photosystem II and antioxidant enzyme system were not subjected to negative effects. The large-sized MPs (1 µm) boosted microalgae growth at a low concentration of MPs (5 mg L-1). However, it was observed that microalgae growth was significantly inhibited when MPs concentration increased up to 50 and 100 mg L-1, accompanied by the remarkably reduced Fv/Fm value and the elevated levels of SOD, CAT enzymes, phycoerythrin (PE), and extracellular polysaccharide (EPS). Compared to the normal seawater condition, microalgae densities were enhanced by 52.11-332.56 % under seawater acidification, depending on MPs sizes and concentrations, due to the formed CO2-enrichment condition and appropriate pH range. PE content in microalgal cells was significantly enhanced, but SOD and CAT activities as well as EPS content markedly decreased under acidification conditions. Overall, the impacts of seawater acidification were more pronounced than MPs impacts on microalgae growth and physiological responses. These findings will contribute to a substantial understanding of the effects of MPs on marine unicellular red microalgae, especially in future seawater acidification scenarios.


Subject(s)
Microplastics , Photosynthesis , Rhodophyta , Seawater , Water Pollutants, Chemical , Seawater/chemistry , Photosynthesis/drug effects , Water Pollutants, Chemical/toxicity , Rhodophyta/drug effects , Rhodophyta/chemistry , Hydrogen-Ion Concentration , Microplastics/toxicity , Microalgae/drug effects , Antioxidants/metabolism , Extracellular Polymeric Substance Matrix/drug effects , Porphyridium/drug effects , Ocean Acidification
12.
Water Res ; 258: 121706, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38761590

ABSTRACT

Micro/nano-plastics (MNPs), as emerging persistent pollutants, are threatening freshwater ecosystems worldwide. Microalgae are important primary producers at the base of trophic level and susceptible to MNPs contamination, possibly resulting in further contamination in higher trophic levels and water quality. This study conducted a systematic review of 1071 observations from 63 publications, utilizing meta-analysis and subgroup analysis to investigate the toxicological effect patterns of MNPs parameters (size, concentration, and type) on microalgae. We also explored the potential eco-risks of certain specific MNPs parameters and subtle variations in the response of various microalgae taxa to MNPs. Results suggested that microplastics significantly inhibited microalgal photosynthesis, while nano-plastics induced more severe cell membrane damage and promoted toxin-release. Within a certain range of concentrations (0∼50 mg/L), rising MNPs concentration progressively inhibited microalgal growth and chlorophyll-a content, and progressively enhanced toxin-release. Among MNPs types, polyamide caused higher growth inhibition and more severe lipid peroxidation, and polystyrene induced more toxin-release, whereas polyethylene terephthalate and polymethyl methacrylate posed minimal effects on microalgae. Moreover, Bacillariophyta growth was inhibited most significantly, while Chlorophyta displayed strong tolerance and Cyanophyta possessed strong adaptive and exceptional resilience. Particularly, Komvophoron, Microcystis, Nostoc, Scenedesmus, and Gomphonema were more tolerant and might dominate freshwater microalgal communities under MNPs contamination. These results are crucial for acquiring the fate of freshwater microalgae under various MNPs contamination, identifying dominant microalgae, and reasonably assessing and managing involved eco-risks.


Subject(s)
Fresh Water , Microalgae , Water Pollutants, Chemical , Microalgae/drug effects , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Plastics/toxicity , Photosynthesis/drug effects
13.
Chemosphere ; 361: 142473, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810810

ABSTRACT

In this study, a cyanobacteria-bacteria consortium containing native wastewater bacteria and immobilized Synechococcus sp. was constructed. The cyanobacterial cellular responses (including growth, biomass and lipid productivity) and contaminant removal ability (for TN, TP, COD and antibiotics) in the consortium were evaluated during the advanced treatment of wastewater containing 10-50 µg/L of mixed antibiotics (amoxicillin, tetracycline, erythromycin, sulfadiazine and ciprofloxacin) with the addition of a certain phytohormone (indole-3-acetic acid, gibberellin A3 or 6-benzylaminopurine) at trace level within a period of four days. Each phytohormone promoted the growth of Synechococcus sp. and increased the tolerance of Synechococcus sp. to mixed antibiotics. Indole-3-acetic acid coupled to moderate antibiotic stress could elevate lipid productivity and lipid content of Synechococcus sp. to 33.50 mg/L/day and 43.75%, respectively. Phytohormones increased the pollutant removal performance of the cyanobacteria-bacteria consortium through the stimulation of cyanobacterial growth and the regulation of cyanobacteria-bacteria interaction, which increased the abundances of microalgae-associated bacteria including Flavobacterium, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Bosea, Sphingomonas and Emticicia. Up to 80.83%, 98.06%, 83.26%, 99.84%, 99.50%, 89.41%, 65.61% and 60.65% of TN, TP, COD, amoxicillin, tetracycline, erythromycin, sulfadiazine and ciprofloxacin were removed by the consortium with the addition of phytohormones. In general, indole-3-acetic acid was the optimal phytohormone for enhancing lipid production and contaminant removal performance of the cyanobacteria-bacteria consortium.


Subject(s)
Anti-Bacterial Agents , Plant Growth Regulators , Wastewater , Water Pollutants, Chemical , Wastewater/microbiology , Wastewater/chemistry , Plant Growth Regulators/metabolism , Anti-Bacterial Agents/pharmacology , Water Pollutants, Chemical/metabolism , Cyanobacteria/metabolism , Cyanobacteria/growth & development , Cyanobacteria/drug effects , Indoleacetic Acids/metabolism , Lipids , Bacteria/metabolism , Bacteria/drug effects , Synechococcus/metabolism , Synechococcus/growth & development , Synechococcus/drug effects , Microalgae/metabolism , Microalgae/drug effects , Microalgae/growth & development , Biodegradation, Environmental , Waste Disposal, Fluid/methods , Biomass
14.
Chemosphere ; 361: 142491, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38821130

ABSTRACT

In recent years, a growing concern has emerged regarding the environmental implications of flame retardants (FRs) like tetrabromobisphenol-A (TBBPA) and graphene family nanomaterials (GFNs), such as graphene, graphene oxide (GO), and reduced graphene oxide (rGO), on marine biota. Despite these substances' well-established individual toxicity profiles, there is a notable gap in understanding the physicochemical interactions within the binary mixtures and consequent changes in the toxicity potential. Therefore, our research focuses on elucidating the individual and combined toxicological impacts of TBBPA and GFNs on the marine alga Chlorella sp. Employing a suite of experimental methodologies, including Raman spectroscopy, contact angle measurements, electron microscopy, and chromatography, we examined the physicochemical interplay between the GFNs and TBBPA. The toxicity potentials of individual constituents and their binary combinations were assessed through growth inhibition assays, quantifying reactive oxygen species (ROS) generation and malondialdehyde (MDA) production, photosynthetic activity analyses, and various biochemical assays. The toxicity of TBBPA and graphene-based nanomaterials (GFNs) was examined individually and in combinations. Both pristine TBBPA and GFNs showed dose-dependent toxicity. While lower TBBPA concentrations exacerbated toxicity in binary mixtures, higher TBBPA levels reduced the toxic effects compared to pristine TBBPA treatments. The principal mechanism underlying toxicity was ROS generation, resulting in membrane damage and perturbation of photosynthetic parameters. Cluster heatmap and Pearson correlation were employed to assess correlations between the biological parameters. Finally, ecological risk assessment was undertaken to evaluate environmental impacts of the individual components and the mixture in the algae.


Subject(s)
Chlorella , Flame Retardants , Graphite , Microalgae , Nanostructures , Polybrominated Biphenyls , Flame Retardants/toxicity , Polybrominated Biphenyls/toxicity , Graphite/toxicity , Chlorella/drug effects , Nanostructures/toxicity , Nanostructures/chemistry , Microalgae/drug effects , Reactive Oxygen Species/metabolism , Water Pollutants, Chemical/toxicity
15.
J Hazard Mater ; 473: 134678, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38781856

ABSTRACT

Increasing antivirals in surface water caused by their excessive consumption pose serious threats to aquatic organisms. Our recent research found that the input of antiviral drug arbidol to algal bloom water can induce acute toxicity to the growth and metabolism of Microcystis aeruginosa, resulting in growth inhibition, as well as decrease in chlorophyll and ATP contents. However, the toxic mechanisms involved remained obscure, which were further investigated through transcriptomic analysis in this study. The results indicated that 885-1248 genes in algae were differentially expressed after exposure to 0.01-10.0 mg/L of arbidol, with the majority being down-regulated. Analysis of commonly down-regulated genes found that the cellular response to oxidative stress and damaged DNA bonding were affected, implying that the stress defense system and DNA repair function of algae might be damaged. The down-regulation of genes in porphyrin metabolism, photosynthesis, carbon fixation, glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation might inhibit chlorophyll synthesis, photosynthesis, and ATP supply, thereby hindering the growth and metabolism of algae. Moreover, the down-regulation of genes related to nucleotide metabolism and DNA replication might influence the reproduction of algae. These findings provided effective strategies to elucidate toxic mechanisms of contaminants on algae in algal bloom water.


Subject(s)
Antiviral Agents , Indoles , Microalgae , Microcystis , Transcriptome , Water Pollutants, Chemical , Indoles/toxicity , Antiviral Agents/toxicity , Antiviral Agents/pharmacology , Transcriptome/drug effects , Water Pollutants, Chemical/toxicity , Microalgae/drug effects , Microalgae/genetics , Microalgae/metabolism , Microalgae/growth & development , Microcystis/drug effects , Microcystis/genetics , Microcystis/metabolism , Microcystis/growth & development , Eutrophication/drug effects , Chlorophyll/metabolism
16.
J Hazard Mater ; 473: 134679, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38795485

ABSTRACT

The phycosphere is an essential ecological niche for the proliferation of antibiotic resistance genes (ARGs). However, how ARGs' potential hosts change and the driving mechanism of metabolites under antibiotic stress in the phycosphere have seldom been researched. We investigated the response of Chlorella pyrenoidosa and the structure and abundance of free-living (FL) and particle-attached (PA) bacteria, ARGs, and metabolites under sulfadiazine by using real-time quantitative PCR, 16 S rRNA high-throughput. The linkage of key bacterial communities, ARGs, and metabolites through correlations was established. Through analysis of physiological indicators, Chlorella pyrenoidosa displayed a pattern of "low-dose promotion and high-dose inhibition" under antibiotic stress. ARGs were enriched in the PA treatment groups by 117 %. At the phylum level, Proteobacteria, Bacteroidetes, and Actinobacteria as potential hosts for ARGs. At the genus level, potential hosts included Sphingopyxis, SM1A02, Aquimonas, Vitellibacter, and Proteiniphilum. Middle and high antibiotic concentrations induced the secretion of metabolites closely related to potential hosts by algae, such as phytosphingosine, Lysophosphatidylcholine, and α-Linolenic acid. Therefore, changes in bacterial communities indirectly influenced the distribution of ARGs through alterations in metabolic products. These findings offer essential details about the mechanisms behind the spread and proliferation of ARGs in the phycosphere.


Subject(s)
Anti-Bacterial Agents , Bacteria , Chlorella , Genes, Bacterial , Sulfadiazine , Chlorella/genetics , Chlorella/metabolism , Chlorella/drug effects , Anti-Bacterial Agents/pharmacology , Sulfadiazine/pharmacology , Bacteria/genetics , Bacteria/metabolism , Bacteria/drug effects , Microalgae/genetics , Microalgae/drug effects , Microalgae/metabolism , RNA, Ribosomal, 16S/genetics , Drug Resistance, Bacterial/genetics , Drug Resistance, Microbial/genetics , Microbiota/drug effects
17.
Mar Drugs ; 22(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38786599

ABSTRACT

The purpose of this study was to examine the influence of 10 and 20 nm nanoparticles (AgNPs) on the growth and biochemical composition of microalga Porphyridium purpureum CNMN-AR-02 in two media which differ by the total amount of mineral salts (MM1 with 33.02 g/L and MM2 with 21.65 g/L). Spectrophotometric methods were used to estimate the amount of biomass and its biochemical composition. This study provides evidence of both stimulatory and inhibitory effects of AgNPs on different parameters depending on the concentration, size, and composition of the nutrient medium. In relation to the mineral medium, AgNPs exhibited various effects on the content of proteins (an increase up to 20.5% in MM2 and a decrease up to 36.8% in MM1), carbohydrates (a decrease up to 35.8% in MM1 and 39.6% in MM2), phycobiliproteins (an increase up to 15.7% in MM2 and 56.8% in MM1), lipids (an increase up to 197% in MM1 and no changes found in MM2), antioxidant activity (a decrease in both media). The composition of the cultivation medium has been revealed as one of the factors influencing the involvement of nanoparticles in the biosynthetic activity of microalgae.


Subject(s)
Antioxidants , Culture Media , Metal Nanoparticles , Microalgae , Porphyridium , Silver , Porphyridium/drug effects , Porphyridium/metabolism , Metal Nanoparticles/chemistry , Culture Media/chemistry , Silver/chemistry , Silver/pharmacology , Microalgae/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Biomass
18.
Aquat Toxicol ; 271: 106937, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38728928

ABSTRACT

In aquaculture around the world, sulfamonomethoxine (SMM), a long-acting antibiotic that harms microalgae, is widely employed in combination with trimethoprim (TMP), a synergist. However, their combined toxicity to microalgae under long-term exposures at environmentally relevant concentrations remains poorly understood. Therefore, we studied the effects of SMM single-exposures and co-exposures (SMM:TMP=5:1) at concentrations of 5 µg/L and 500 µg/L on Chlorella pyrenoidosa within one aquacultural drainage cycle (15 days). Photosynthetic activity and N assimilating enzyme activities were employed to evaluate microalgal nutrient assimilation. Oxidative stress and flow cytometry analysis for microalgal proliferation and death jointly revealed mechanisms of inhibition and subsequent self-adaptation. Results showed that exposures at 5 µg/L significantly inhibited microalgal nutrient assimilation and induced oxidative stress on day 7, with a recovery to levels comparable to the control by day 15. This self-adaptation and over 95 % removal of antibiotics jointly contributed to promoting microalgal growth and proliferation while reducing membrane-damaged cells. Under 500 µg/L SMM single-exposure, microalgae self-adapted to interferences on nutrient assimilation, maintaining unaffected growth and proliferation. However, over 60 % of SMM remained, leading to sustained oxidative stress and apoptosis. Remarkably, under 500 µg/L SMM-TMP co-exposure, the synergistic toxicity of SMM and TMP significantly impaired microalgal nutrient assimilation, reducing the degradation efficiency of SMM to about 20 %. Consequently, microalgal growth and proliferation were markedly inhibited, with rates of 9.15 % and 17.7 %, respectively, and a 1.36-fold increase in the proportion of cells with damaged membranes was observed. Sustained and severe oxidative stress was identified as the primary cause of these adverse effects. These findings shed light on the potential impacts of antibiotic mixtures at environmental concentrations on microalgae, facilitating responsible evaluation of the ecological risks of antibiotics in aquaculture ponds.


Subject(s)
Microalgae , Oxidative Stress , Sulfamonomethoxine , Trimethoprim , Water Pollutants, Chemical , Trimethoprim/toxicity , Water Pollutants, Chemical/toxicity , Microalgae/drug effects , Oxidative Stress/drug effects , Sulfamonomethoxine/toxicity , Chlorella/drug effects , Chlorella/metabolism , Chlorella/growth & development , Nutrients/metabolism , Photosynthesis/drug effects , Anti-Bacterial Agents/toxicity
19.
Chemosphere ; 358: 142220, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710410

ABSTRACT

Microplastics have become a prevalent environmental pollutant due to widespread release and production. Algae, as primary producers, play a crucial role in maintaining the ecological balance of freshwater environments. Despite reports on the inhibition of microalgae by microplastics, the size-dependent effects on microalgae and associated molecular mechanism remain poorly understood. This study investigates the impacts of three polystyrene micro/nano-plastics (PS-MNPs) with different sizes (100 nm, 350 nm, and 6 µm) and concentrations (25-200 mg/L) on Chlamydomonas reinhardtii (C. reinhardtii) throughout its growth period. Results reveal size- and concentration-dependent growth inhibition and induction of oxidative stress by PS-MNPs, with microalgae exhibiting increased vulnerability to smaller-sized and higher-concentration PS-MNPs. Proteomics analysis elucidates the size-dependent suppression of proteins involved in the photosynthesis process by PS-MNPs. Photosynthetic activity assays demonstrate that smaller PS-MNPs more significantly reduce chlorophyll content and the maximal photochemical efficiency of photosystem II. Finally, electron microscope and Western blot assays collectively confirm the size effect of PS-MNPs on microalgae growth is attributable to suppressed protein expression rather than shading effects. This study contributes to advancing our understanding of the intricate interactions between micro/nano-plastics and algae at the molecular level, emphasizing the efficacy of proteomics in dissecting the mechanistic aspects of microplastics-induced biological effects on environmental indicator organisms.


Subject(s)
Chlamydomonas reinhardtii , Microplastics , Photosynthesis , Polystyrenes , Proteomics , Chlamydomonas reinhardtii/drug effects , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/growth & development , Polystyrenes/toxicity , Polystyrenes/chemistry , Microplastics/toxicity , Photosynthesis/drug effects , Oxidative Stress/drug effects , Chlorophyll/metabolism , Water Pollutants, Chemical/toxicity , Microalgae/drug effects , Plastics/toxicity , Particle Size , Photosystem II Protein Complex/metabolism
20.
Ecotoxicol Environ Saf ; 278: 116441, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38733805

ABSTRACT

Oxybenzone (OBZ; benzophenone-3, CAS# 131-57-7), as a new pollutant and ultraviolet absorbent, shows a significant threat to the survival of phytoplankton. This study aims to explore the acute toxic effects of OBZ on the growth of the microalga Selenastrum capricornutum, as well as the mechanisms for its damage to the primary metabolic pathways of photosynthesis and respiration. The results demonstrated that the concentrations for 50 % of maximal effect (EC50) of OBZ for S. capricornutum were 9.07 mg L-1 and 8.54 mg L-1 at 72 h and 96 h, respectively. A dosage of 4.56 mg L-1 OBZ significantly lowered the photosynthetic oxygen evolution rate of S. capricornutum in both light and dark conditions for a duration of 2 h, while it had no effect on the respiratory oxygen consumption rate under darkness. OBZ caused a significant decline in the efficiency of photosynthetic electron transport due to its damage to photosystem II (PSII), thereby decreasing the photosynthetic oxygen evolution rate. Over-accumulated H2O2 was produced under light due to the damage caused by OBZ to the donor and acceptor sides of PSII, resulting in increased peroxidation of cytomembranes and inhibition of algal respiration. OBZ's damage to photosynthesis and respiration will hinder the conversion and reuse of energy in algal cells, which is an important reason that OBZ has toxic effects on S. capricornutum. The present study indicated that OBZ has an acute toxic effect on the microalga S. capricornutum. In the two most important primary metabolic pathways in algae, photosynthesis is more sensitive to the toxicity of OBZ than respiration, especially in the dark.


Subject(s)
Benzophenones , Microalgae , Photosynthesis , Sunscreening Agents , Photosynthesis/drug effects , Benzophenones/toxicity , Microalgae/drug effects , Sunscreening Agents/toxicity , Water Pollutants, Chemical/toxicity , Hydrogen Peroxide/metabolism , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/drug effects , Ultraviolet Rays , Electron Transport/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...