Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.532
1.
J Appl Oral Sci ; 32: e20230397, 2024.
Article En | MEDLINE | ID: mdl-38695444

Specific products containing natural resources can contribute to the innovation of complete denture hygiene. OBJECTIVE: To conduct an in vitro evaluation of experimental dentifrices containing essential oils of Bowdichia virgilioides Kunth (BvK), Copaifera officinalis (Co), Eucalyptus citriodora (Ec), Melaleuca alternifolia (Ma) and Pinus strobus (Ps) at 1%. METHODOLOGY: The variables evaluated were organoleptic and physicochemical characteristics, abrasiveness (mechanical brushing machine) simulating 2.5 years, and microbial load (Colony Forming Units - CFU/mL), metabolic activity (XTT assay) and cell viability (Live/Dead® BacLight™ kit) of the multispecies biofilm (Streptococcus mutans: Sm, Staphylococcus aureus: Sa, Candida albicans: Ca and Candida glabrata: Cg). Specimens of heat-polymerized acrylic resins (n=256) (n=96 specimens for abrasiveness, n=72 for microbial load count, n=72 for biofilm metabolic activity, n=16 for cell viability and total biofilm quantification) with formed biofilm were divided into eight groups for manual brushing (20 seconds) with a dental brush and distilled water (NC: negative control), Trihydral (PC: positive control), placebo (Pl), BvK, Co, Ec, Ma or Ps. After brushing, the specimens were washed with PBS and immersed in Letheen Broth medium, and the suspension was sown in solid specific medium. The organoleptic characteristics were presented by descriptive analysis. The values of density, pH, consistency and viscosity were presented in a table. The data were analyzed with the Wald test in a generalized linear model, followed by the Kruskal-Wallis test, Dunn's test (mass change) and the Bonferroni test (UFC and XTT). The Wald test in Generalized Estimating Equations and the Bonferroni test were used to analyze cell viability. RESULTS: All dentifrices showed stable organoleptic characteristics and adequate physicochemical properties. CN, Ec, Ps, Pl and PC showed low abrasiveness. There was a significant difference between the groups (p<0.001) for microbial load, metabolic activity and biofilm viability. CONCLUSIONS: It was concluded that the BvK, Ec and Ps dentifrices are useful for cleaning complete dentures, as they have antimicrobial activity against biofilm. The dentifrices containing Bowdichia virgilioides Kunth showed medium abrasiveness and should be used with caution.


Biofilms , Dentifrices , Denture, Complete , Materials Testing , Oils, Volatile , Biofilms/drug effects , Dentifrices/pharmacology , Dentifrices/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Denture, Complete/microbiology , Time Factors , Reproducibility of Results , Toothbrushing , Colony Count, Microbial , Staphylococcus aureus/drug effects , Statistics, Nonparametric , Streptococcus mutans/drug effects , Analysis of Variance , Microbial Viability/drug effects , Candida albicans/drug effects , Reference Values , Acrylic Resins/chemistry , Acrylic Resins/pharmacology
2.
Food Chem ; 453: 139644, 2024 Sep 30.
Article En | MEDLINE | ID: mdl-38761735

This work developed and characterized the physicochemical properties of a type A gelatin and amidated low-methoxyl pectin complex coacervate (GA-LMAP-CC) hydrogel and evaluated its suitability for preserving the viability of probiotics under in vitro gastrointestinal conditions. The formation of GA-LMAP-CC was achieved via height electrostatic attraction at pH 3 and a mixing ratio of 1, exhibiting thermoreversible gel behavior. The hydrogel had a porosity of 44% and a water absorption capacity of up to 12 times. Water absorption profiles were obtained at different pH values (2, 5, and 7). The influence of GA-LMAP-CC depended on the medium, which controlled the hydration and water absorption rate. GA-LMAP-CC promoted the viability of B. longum BB536 and L. acidophilus strains under simulated gastrointestinal conditions, thereby enhancing their potential for intestinal colonization. The hydrogel has suitable properties for potential application in food and pharmaceutical areas to encapsulate and preserve probiotics.


Gelatin , Hydrogels , Pectins , Probiotics , Pectins/chemistry , Gelatin/chemistry , Probiotics/chemistry , Hydrogels/chemistry , Microbial Viability/drug effects , Lactobacillus acidophilus/chemistry , Lactobacillus acidophilus/growth & development , Lactobacillus acidophilus/metabolism , Bifidobacterium/growth & development , Bifidobacterium/metabolism , Hydrogen-Ion Concentration , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology
3.
Int J Biol Macromol ; 269(Pt 2): 132068, 2024 Jun.
Article En | MEDLINE | ID: mdl-38719001

Pullulan was used as the wall material for microencapsulation of L. plantarum CRD7 by spray drying, while isomalto-oligosaccharides (IMO) was used as prebiotic. Also, the effect of different thermal protectants on survival rate during microencapsulation was evaluated. Taguchi orthogonal array design showed that pullulan at 14 % concentration, IMO at 30 % concentration and whey protein isolate at 20 % rate were the optimized wall material, prebiotic and thermal protectant, respectively for microencapsulation of L. plantarum. FESEM images revealed that the spray-dried encapsulates were fibrous similar to those produce by electrospinning, while fluorescence microscopy ascertained that most of the probiotic cells were alive and intact after microencapsulation. The adsorption-desorption isotherm was of Type II and the encapsulate had specific surface area of 1.92 m2/g and mean pore diameter of 15.12 nm. The typical amide II and III bands of the bacterial proteins were absent in the FTIR spectra, suggestive of adequate encapsulation. DSC thermogram showed shifting of melting peaks to wider temperature range due to interactions between the probiotic and wall materials. IMO at 30 % (w/w) along with WPI at 20 % concentration provided the highest storage stability and the lowest rate of cell death of L. plantarum after microencapsulation. Acid and bile salt tolerance results confirmed that microencapsulated L. plantarum could sustain the harsh GI conditions with >7.5 log CFU/g viability. After microencapsulation, L. plantarum also possessed the ability to ferment milk into curd with pH of 4.62.


Glucans , Lactobacillus plantarum , Prebiotics , Glucans/chemistry , Glucans/pharmacology , Lactobacillus plantarum/chemistry , Spray Drying , Probiotics/chemistry , Microbial Viability/drug effects , Drug Compounding , Whey Proteins/chemistry , Oligosaccharides/chemistry , Oligosaccharides/pharmacology
4.
J Microbiol Biotechnol ; 34(5): 1051-1058, 2024 May 28.
Article En | MEDLINE | ID: mdl-38803106

This study investigated the impact of inulin (INL) on viability of L. plantarum D-2 (LPD2) by encapsulation through spray drying (SD) and its commercialization potential to alternative of conventional wall material maltodextrin (MD). LPD2, derived from sea tangle (Saccharina japonica) kimchi, is probiotics exhibiting significant attributes like cholesterol reduction, antioxidant properties, and resilience to acidic and bile environments. To enhance storage viability and stability of LPD2, encapsulation was applied by SD technology. The optimum encapsulation condition with MD was 10% MD concentration (MD10) and inlet temperature (96°C). The optimum concentration ratio of MD and INL was 7:3 (INL3) for alternative of MD with similar encapsulation yield and viability of LPD2. Viability of LPD2 with INL3 exhibited almost 8% higher than that with MD10 after 50 days storage at 25°C. Physicochemical characteristics of the encapsulated LPD2 (ELPD2) with MD10 and INL3 had no significant different between flowability and morphology. But, ELPD2 with INL3 had lower water solubility and higher water absorption resulting in extension of viability of LPD2 compared to that with MD10. The comprehensive study results showed that there was no significant difference in the encapsulation yield and physicochemical properties between ELPD2 with MD10 and INL3, except of water solubility index (WSI) and water absorption index (WAI). INL have the potential to substitute of MD as a commercial wall material with prebiotic functionality to enhance the viability of LPD2 by encapsulation.


Inulin , Lactobacillus plantarum , Microbial Viability , Polysaccharides , Prebiotics , Spray Drying , Inulin/chemistry , Inulin/pharmacology , Polysaccharides/chemistry , Microbial Viability/drug effects , Lactobacillus plantarum/growth & development , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/chemistry , Probiotics , Temperature , Desiccation/methods , Solubility
5.
Braz J Microbiol ; 55(2): 1735-1744, 2024 Jun.
Article En | MEDLINE | ID: mdl-38727922

AIMS: To develop and characterize a functional lactose-free ice cream with added ginger and honey, evaluate the survival of Lacticaseibacillus casei CSL3 under frozen storage and the simulated gastrointestinal tract (GIT), as well as antioxidant activity and product acceptability. METHODS AND RESULTS: The survival of Lacticaseibacillus casei CSL3 was evaluated for 180 days, under frozen storage, and GIT at 60 days. At 15 days of storage, proximal composition, antioxidant activity, color, pH, acidity, fusion, density, overrun, and sensory analysis were performed. Ice cream was an effective food matrix for maintaining the viability of CSL3, with concentrations > 7 log CFU g- 1 during storage and GIT. In addition, the analysis showed overrun and prebiotic characteristics through high values of antioxidant activity and phenolic compounds, good acceptability, and purchase intention. CONCLUSIONS: The product has satisfactory market potential (acceptance rate of 95.19% and purchase intention rate > 96%), and it could become another means of inserting probiotics in food.


Honey , Ice Cream , Lacticaseibacillus casei , Probiotics , Zingiber officinale , Honey/analysis , Zingiber officinale/chemistry , Ice Cream/microbiology , Ice Cream/analysis , Lacticaseibacillus casei/chemistry , Lacticaseibacillus casei/metabolism , Probiotics/chemistry , Humans , Antioxidants/chemistry , Lactose/metabolism , Gastrointestinal Tract/microbiology , Food Storage , Microbial Viability/drug effects
6.
Arch Oral Biol ; 164: 105986, 2024 Aug.
Article En | MEDLINE | ID: mdl-38723421

AIM: To evaluate the adhesion of mono and duospecies biofilm on a commercially available dental implant surface coated with hydroxyapatite nanoparticles (nanoHA). MATERIAL AND METHODS: Titanium discs were divided into two groups: double acid-etched (AE) and AE coated with nanoHA (NanoHA). Surface characteristics evaluated were morphology, topography, and wettability. Mono and duospecies biofilms of Streptococcus sanguinis (S. sanguinis) and Candida albicans (C. albicans) were formed. Discs were exposed to fetal bovine serum (FBS) to form the pellicle. Biofilm was growth in RPMI1640 medium with 10% FBS and 10% BHI medium for 6 h. Microbial viability was evaluated using colony-forming unit and metabolic activity by a colorimetric assay of the tetrazolium salt XTT. Biofilm architecture and organization were evaluated by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). RESULTS: AE surface had more pores, while NanoHA had even nanoHA crystals distribution. Roughness was similar (AE: 0.59 ± 0.07 µm, NanoHA: 0.69 ± 0.18 µm), but wettability was different (AE: Θw= 81.79 ± 8.55°, NanoHA: Θw= 53.26 ± 11.86°; P = 0.01). NanoHA had lower S. sanguinis viability in monospecies biofilm (P = 0.007). Metabolic activity was similar among all biofilms. In SEM both surfaces on C. albicans biofilm show a similar distribution of hyphae in mono and duospecies biofilms. AE surface has more S. sanguinis than the NanoHA surface in the duospecies biofilm. CLSM showed a large proportion of live cells in all groups. CONCLUSIONS: The nanoHA surface reduced the adhesion of S. sanguinis biofilm but did not alter the adhesion of C. albicans or the biofilm formed by both species.


Biofilms , Candida albicans , Dental Implants , Durapatite , Microscopy, Confocal , Microscopy, Electron, Scanning , Nanoparticles , Streptococcus sanguis , Surface Properties , Titanium , Titanium/chemistry , Titanium/pharmacology , Candida albicans/drug effects , Candida albicans/physiology , Biofilms/drug effects , Durapatite/pharmacology , Durapatite/chemistry , Streptococcus sanguis/drug effects , Nanoparticles/chemistry , Dental Implants/microbiology , In Vitro Techniques , Bacterial Adhesion/drug effects , Wettability , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry , Acid Etching, Dental , Microbial Viability/drug effects
7.
Arch Oral Biol ; 164: 105990, 2024 Aug.
Article En | MEDLINE | ID: mdl-38749386

INTRODUCTION: There have been reports on the effects of epigallocatechin gallate (EGCG) against Streptococcus mutans viability and acidogenesis. However, the effects of EGCG on the virulence of S. mutans biofilm development have yet to be fully investigated using validated cariogenic biofilm models. OBJECTIVE: Thus, this study aimed to evaluate the effects of EGCG on S. mutans biofilm virulence using a validated cariogenic model and clinically relevant treatment regimens, twice a day for 1.5 min. METHODS: Effects of EGCG on bacterial viability, polyssacharide synthesis and biofilm acidogenesis were evaluated. The morphology and 3D structure of the biofilms were evaluated by scanning electron (SEM) and confocal laser scanning microscopy, respectively. RESULTS: No significant change in S. mutans viability or culture medium pH were observed when comparing EGCG-treated and NaCl-treated biofilms. EGCG significantly reduced the accumulation of soluble and insoluble polysaccharides, resulting in the formation of a biofilm with interspaced exopolysaccharide-microcolony complexes unevenly distributed on enamel. The SEM images of the biofilm treated with EGCG depict multilayers of cells arranged in short chains of microorganisms adhered to an unstructured matrix, which is not continuous and does not enmesh or protect the microorganisms entirely. Importantly, confocal images demonstrated that treatment with EGCG affected the 3D structure and organization of S. mutans biofilm, which presented a biofilm matrix more confined to the location of the microcolonies. CONCLUSION: In conclusion, EGCG lowered the virulence of S. mutans matrix-rich biofilm by reducing the synthesis of biofilm matrix components, altering the biofilm matrix structure, organization, and distribution.


Biofilms , Catechin , Microscopy, Confocal , Microscopy, Electron, Scanning , Streptococcus mutans , Biofilms/drug effects , Streptococcus mutans/drug effects , Catechin/pharmacology , Catechin/analogs & derivatives , Virulence/drug effects , Dental Caries/microbiology , Hydrogen-Ion Concentration , Microbial Viability/drug effects , Polysaccharides, Bacterial , Dental Enamel/drug effects , Dental Enamel/microbiology
8.
Int J Food Microbiol ; 419: 110749, 2024 Jul 16.
Article En | MEDLINE | ID: mdl-38788343

This study investigated the synergistic effects of ammonium persulfate (PS) and ultrasound (US) on the inactivation of Escherichia coli O157:H7 in buffered peptone water (BPW) and orange juice products. A comprehensive assessment of PS concentrations ranging from 1 to 300 mM, considering not only the statistical significance but also the reliability and stability of the experimental outcomes, showed that 150 mM was the optimal PS concentration for the inactivation of E. coli O157:H7. Additionally, US output intensities varying from 30 % to 60 % of the maximum US intensity were evaluated, and 50 % US amplitude was found to be the optimal US condition. A 50 % amplitude setting on the sonicator corresponds to half of its maximum displacement, approximately 60 µm, based on a maximum amplitude of 120 µm. The inactivation level of E. coli O157:H7 was significantly enhanced by the combined treatment of PS and US, compared to each treatment of PS and US alone. In the BPW, a 10-min treatment with the combination of PS and US resulted in a significant synergistic inactivation, achieving up to a log reduction of 3.86 log CFU/mL. Similarly, in orange juice products, a 5-min treatment with the combination of PS and US yielded a significant synergistic inactivation, with a reduction reaching 5.90 log CFU/mL. Although the treatment caused a significant color change in the sample, the visual differences between the treated and non-treated groups were not pronounced. Furthermore, the combined treatment in orange juice demonstrated significantly enhanced antimicrobial efficacy relative to BPW. Despite identical 5-min treatment periods, the application in orange juice resulted in a substantially higher log reduction of E. coli O157:H7, achieving 7.16 log CFU/mL at a reduced PS concentration of 30 mM, whereas the same treatment in BPW yielded only a 2.89 log CFU/mL reduction at a PS concentration of 150 mM, thereby highlighting its significantly superior antimicrobial performance in orange juice. The mechanism underlying microbial inactivation, induced by the combined treatment of PS and US, was identified as significant cell membrane damage. This damage is mediated by sulfate radicals, generated through the sono-activation of persulfate. In addition, the low pH of orange juice, measured at 3.7, is likely to have further deteriorated the E. coli O157:H7 cells compared to BPW (pH 7.2), by disrupting their cell membranes, proton gradients, and energy metabolism. These findings underscore the effectiveness of PS and US integration as a promising approach for non-thermal pasteurization in the food industry. Further research is needed to optimize treatment parameters and fully explore the practical application of this technique in large-scale food processing operations. Sensory evaluation and nutritional assessment are also necessary to address the limitations of PS.


Ammonium Sulfate , Citrus sinensis , Colony Count, Microbial , Escherichia coli O157 , Fruit and Vegetable Juices , Escherichia coli O157/drug effects , Escherichia coli O157/growth & development , Fruit and Vegetable Juices/microbiology , Citrus sinensis/chemistry , Ammonium Sulfate/pharmacology , Ammonium Sulfate/chemistry , Peptones/pharmacology , Peptones/chemistry , Food Microbiology , Microbial Viability/drug effects , Water/chemistry , Water/pharmacology
9.
Int J Biol Macromol ; 270(Pt 1): 131758, 2024 Jun.
Article En | MEDLINE | ID: mdl-38714282

In this study, the whey protein concentrate and xanthan gum complex obtained by specific pH treatment, along with κ-carrageenan (KC), were used to encapsulate Lactobacillus acidophilus JYLA-191 in an emulsion gel system. The effects of crosslinking and KC concentration on the visual characteristics, stability, mechanical properties, and formation mechanism of emulsion gels were investigated. The results of optical imaging, particle size distribution, and rheology exhibited that with the addition of crosslinking agents, denser and more homogeneous emulsion gels were formed, along with a relative decrease in the droplet size and a gradual increase in viscosity. Especially when the concentration of citric acid (CA) was 0.09 wt%, KC was 0.8 wt%, and K+ was present in the system, the double-network emulsion gel was stable at high temperatures and in freezing environments, and the swelling ratio was the lowest (9.41%). Gastrointestinal tract digestive treatments and pasteurization revealed that the probiotics encapsulated in the double-network emulsion gel had a higher survival rate, which was attributed to the synergistic cross-linking of CA and K+ biopolymers to construct the emulsion gels. Overall, this study highlights the potential of emulsion gels to maintain probiotic vitality and provides valuable insights for developing inventive functional foods.


Carrageenan , Emulsions , Gels , Lactobacillus acidophilus , Polysaccharides, Bacterial , Probiotics , Whey Proteins , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/pharmacology , Carrageenan/chemistry , Carrageenan/pharmacology , Emulsions/chemistry , Probiotics/chemistry , Whey Proteins/chemistry , Whey Proteins/pharmacology , Gels/chemistry , Lactobacillus acidophilus/drug effects , Rheology , Microbial Viability/drug effects , Particle Size , Viscosity
10.
Int J Biol Macromol ; 267(Pt 1): 131483, 2024 May.
Article En | MEDLINE | ID: mdl-38599426

Probiotics are susceptible to diverse conditions during processing, storage, and digestion. Here, shellac (SC), sodium alginate (SA), coconut oil (CO), soybean oil (SO), and trehalose (AL) were used to prepare microcapsules aiming to improve the survival of Lactiplantibacillus plantarum KLDS1.0318 during freeze-drying, storage process, and gastrointestinal digestion. The results showed that for SA/AL/SC/CO and SA/AL/SC/SO, the survival loss decreased by 51.2 % and 51.0 % after a freeze-drying process compared with microcapsules embedded by SA; the viable bacteria count loss decreased by 4.36 and 4.24 log CFU/mL compared with free cell (CON) during storage for 28 d under 33%RH at 25 °C, respectively; while for simulating digestion in vitro, the survival loss decreased by 3.05 and 2.70 log CFU/mL, 0.63 and 0.55 log CFU/mL after digestion at simulated gastric fluid for 120 min and small intestine fluid for 180 min, respectively (P < 0.05). After microcapsules were added to fermented dairy stored at 4 °C for 21 d, the viable bacteria count of SA/AL/SC/CO and SA/AL/SC/SO significantly increased by 2.10 and 1.70 log CFU/mL compared with CON, respectively (P < 0.05). In conclusion, the current study indicated that shellac-based probiotic microcapsules have superior potential to protect and deliver probiotics in food systems.


Alginates , Capsules , Digestion , Freeze Drying , Microbial Viability , Probiotics , Alginates/chemistry , Microbial Viability/drug effects , Gastrointestinal Tract/microbiology , Trehalose/chemistry , Soybean Oil/chemistry , Coconut Oil/chemistry
11.
Int J Biol Macromol ; 267(Pt 1): 131512, 2024 May.
Article En | MEDLINE | ID: mdl-38608972

Two-dimensional (2D) transition metal carbides (Ti3C2Tx MXene) have gained significant attention for their potential in constructing diverse functional materials, However, MXene is easily oxidized and weakly bound to the cellulose matrix, which pose challenges in developing MXene-decorated non-woven fabric with strong bonding and stable thermal management properties. Herein, we successfully prepared deep eutectic supramolecular polymer (DESP) functionalized MXene to address these issues. MXene can be wrapped with DESP to be insulated from water and protected from being oxidized. Subsequently, we achieved an efficient in-situ deposition of DESP-functionalized MXene onto fibers through a combination of dip coating and photopolymerization technique. The resulting nonwoven fabric (CNs-DESP@M) exhibited excellent photothermal conversion properties along with rapid thermal response and functional stability. Interestingly, the interface bonding between MXene and the fiber surface was significantly enhanced due to the abundant pyrogallol groups in DESP, resulting in the composite textile exhibiting commendable mechanical properties (2.68 MPa). Moreover, the as-prepared textile demonstrates outstanding bactericidal efficacy against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The multifunctional textile, created through a facile and efficient approach, demonstrates remarkable potential for applications in smart textiles, catering to the diverse needs of individuals in the future.


Anti-Bacterial Agents , Cellulose , Escherichia coli , Polymers , Staphylococcus aureus , Textiles , Cellulose/chemistry , Cellulose/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polymers/chemistry , Mechanical Phenomena , Temperature , Microbial Viability/drug effects
12.
Food Chem ; 448: 139073, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38574713

This study reported for the first time that Ascorbic acid (AA) could appreciably boost the efficiency of Octyl gallate (OG)-mediated photodynamic inactivation (PDI) on Escherichia coli and Staphylococcus aureus in planktonic and biofilm states. The combination of OG (0.075 mM) and AA (200 mM) with 420 nm blue light (212 mW/cm2) led to a >6 Log killing within only 5 min for E. coli and S. aureus and rapid eradication of biofilms. The mechanism of action appears to be the generation of highly toxic hydroxyl radicals (•OH) via photochemical pathways. OG was exposed to BL irradiation to generate various reactive oxygen radicals (ROS) and the addition of AA could transform singlet oxygen (1O2) into hydrogen peroxide (H2O2), which could further react with AA to generate enormous •OH. These ROS jeopardized bacteria and biofilms by nonspecifically attacking various biomacromolecules. Overall, this PDI strategy provides a powerful microbiological decontamination modality to guarantee safe food products.


Ascorbic Acid , Biofilms , Escherichia coli , Gallic Acid , Gallic Acid/analogs & derivatives , Light , Staphylococcus aureus , Biofilms/drug effects , Ascorbic Acid/pharmacology , Ascorbic Acid/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Gallic Acid/pharmacology , Gallic Acid/chemistry , Escherichia coli/drug effects , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Viability/drug effects , Microbial Viability/radiation effects , Reactive Oxygen Species/metabolism , Plankton/drug effects , Plankton/radiation effects , Blue Light
13.
Int J Biol Macromol ; 268(Pt 1): 131899, 2024 May.
Article En | MEDLINE | ID: mdl-38677703

Emerging food processing technologies provide broader avenues for enhancing probiotic delivery systems. In this study, the new Fu brick tea polysaccharide (FBTP) was extracted and combined with cold plasma-modified alginate nano-montmorillonite (AMT) to prepare microgels by ionic gelation to improve the viability of encapsulated Lactobacillus kefiranofaciens JKSP109. Results showed that cold plasma treatment for 3 min changed the surface charge of AMT biopolymer solution, and FBTP addition reduced the particle size to the lowest of 223 ± 5.50 nm. Morphological analysis showed that the AMT treated with cold plasma for 3 min and FBTP (C3AMT + FBTP) formed a dense microgel through electrostatic interaction, and the probiotics were randomly distributed in their internal polysaccharide network, as well as the interlayer and surrounding of nanoparticles. The probiotics immobilized in C3AMT + FBTP microgel exhibited the highest viability (8.48 ± 0.03 log CFU/g) and colonic colonization after exposure to simulated gastrointestinal conditions. In addition, the good antioxidant activity of FBTP reduced the loss of probiotic viability during storage, with only 2.58 log CFU/g decreased after 4 weeks. Therefore, such probiotic products enriched with natural bioactive ingredients can be developed as a potential functional food additive.


Alginates , Microgels , Polysaccharides , Probiotics , Tea , Alginates/chemistry , Tea/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Microgels/chemistry , Microbial Viability/drug effects , Plasma Gases/pharmacology , Plasma Gases/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Lactobacillus , Particle Size
14.
J Dent ; 145: 104997, 2024 Jun.
Article En | MEDLINE | ID: mdl-38621525

OBJECTIVE: To assess the effects of arginine, with or without sodium fluoride (NaF; 1,450 ppm), on saliva-derived microcosm biofilms and enamel demineralization. METHODS: Saliva-derived biofilms were grown on bovine enamel blocks in 0.2 % sucrose-containing modified McBain medium, according to six experimental groups: control (McBain 0.2 %); 2.5 % arginine; 8 % arginine; NaF; 2.5 % arginine with NaF; and 8 % arginine with NaF. After 5 days of growth, biofilm viability was assessed by colony-forming units counting, laser scanning confocal microscopy was used to determine biofilm vitality and extracellular polysaccharide (EPS) production, while biofilm metabolism was evaluated using the resazurin assay and lactic acid quantification. Demineralization was evaluated by measuring pH in the culture medium and calcium release. Data were analyzed by Kruskal-Wallis' and Dunn's tests (p < 0.05). RESULTS: 8 % arginine with NaF showed the strongest reduction in total streptococci and total microorganism counts, with no significant difference compared to arginine without NaF. Neither 2.5 % arginine alone nor NaF alone significantly reduced microbial counts compared to the control, although in combination, a reduction in all microbial groups was observed. Similar trends were found for biofilm vitality and EPS, and calcium released to the growth medium. CONCLUSIONS: 8 % Arginine, with or without NaF, exhibited the strongest antimicrobial activity and reduced enamel calcium loss. Also, NaF enhanced the effects of 2.5 % arginine, yielding similar results to 8 % arginine for most parameters analyzed. CLINICAL SIGNIFICANCE: The results provided further evidence on how arginine, with or without NaF, affects oral microcosm biofilms and enamel mineral loss.


Arginine , Biofilms , Cariostatic Agents , Dental Enamel , Microscopy, Confocal , Saliva , Sodium Fluoride , Tooth Demineralization , Biofilms/drug effects , Arginine/pharmacology , Sodium Fluoride/pharmacology , Dental Enamel/drug effects , Dental Enamel/microbiology , Cattle , Animals , Tooth Demineralization/prevention & control , Tooth Demineralization/microbiology , Cariostatic Agents/pharmacology , Saliva/microbiology , Saliva/metabolism , Saliva/drug effects , Hydrogen-Ion Concentration , Microbial Viability/drug effects , Calcium/analysis , Calcium/metabolism , Streptococcus/drug effects , Xanthenes/pharmacology , Colony Count, Microbial , Oxazines/pharmacology
15.
Clin Oral Investig ; 28(5): 265, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38652209

OBJECTIVES: This ex vivo human study aimed to evaluate the efficacy of NaOCl and chlorhexidine gluconate (CHG) irrigations in eliminating Enterococcus faecalis from the RCS of primary molars. MATERIALS AND METHODS: Disinfected extracted primary molars were inoculated with E. faecalis for 24 h. Then, the RCS samples were then irrigated with either 2.5% NaOCl, 0.2% and 2% CHG, or sham saline. The samples were collected immediately after irrigation; and 24 h later, the bacterial viability and counts were measured using blood agar and qRT-PCR, respectively. Histological sections were used to measure E. faecalis penetration and viability in dentin tubules using fluorescence microscopy. RESULTS: The recovery of viable E. faecalis after the irrigation of the primary molars showed more significant bactericidal effects of NaOCl and 0.2% and 2% CHG than of saline. Immediately after the irrigation, the NaOCl group showed the greatest reduction in E. faecalis; and 24 h later, all the groups had lower viable E. faecalis than the saline control. The bacterial penetration was also lowest in the NaOCl group, although there was no difference in bacterial viability in the tubules between the groups. CONCLUSION: In primary teeth, NaOCl and CHG showed similar degrees of bacterial elimination efficacy in terms of E.faecalis. CLINICAL RELEVANCE: Within the limitations of this study, NaOCl and CHG have the similar ability to perform endodontic irrigation of primary ex vivo teeth regarding the elimination of E.faecalis, but NaOCl penetrates dentin tubules better.


Chlorhexidine , Chlorhexidine/analogs & derivatives , Dental Pulp Cavity , Enterococcus faecalis , Molar , Root Canal Irrigants , Sodium Hypochlorite , Tooth, Deciduous , Chlorhexidine/pharmacology , Enterococcus faecalis/drug effects , Humans , Sodium Hypochlorite/pharmacology , Root Canal Irrigants/pharmacology , Molar/microbiology , Tooth, Deciduous/microbiology , Dental Pulp Cavity/microbiology , In Vitro Techniques , Microscopy, Fluorescence , Anti-Infective Agents, Local/pharmacology , Real-Time Polymerase Chain Reaction , Microbial Viability/drug effects
16.
Braz J Microbiol ; 55(2): 1279-1286, 2024 Jun.
Article En | MEDLINE | ID: mdl-38652443

Probiotic-containing foods are among the most appreciated functional foods; however, probiotic-based dairy products cannot be consumed by people who are lactose intolerant, allergic to milk, or vegetarian or vegan individuals. Thus, new non-dairy matrices have been tested for probiotics delivery. This study evaluated the growth and viability of Limosilactobacillus fermentum ATCC 23271 and Lacticaseibacillus rhamnosus ATCC 9595 in Pitanga juice (Eugenia uniflora L.). The effects of the fermentation on the antioxidant and anti-infective properties of the juice were also analyzed. The E. uniflora juice allowed lactobacilli growth without supplementation, reaching rates around 8.4 Log CFU/mL and producing organic acids (pH values < 4) after 72 h of fermentation. The strain remained viable after 35 days of refrigerated storage. Fermentation by these bacteria increases the antioxidant capacity of the juice. The central composite rotational design was employed to evaluate the effects of bacterial inoculum and pulp concentration on growth and organic acids production by L. fermentum ATCC 23271. The strain was viable and produced organic acids in all tested combinations. L. fermentum-fermented juice and its cell-free supernatant significantly increased the survival of Tenebrio molitor larvae infected by enteroaggregative Escherichia coli 042. The results obtained in this study provide more insights into the potential of Pitanga juice to develop a functional non-dairy probiotic beverage with antioxidant and anti-infective properties.


Antioxidants , Eugenia , Fermentation , Limosilactobacillus fermentum , Probiotics , Antioxidants/pharmacology , Antioxidants/metabolism , Limosilactobacillus fermentum/metabolism , Limosilactobacillus fermentum/growth & development , Limosilactobacillus fermentum/physiology , Limosilactobacillus fermentum/drug effects , Probiotics/pharmacology , Eugenia/chemistry , Anti-Infective Agents/pharmacology , Fruit and Vegetable Juices/microbiology , Fruit and Vegetable Juices/analysis , Lacticaseibacillus rhamnosus/metabolism , Lacticaseibacillus rhamnosus/growth & development , Lacticaseibacillus rhamnosus/drug effects , Microbial Viability/drug effects
17.
Microbes Infect ; 26(4): 105320, 2024.
Article En | MEDLINE | ID: mdl-38461969

INTRODUCTION: Healthcare-acquired infections and overuse of antibiotics are a common problem. Rising emergence of antibiotic and antiseptic resistances requires new methods of microbial decontamination or decolonization as the use of far-UV-C radiation. METHODS: The microbicidal efficacy of UV-C radiation (222 nm, 233 nm, 254 nm) was determined in a quantitative carrier test and on 3D-epidermis models against Staphylococcus (S.) aureus, S.epidermidis, S.haemolyticus, S.lugdunensis, Klebsiella pneumoniae, and Pseudomonas aeruginosa. To mimic realistic conditions, sodium chloride solution, mucin, albumin, artificial saliva, artificial wound exudate and artificial sweat were used. RESULTS: In sodium chloride solution, irradiation with a dose of 40 mJ/cm2 (233 nm) was sufficient to achieve 5 lg reduction independent of bacteria genus or species. In artificial sweat, albumin and artificial wound exudate, a reduction >3 lg was reached for most of the bacteria. Mucin and artificial saliva decreased the reduction to <2 lg. On 3D epidermis models, reduction was lower than in the carrier test. CONCLUSION: UV-C radiation at 233 nm was proven to be efficient in bacteria inactivation independent of genus or species thus being a promising candidate for clinical use in the presence of humans and on skin/mucosa.


Ultraviolet Rays , Humans , Bacteria/radiation effects , Bacteria/drug effects , Microbial Viability/radiation effects , Microbial Viability/drug effects , Epidermal Cells/radiation effects , Epidermis/radiation effects , Epidermis/microbiology
18.
J Endod ; 50(6): 814-819, 2024 Jun.
Article En | MEDLINE | ID: mdl-38452867

INTRODUCTION: In endodontic treatment, it is important to remove or inactivate biofilms in the root canal system. We investigated the effects of different concentrations and application times of sodium hypochlorite (NaOCl) on the viability of bacteria in ex vivo polymicrobial biofilms of different maturation levels. METHODS: Polymicrobial biofilms were prepared from dental plaque samples and grown for 1, 2, and 3 weeks under anaerobic conditions on collagen-coated hydroxyapatite discs as an ex vivo biofilm model. The biofilms were then exposed to NaOCl at concentrations ranging from 0.1% to 2% for 1 or 3 minutes. The control group was exposed to sterile distilled water. Viability staining was performed and examined by confocal laser scanning microscopy to determine the percentage of biofilm bacteria killed by NaOCl. Scanning electron microscopy was also performed to visually examine the biofilms. RESULTS: Application of NaOCl at 0.5%-2% for both 1 and 3 min killed significantly more bacteria when compared to the controls (P < .05). Cell viability tended to be lower after the application of NaOCl for 3 minutes than that for 1 minute. CONCLUSIONS: Our experiments using an ex vivo model showed that within the range of 0.1%-2% of NaOCl, higher NaOCl concentrations and longer application times were more effective in killing biofilm bacteria, and that mature biofilms were more resistant to NaOCl than younger biofilms.


Biofilms , Sodium Hypochlorite , Sodium Hypochlorite/pharmacology , Biofilms/drug effects , Humans , Time Factors , Root Canal Irrigants/pharmacology , Microbial Viability/drug effects , Microscopy, Confocal , Dental Plaque/microbiology , Microscopy, Electron, Scanning
19.
J Virol Methods ; 327: 114919, 2024 Jun.
Article En | MEDLINE | ID: mdl-38531509

Human norovirus (HuNoV) is regularly involved in food-borne infections. To detect infectious HuNoV in food, RT-qPCR remains state of the art but also amplifies non-infectious virus. The present study combines pre-treatments, RNase and propidium monoazide, with three molecular analyses, including long-range PCR, to predominantly detect infectious Tulane virus (TuV), a culturable HuNoV surrogate. TuV was exposed to inactivating conditions to assess which molecular method most closely approximates the reduction in infectious virus determined by cell culture (TCID50). After thermal treatments (56 °C/5 min, 70 °C/5 min, 72 °C/20 min), TCID50 reductions of 0.3, 4.4 and 5.9 log10 were observed. UV exposure (40/100/1000 mJ/cm2) resulted in 1.1, 2.5 and 5.9 log10 reductions. Chlorine (45/100 mg/L for 1 h) reduced infectious TuV by 2.0 and 3.0 log10. After thermal inactivation standard RT-qPCR, especially with pre-treatments, showed the smallest deviation from TCID50. On average, RT-qPCR with pre-treatments deviated by 1.1-1.3 log10 from TCID50. For UV light, long-range PCR was closest to TCID50 results. Long-range reductions deviated from TCID50 by ≤0.1 log10 for mild and medium UV-conditions. However, long-range analyses often resulted in qPCR non-detects. At higher UV doses, RT-qPCR with pre-treatments differed by ≤1.0 log10 from TCID50. After chlorination the molecular methods repeatedly deviated from TCID50 by >1.0 log10, Overall, each method needs to be further optimized for the individual types of inactivation treatment.


Azides , Propidium , Ultraviolet Rays , Virus Inactivation , Azides/pharmacology , Propidium/analogs & derivatives , Propidium/pharmacology , Virus Inactivation/radiation effects , Microbial Viability/radiation effects , Microbial Viability/drug effects , Humans , Caliciviridae/genetics , Caliciviridae/drug effects , Real-Time Polymerase Chain Reaction/methods , Chlorine/pharmacology , Ribonucleases , Hot Temperature
20.
J Antimicrob Chemother ; 79(5): 1101-1108, 2024 May 02.
Article En | MEDLINE | ID: mdl-38501368

OBJECTIVES: To evaluate the in vitro activity of the combination of apramycin with colistin, meropenem, minocycline or sulbactam, against some well-characterized XDR Acinetobacter baumannii clinical isolates from Greece, to understand how apramycin can be best incorporated into clinical practice and optimize effectiveness. METHODS: In vitro interactions of apramycin (0.5×, 1× and 2× the MIC value) with colistin (2 mg/L), meropenem (30 mg/L), minocycline (3.5 mg/L) or sulbactam (24 mg/L) were tested using time-kill methodology. Twenty-one clinical A. baumannii isolates were chosen, exhibiting apramycin MICs of 4-16 mg/L, which were at or below the apramycin preliminary epidemiological cut-off value of 16 mg/L. These isolates were selected for a range of colistin (4-32 mg/L), meropenem (16-256 mg/L), minocycline (8-32 mg/L) and sulbactam (8-32 mg/L) MICs across the resistant range. Synergy was defined as a ≥2 log10 cfu/mL reduction compared with the most active agent. RESULTS: The combination of apramycin with colistin, meropenem, minocycline or sulbactam was synergistic, at least at one of the concentrations of apramycin (0.5×, 1× or 2× MIC), against 83.3%, 90.5%, 90.9% or 92.3% of the tested isolates, respectively. Apramycin alone was bactericidal at 24 h against 9.5% and 33.3% of the tested isolates at concentrations equal to 1× and 2× MIC, while the combination of apramycin at 2× MIC with colistin, meropenem or sulbactam was bactericidal against all isolates tested (100%). The apramycin 2× MIC/minocycline combination had bactericidal activity against 90.9% of the tested isolates. CONCLUSIONS: Apramycin combinations may have potential as a treatment option for XDR/pandrug-resistant (PDR) A. baumannii infections and warrant validation in the clinical setting, when this new aminoglycoside is available for clinical use.


Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Microbial Sensitivity Tests , Nebramycin , Nebramycin/analogs & derivatives , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Greece , Anti-Bacterial Agents/pharmacology , Humans , Acinetobacter Infections/microbiology , Acinetobacter Infections/drug therapy , Nebramycin/pharmacology , Sulbactam/pharmacology , Drug Synergism , Meropenem/pharmacology , Colistin/pharmacology , Drug Resistance, Multiple, Bacterial , Microbial Viability/drug effects , Minocycline/pharmacology
...