Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
1.
J Toxicol Environ Health A ; 87(17): 701-717, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38865103

ABSTRACT

Microcystis aeruginosa is one of the most predominant freshwater bloom-forming cyanobacterium found globally which is capable of producing toxic secondary metabolites including microcystins that might intoxicate animals and humans when contaminated water or food is ingested. Salvinia auriculata Aubl is one of the plants that might possess bioactive compounds capable of controlling growth and reproduction of M. aeruginosa. The present study aimed to determine the presence of bioactive compounds in S. auriculata extracts and determine alterations occurred in growth and reproduction of M. aeruginosa when exposed to these plant extracts. In addition, this investigation aimed to examine the influence of S. auriculata on antioxidant enzymes detected in M. aeruginosa. The results obtained demonstrated that the aqueous and ethanolic extracts of S. auriculata presented potential for control of cyanobacteria populations, exhibiting algicidal action on M. aeruginosa as well as interfering in antioxidant enzymes activities and parameters associated with oxidative stress. Phytochemical analyses demonstrated the presence of polyphenols and flavonoids content in both extracts. In addition, application of S. auriculata extracts did not produce cytogenotoxicity and/or mutagenicity utilizing Allium cepa test. Therefore, further studies are needed in order to identify and characterize the compounds responsible for these effects on M. aeruginosa and provide information regarding the possible application of S. auriculata in the treatment of drinking water.


Subject(s)
Microcystis , Plant Extracts , Microcystis/drug effects , Plant Extracts/pharmacology , Antioxidants/pharmacology , Oxidative Stress/drug effects
2.
Photochem Photobiol Sci ; 23(6): 1167-1178, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38717721

ABSTRACT

Temperature up-shift and UV-A radiation effects on growth, lipid damage, fatty acid (FA) composition and expression of desaturase genes desA and desB were investigated in the cyanobacteria Microcystis aeruginosa. Although UV-A damaging effect has been well documented, reports on the interactive effects of UV radiation exposure and warming on cyanobacteria are scarce. Temperature and UV-A doses were selected based on the physiological responses previously obtained by studies with the same M. aeruginosa strain used in this study. Cells pre-grown at 26 °C were incubated at the same temperature or 29 °C and exposed to UV-A + PAR and only PAR for 9 days. Growth rate was significantly affected by UV-A radiation independently of the temperature throughout the experiment. High temperature produced lipid damage significantly higher throughout the experiment, decreasing at day 9 as compared to 26 °C. In addition, the cells grown at 29 °C under UV-A displayed a decrease in polyunsaturated FA (PUFA) levels, with ω3 PUFA being mostly affected at the end of exposure. Previously, we reported that UV-A-induced lipid damage affects differentially ω3 and ω6 PUFAs. We report that UV-A radiation leads to an upregulation of desA, possibly due to lipid damage. In addition, the temperature up-shift upregulates desA and desB regardless of the radiation. The lack of lipid damage for UV-A on ω3 could explain the lack of transcription induction of desB. The significant ω6 decrease at 26 °C in cells exposed to UV-A could be due to the lack of upregulation of desA.


Subject(s)
Fatty Acid Desaturases , Fatty Acids , Microcystis , Temperature , Ultraviolet Rays , Microcystis/radiation effects , Fatty Acids/metabolism , Fatty Acid Desaturases/metabolism , Fatty Acid Desaturases/genetics , Acclimatization , Stress, Physiological
3.
Sci Total Environ ; 928: 172500, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38631630

ABSTRACT

The physical and chemical properties of silver nanoparticles (AgNPs) have led to their increasing use in various fields such as medicine, food, and industry. Evidence has proven that AgNPs cause adverse effects in aquatic ecosystems, especially when the release of Ag is prolonged in time. Several studies have shown short-term adverse effects of AgNPs on freshwater phytoplankton, but few studies have analysed the impact of long-term exposures on these populations. Our studies were carried out to assess the effects of AgNPs on growth rate, photosynthesis activity, and reactive oxygen species (ROS) generation on the freshwater green algae Scenedesmus armatus and the cyanobacteria Microcystis aeruginosa, and additionally on microcystin (MC-LR) generation from these cyanobacteria. The tests were conducted both in single-species cultures and in phytoplanktonic communities exposed to 1 ngL-1 AgNPs for 28 days. The results showed that cell growth rate of both single-species cultures decreased significantly at the beginning and progressively reached control-like values at 28 days post-exposure. This effect was similar for the community-cultured cyanobacteria, but not for the green algae, which maintained a sustained decrease in growth rate. While gross photosynthesis (Pg) increased in both strains exposed in single cultures, dark respiration (R) and net photosynthesis (Pn) decreased in S. armatus and M. aeruginosa, respectively. These effects were mitigated when both strains were exposed under community culture conditions. Similarly, the ROS generation shown by both strains exposed in single-species cultures was mitigated when exposure occurred in community cultures. MC-LR production and release were significantly decreased in both single-species and community exposures. These results can supply helpful information to further investigate the potential risks of AgNPs and ultimately help policymakers make better-informed decisions about their utilization for environmental restoration.


Subject(s)
Fresh Water , Metal Nanoparticles , Microcystis , Phytoplankton , Scenedesmus , Silver , Water Pollutants, Chemical , Metal Nanoparticles/toxicity , Silver/toxicity , Phytoplankton/drug effects , Microcystis/drug effects , Scenedesmus/drug effects , Water Pollutants, Chemical/toxicity , Microcystins/toxicity , Photosynthesis/drug effects , Reactive Oxygen Species/metabolism
4.
FEMS Microbiol Ecol ; 100(4)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38499447

ABSTRACT

Species of the Microcystis genus are the most common bloom-forming toxic cyanobacteria worldwide. They belong to a clade of unicellular cyanobacteria whose ability to reach high biomasses during blooms is linked to the formation of colonies. Colonial lifestyle provides several advantages under stressing conditions of light intensity, ultraviolet light, toxic substances and grazing. The progression from a single-celled organism to multicellularity in Microcystis has usually been interpreted as individual phenotypic responses of the cyanobacterial cells to the environment. Here, we synthesize current knowledge about Microcystis colonial lifestyle and its role in the organism ecology. We then briefly review the available information on Microcystis microbiome and propose that changes leading from single cells to colonies are the consequence of specific and tightly regulated signals between the cyanobacterium and its microbiome through a biofilm-like mechanism. The resulting colony is a multi-specific community of interdependent microorganisms.


Subject(s)
Cyanobacteria , Microbiota , Microcystis , Microcystis/genetics , Biomass , Ecology
5.
Aquat Toxicol ; 263: 106703, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37748231

ABSTRACT

The potential ecotoxicological hazard of gaphene oxide (GO) is not fully clarified for photoautotrophic organisms, especially when the interactions of GO with other environmental toxicants are considered. The objective of the current study was to better understand the mechanisms of toxicity of GO in the cyanobacteria Microcystis aeruginosa, and to identify its interactions with cadmium (Cd). The individual and combined contribution of both pollutants in cyanobacteria were evaluated after 96 hours of exposure to GO and/or Cd, using photosynthetic pigments, photosynthetic parameters, cellular indicators of peroxidative damage, viability, and intracellular ROS formation as indicators of toxicity. Interactions between GO and Cd were evaluated using Toxic Units based on the EC50 of each parameter evaluated. The results of this study indicate that single concentrations ≥ 5 µg mL-1 of GO and ≥ 0.1 µg mL-1 of Cd induced a decrease in cell biomass and a change in the photosynthetic parameters associated with primary productivity in M. aeruginosa. In the combined experiments, higher GO ratios (≥ 9.1 µg mL-1) in terms of Toxic Units decreased photochemical processes and cellular metabolism, increased oxidative stress, and ultimately affected the size of M. aeruginosa. Finally, the relationship between GO concentration, Cd concentration, and the adsorption capacity of GO with respect to the co-pollutant must be taken into account when assessing the environmental risk of GO in aquatic environments.


Subject(s)
Cyanobacteria , Microcystis , Water Pollutants, Chemical , Microcystis/metabolism , Cadmium/metabolism , Water Pollutants, Chemical/toxicity , Photosynthesis , Oxidative Stress , Cyanobacteria/metabolism , Oxides/metabolism
6.
Aquat Toxicol ; 263: 106689, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37713741

ABSTRACT

Cyanobacterial blooms affect aquatic ecosystems across the globe and one major concern relates to their toxins such as microcystins (MC). Yet, the ecotoxicological risks, particularly non-lethal effects, associated with other co-produced secondary metabolites remain mostly unknown. Here, we assessed survival, morphological alterations, swimming behaviour and cardiovascular functions of zebrafish (Danio rerio) upon exposure to cyanobacterial extracts of two Brazilian Microcystis strains. We verified that only MIRS-04 produced MCs and identified other co-produced cyanopeptides also for the MC non-producer NPCD-01 by LC-HRMS/MS analysis. Both cyanobacterial extracts, from the MC-producer and non-producer, caused acute toxicity in zebrafish with LC50 values of 0.49 and 0.98 mgdw_biomass/mL, respectively. After exposure to MC-producer extract, additional decreased locomotor activity was observed. The cyanopeptolin (micropeptin K139) contributed 52% of the overall mortality and caused oedemas of the pericardial region. Oedemas of the pericardial area and prevented hatching were also observed upon exposure to the fraction with high abundance of a microginin (Nostoginin BN741) in the extract of the MC non-producer. Our results further add to the yet sparse understanding of lethal and sublethal effects caused by cyanobacterial metabolites other than MCs and the need to better understand the underlying mechanisms of the toxicity. We emphasize the importance of considering mixture toxicity of co-produced metabolites in the ecotoxicological risk assessment of cyanobacterial bloom events, given the importance for predicting adverse outcomes in fish and other organisms.


Subject(s)
Cyanobacteria , Microcystis , Water Pollutants, Chemical , Animals , Microcystins/toxicity , Microcystins/metabolism , Zebrafish , Ecosystem , Larva , Water Pollutants, Chemical/toxicity , Cyanobacteria/chemistry , Microcystis/metabolism
7.
Aquat Toxicol ; 260: 106590, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37245407

ABSTRACT

Microplastic pollution is a growing concern mainly in aquatic environments due to its deleterious effects. Some types of microplastics, such as glitter, remain overlooked. Glitter particles are artificial reflective microplastics used by different consumers within arts and handcraft products. In nature, glitter can physically affect phytoplankton by causing shade or acting as a sunlight-reflective surface, influencing primary production. This study aimed to evaluate the effects of five concentrations of non-biodegradable glitter particles in two bloom-forming cyanobacterial strains, Microcystis aeruginosa CENA508 (unicellular) and Nodularia spumigena CENA596 (filamentous). Cellular growth rate, estimated by optical density (OD), demonstrated that the applied highest glitter dosage decreases cyanobacterial growth rate with a more evident effect on M. aeruginosa CENA508. The cellular biovolume of N. spumigena CENA596 increased following the application of high concentrations of glitter. Still, no significant difference was detected in chlorophyll-a and carotenoids' contents for both strains. These results suggest that environmental concentrations of glitter, similar to the highest dosage tested (>200 mg glitter L-1), may negatively influence susceptible organisms of the aquatic ecosystems, as observed with M. aeruginosa CENA508 and N. spumigena CENA596.


Subject(s)
Cyanobacteria , Microcystis , Water Pollutants, Chemical , Plastics , Ecosystem , Microplastics , Water Pollutants, Chemical/toxicity
8.
Harmful Algae ; 123: 102403, 2023 03.
Article in English | MEDLINE | ID: mdl-36894214

ABSTRACT

It is widely known that the environmental conditions caused by the construction of reservoirs favor the proliferation of toxic cyanobacteria and the formation of blooms due to the high residence time of the water, low turbidity, temperature regimes, among others. Microcystin-producing cyanobacteria such as those from the Microcystis aeruginosa complex (MAC) are the most frequently found organisms in reservoirs worldwide, being the role of the environment on microcystin production poorly understood. Here, we addressed the community dynamics and potential toxicity of MAC cyanobacteria in a subtropical reservoir (Salto Grande) located in the low Uruguay river. Samples were taken from five different sites (upstream, inside the reservoir and downstream) during contrasting seasons (summer and winter) to analyze: (i) the MAC community structure by amplicon sequencing of the phycocyanin gene spacer, (ii) the genotype diversity of microcystin-producing MAC by high resolution melting analysis of the mcyJ gene, and (iii) the abundance and mcy transcription activity of the microcystin-producing (toxic) fraction. We found that MAC diversity decreased from summer to winter but, despite the observed changes in MAC community structure, the abundance of toxic organisms and the transcription of mcy genes were always higher inside the reservoir, regardless of the season. Two different genotypes of toxic MAC were detected inside the reservoir, one associated with low water temperature (15 °C) and one thriving at high water temperature (31 °C). These findings indicate that the environmental conditions inside the reservoir reduce community diversity while promoting the proliferation of toxic genotypes that actively transcribe mcy genes, whose relative abundance will depend on the water temperature.


Subject(s)
Cyanobacteria , Microcystis , Microcystis/genetics , Microcystins/analysis , Uruguay , Water
9.
Environ Sci Pollut Res Int ; 30(6): 16003-16016, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36178647

ABSTRACT

Toxic cyanobacterial blooms in aquatic ecosystems are associated to both public health and environmental concerns worldwide. Depending on the treatment technologies used, the removal capacity of cyanotoxins by drinking water treatment plants (DWTPs) is not sufficient to reach safe levels in drinking water. Likewise, controlling these blooms with algaecide may impair the efficiency of DWTPs due to the possible lysis of cyanobacterial cells and consequent release of cyanotoxins. We investigated the effects of three commercial algaecides (cationic polymer, copper sulfate, and hydrogen peroxide) on the growth parameters of the cyanobacterium Microcystis aeruginosa and the release of microcystin-LR (MC-LR). The potential interference of each algaecide on the MC-LR removal by adsorption on activated carbon (AC) was also tested through adsorption isotherms and kinetics experiments. Most algaecides significantly decreased the cell density and biovolume of M. aeruginosa, as well as increased the release of MC-LR. Interestingly, the presence of the algaecides in binary mixtures with MC-LR affected the adsorption of the cyanotoxin. Relevant adsorption parameters (e.g., maximum adsorption capacity, adsorption intensity, and affinity between MC-LR and AC) were altered when the algaecides were present, especially in the case of the cationic polymer. Also, the algaecides influenced the kinetics (e.g., by shifting the initial adsorption and the desorption constant), which may directly affect the design and operation of DWTPs. Our study indicated that algaecides can significantly impact the fate and the removal of MC-LR in DWTPs when the adsorption process is employed, with important implications for the management and performance of such facilities.


Subject(s)
Cyanobacteria , Drinking Water , Herbicides , Microcystis , Herbicides/toxicity , Charcoal/pharmacology , Ecosystem , Microcystins , Cyanobacteria Toxins , Polymers
10.
Environ Technol ; 44(18): 2737-2752, 2023 Aug.
Article in English | MEDLINE | ID: mdl-35138230

ABSTRACT

Eutrophicating compounds promote the growth of cyanobacteria, which has the potential of releasing toxic compounds. Alternative raw materials, such as residues, have been used in efficient adsorption systems in water treatment. The aim of the present study was to apply the residue Okara in its original form and modified by hydrolysis with immobilization of magnetic nanoparticles as an adsorbent. For the removal, the cyanobacteria Microcystis aeruginosa was chosen, as well as its secondary metabolites, L-amino acids leucine and arginine (MC-LR microcystin), from aqueous solutions. The adsorbents presented a negative surface charge, and the x-ray diffraction (DRX) outcomes successfully demonstrated the immobilization of iron oxide nanoparticles on the adsorbents. The adsorbent with the best result was the Okara hydrolyzed and functionalized with iron oxide, which showed a 47% (qe = 804.166 cel/g) and 85% (qe = 116.94 µg/L) removal for the cyanobacteria cells and chlorophyll-a, respectively. The kinetics study demonstrated a pseudo-first-order adsorption with maximal adsorption in 480 minutes, removing 761 µg/L of chlorophyll-a. In this trial, a low organic material removal has occurred, with a removal rate of 5% (qe = 0.024 mg/g) in the analysis of compounds in absorbance by ultraviolet light (UV) monitored by optical density determination in 254 nm (OD254). Nevertheless, the reaction system with the presence of organic material removed 53,28% of the MC-LR toxin, with adsorption capacities of 2.84 µg/L in a preliminary trial conducted for two hours, arising as a potential and alternative adsorbent with a capacity of removing cyanobacteria and cyanotoxin cells simultaneously.


Subject(s)
Cyanobacteria , Microcystis , Water Pollutants, Chemical , Microcystis/metabolism , Microcystins/analysis , Adsorption , Cyanobacteria/metabolism , Chlorophyll/analysis , Chlorophyll A/analysis , Magnetic Iron Oxide Nanoparticles , Water Pollutants, Chemical/chemistry
11.
BMC Microbiol ; 22(1): 78, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35321650

ABSTRACT

BACKGROUND: Cyanobacteria blooms have become a major environmental problem and concern because of secondary metabolites produced by cyanobacteria released into the water. Cyanobacteria produce volatile organic compounds (VOCs), such as the compounds ß-cyclocitral and ß-ionone, which comprise odors, off-flavors, defense compounds, as well as growth regulators. Therefore, the general objective of this work was to evaluate the VOCs produced by two strains of Microcystis aeruginosa, differing in their ability to produce microcystins (LTPNA 01-non-producing and LTPNA 08-toxin-producing). The analysis of VOC production was carried out in (1) normal culture conditions, (2) under different light intensities (LI), and (3) after the external application of ß-ionone in both cultures. RESULTS: The results showed that ß-cyclocitral and ß-ionone are produced in all growth phases of LTPNA 01 and LTPNA 08. Both strains were producers of ß-cyclocitral and ß-ionone in normal culture conditions. It was observed that the ß-cyclocitral concentration was higher than ß-ionone in all light intensities investigated in this study. Additionally, the strain LTPNA 01 produced more ß-cyclocitral than LTPNA 08 at almost all times and LIs analyzed. However, the strain LTPNA 08 produced more ß-ionone, mainly at the initial times. In addition, the experiment results with the external addition of ß-ionone in the cultures showed that the strain LTPNA 01 produced more ß-cyclocitral in control conditions than in treatment. Nonetheless, ß-ionone production was higher in treatment conditions in LTPNA 08, indicating that the addition of ß-ionone may favor the production of these compounds and inhibit the production of ß-cyclocitral. CONCLUSION: Our results showed that some abiotic factors, such as different light intensities and external application of ß-ionone, can be triggers that lead to the production of VOCs.


Subject(s)
Cyanobacteria , Microcystis , Volatile Organic Compounds , Aldehydes/metabolism , Cyanobacteria/metabolism , Diterpenes , Norisoprenoids/metabolism , Volatile Organic Compounds/analysis
12.
Environ Sci Pollut Res Int ; 29(6): 8767-8778, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34491500

ABSTRACT

Microcystin, a cyanotoxin produced by Microcystis aeruginosa growing in eutrophic waters, can promote liver tumors in people ingesting contaminated water. To date, water treatment systems have not been effective in removing or degrading these cyanotoxins. In this work, we investigated the inhibitory activity of surfactants on the growth of M. aeruginosa and their application to extract the intracellular produced cyanotoxins. The experiments involving growth inhibition and extraction of cyanotoxins were carried out using the non-biodegradable surfactant cetyl trimethyl ammonium bromide (CTAB) in addition to other biodegradable surfactants. These were Tween 80 and surfactants derived from amino acids and peptides, respectively, from arginine, SDA, and hydrolyzed peptone, SDP. We demonstrated that the tested surfactants could be used to inhibit the growth of M. aeruginosa. At this point, CTAB and SDA proved to be the most competent surfactants in reducing cyanobacterial growth. Moreover, microcystins have been successfully removed from the water employing a cloud point extraction protocol based on the use of these surfactants and ammonium sulfate.


Subject(s)
Microcystins , Microcystis , Amino Acids , Cyanobacteria Toxins , Humans
13.
Appl Environ Microbiol ; 88(3): e0147521, 2022 02 08.
Article in English | MEDLINE | ID: mdl-34818109

ABSTRACT

Addressing the ecological and evolutionary processes underlying biodiversity patterns is essential to identify the mechanisms shaping community structure and function. In bacteria, the formation of new ecologically distinct populations (ecotypes) is proposed as one of the main drivers of diversification. New ecotypes arise when mutations in key functional genes or acquisition of new metabolic pathways by horizontal gene transfer allow the population to exploit new resources, permitting their coexistence with the parental population. We previously reported the presence of microcystin-producing organisms of the Microcystis aeruginosa complex (toxic MAC) through an 800-km environmental gradient ranging from freshwater to estuarine-marine waters in South America. We hypothesize that the success of toxic MAC in such a gradient is due to the existence of very closely related populations that are ecologically distinct (ecotypes), each specialized to a specific arrangement of environmental variables. Here, we analyzed toxic MAC genetic diversity through quantitative PCR (qPCR) and high-resolution melting analysis (HRMA) of a functional gene (mcyJ, microcystin synthetase cluster). We explored the variability of the mcyJ gene along the environmental gradient by multivariate classification and regression trees (mCART). Six groups of mcyJ genotypes were distinguished and associated with different combinations of water temperature, conductivity, and turbidity. We propose that each mcyJ variant associated with a defined environmental condition is an ecotype (or species) whose relative abundances vary according to their fitness in the local environment. This mechanism would explain the success of toxic MAC in such a wide array of environmental conditions. IMPORTANCE Organisms of the Microcystis aeruginosa complex form harmful algal blooms (HABs) in nutrient-rich water bodies worldwide. MAC HABs are difficult to manage owing to the production of potent toxins (microcystins) that resist water treatment. In addition, the role of microcystins in the ecology of MAC organisms is still elusive, meaning that the environmental conditions driving the toxicity of the bloom are not clear. Furthermore, the lack of coherence between morphology-based and genomic-based species classification makes it difficult to draw sound conclusions about when and where each member species of the MAC will dominate the bloom. Here, we propose that the diversification process and success of toxic MAC in a wide range of water bodies involves the generation of ecotypes, each specialized in a particular niche, whose relative abundance varies according to its fitness in the local environment. This knowledge can improve the generation of accurate prediction models of MAC growth and toxicity, helping to prevent human and animal intoxication.


Subject(s)
Microcystis , Biodiversity , Fresh Water/microbiology , Genotype , Harmful Algal Bloom , Microcystins , Microcystis/genetics
14.
Environ Sci Pollut Res Int ; 29(16): 23194-23205, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34799801

ABSTRACT

Cyanobacterial blooms are increasingly common in aquatic environments worldwide. These microorganisms cause concern due to their ability to produce cyanotoxins. Aquatic organisms, especially zooplankton, are exposed to cyanobacterial toxins by different routes, depending on the bloom phase. During cyanobacterial dominance, zooplankton is exposed to cyanotoxins through the ingestion of cyanobacterial cells, while at the bloom senescence, dissolved toxins are the most representative route. In this study, we assessed the effects of a microcystin-producing strain of Microcystis aeruginosa (NPLJ-4) on clones of the tropical small cladocerans Macrothrix spinosa (two clones) and Ceriodaphnia cornuta (one clone) exposed to intact cells and aqueous cell crude extracts. Short-term toxicity assays and life-table experiments were performed to assess the effects of the toxic M. aeruginosa on the survival and life history of the cladocerans. In the short-term toxicity assay, we found that cladocerans were more affected by intact cells. Both clones of M. spinosa were more affected when exposed to intact cells, while C. cornuta displayed about 5-fold more resistance. On the other hand, crude extracts had a low impact on cladocerans' survival. Also, we observed a significant decrease in survival, fecundity, and growth of animals exposed to sublethal and environmentally relevant concentrations of M. aeruginosa cellular biomass. However, even at high concentrations of dissolved microcystins, the crude extract did not have significant effects on the life history parameters of the cladocerans. Although they can be found during cyanobacterial bloom events, small-bodied cladocerans are still affected by toxic Cyanobacteria depending on the exposure route.


Subject(s)
Cladocera , Cyanobacteria , Microcystis , Animals , Cell Extracts , Eating , Microcystins/toxicity
15.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Article in English | MEDLINE | ID: mdl-34810262

ABSTRACT

Human-induced deforestation and soil erosion were environmental stressors for the ancient Maya of Mesoamerica. Furthermore, intense, periodic droughts during the Terminal Classic Period, ca. Common Era 830 to 950, have been documented from lake sediment cores and speleothems. Today, lakes worldwide that are surrounded by dense human settlement and intense riparian land use often develop algae/cyanobacteria blooms that can compromise water quality by depleting oxygen and producing toxins. Such environmental impacts have rarely been explored in the context of ancient Maya settlement. We measured nutrients, biomarkers for cyanobacteria, and the cyanotoxin microcystin in a sediment core from Lake Amatitlán, highland Guatemala, which spans the last ∼2,100 y. The lake is currently hypereutrophic and characterized by high cyanotoxin concentrations from persistent blooms of the cyanobacterium Microcystis aeruginosa Our paleolimnological data show that harmful cyanobacteria blooms and cyanotoxin production occurred during periods of ancient Maya occupation. Highest prehistoric concentrations of cyanotoxins in the sediment coincided with alterations of the water system in the Maya city of Kaminaljuyú, and changes in nutrient stoichiometry and maximum cyanobacteria abundance were coeval with times of greatest ancient human populations in the watershed. These prehistoric episodes of cyanobacteria proliferation and cyanotoxin production rivaled modern conditions in the lake, with respect to both bloom magnitude and toxicity. This suggests that pre-Columbian Maya occupation of the Lake Amatitlán watershed negatively impacted water potability. Prehistoric cultural eutrophication indicates that human-driven nutrient enrichment of water bodies is not an exclusively modern phenomenon and may well have been a stressor for the ancient Maya.


Subject(s)
Cyanobacteria Toxins , Harmful Algal Bloom , Human Activities/history , Lakes/microbiology , Cyanobacteria , Environmental Monitoring , Geography , Guatemala , History, Ancient , Humans , Microcystins , Microcystis , Radiometric Dating , Water Quality
16.
J Chem Ecol ; 47(10-11): 847-858, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34569003

ABSTRACT

Cyanobacteria are photosynthetic microorganisms that compose phytoplankton and therefore have a trophic relationship with zooplankton, which represent an important link for energy flux in aquatic food webs. Several species can form blooms and produce bioactive metabolites known as cyanotoxins. However, the ecological and adaptative role of these toxins are still under debate. Many studies have addressed the cyanotoxins' function in defense against herbivory when grazing pressure by zooplankton plays a role in phytoplankton top-down control. Thus, the present study evaluated the ecophysiological responses of the cyanobacterial strain Microcystis aeruginosa NPLJ-4 underlying the chemical induced defense against the cladoceran Daphnia gessneri. Exposure to predator infochemicals consisted of cultures established in ASM-1 medium prepared in a filtrate from a culture of adults of D. gessneri at an environmentally relevant density. Daphnia infochemicals promoted a significant increase in toxin production by M. aeruginosa. However, no differences in growth were observed, despite a significant increase in both maximum photosynthetic efficiency and electron transport rate in response to zooplankton. Additionally, there was no significant variation in the production of exopolysaccharides. Overall, although a grazer-induced defense response was demonstrated, there were no effects on M. aeruginosa fitness, which maintained its growth in the presence of Daphnia alarm cues.


Subject(s)
Daphnia/physiology , Food Chain , Microcystins/metabolism , Microcystis/physiology , Pheromones/metabolism , Animals , Daphnia/chemistry , Feeding Behavior , Microcystis/chemistry
17.
Environ Sci Pollut Res Int ; 28(40): 57248-57259, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34086172

ABSTRACT

Due to the public and environmental health impact of cyanotoxins, investigations have been focused on finding environmental friendly algaecides from aquatic plants. The present study had the objective to evaluate the population control and physiological response of Microcystis aeruginosa (Kützing) Kützing (strain BCCUSP232) exposed to Pistia stratiotes L. extracts. Aqueous and ethanolic extracts of P. stratiotes at different concentrations (10, 25, and 50 mg L-1) were submitted to M. aeruginosa and reduced significantly (p<0.05) the cyanobacterium cell density. The ethanolic extract presented the greatest growth inhibition of the strain at the highest concentration. During exposure to P. stratiotes extracts, intracellular hydrogen peroxide levels, malondialdehyde content, and antioxidant enzymes (peroxidase, catalase, and glutathione S-transferase) activities increased in M. aeruginosa, while total protein concentration decreased when compared to the control group. Superoxide dismutase (SOD) activities presented a sharp decline, suggesting superoxide radical and peroxide accumulation. This implied that SOD was a target for bioactive substance(s) from aqueous and ethanolic extracts of P. stratiotes. Phytochemical screening of the extracts revealed that the ethanolic extract presented 93.36 mg gallic acid equivalent (GAE) per gram dry weight (g-1 DW) total polyphenols and 217.33 mg rutin equivalent (RE) per gram dry weight total flavonoids, and for the aqueous extract, 5.19 mg GAE g-1 DW total polyphenols and 11.02 mg RE g-1 DW total flavonoids were detected. Gas chromatography (GC)/mass spectrometry (MS) analyses of the ethanolic and aqueous extracts presented palmitic acid ethyl ester as major allelochemical. In view of these results, it can be concluded that P. stratiotes showed potential in controlling M. aeruginosa populations.


Subject(s)
Araceae , Microcystis , Antioxidants , Malondialdehyde , Pheromones
18.
Photochem Photobiol Sci ; 20(6): 805-821, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34081307

ABSTRACT

The combined effects of increased temperature and solar ultraviolet radiation (UVR, 280-400 nm) on M. aeruginosa cultures was analyzed in terms of cell abundance, reactive oxygen and nitrogen species (ROS/RNS), antioxidant activity of catalase (CAT), superoxide dismutase (SOD), glutathione S transferase (GST), fatty acids (FA) content and lipid damage. After 12 days exposure to high temperature (29 °C), cells were exposed to solar UVR (4 h). Ultraviolet-B radiation (UVBR, 280-315 nm) resulted into low cell abundance, high ROS/RNS and a significant increase in SOD activity with no changes in GST and a decreased CAT activity at control temperature (26 °C). A significant increase in the analyzed enzymatic antioxidants was observed at 29 °C, as a response to avoid ultraviolet-A radiation (UVAR, 315-400 nm) damage. The relative abundance of ω6 FAs was not affected by UVAR while ω3 FA were highly sensitive at 29 °C but unsaturated fatty acids (UFA) peroxidation did not occur. The differential response in FA to high temperature and UVAR results in differences in lipid damage and antioxidants. It was evident that selected UFAs (mostly ω6) play an important role in high temperature adaptation in addition to enzymatic antioxidant increased activity shifting the temperature growth from 26 to 29 °C. Thus, cell death and UFA damage were avoided at high temperature and low solar irradiance thanks to an increased enzymatic antioxidant activity.


Subject(s)
Fatty Acids/metabolism , Microcystis/metabolism , Temperature , Ultraviolet Rays
19.
J Phycol ; 57(5): 1530-1541, 2021 10.
Article in English | MEDLINE | ID: mdl-33988856

ABSTRACT

Agriculture runoffs and discharge of wastewaters are the major causes of eutrophication. Although eutrophication could promote the thriving of any phytoplankter, harmful algal blooms (HABs) are dominated frequently by cyanobacteria. Currently, HABs dominated by the toxigenic cyanobacterium Microcystis aeruginosa in lakes and reservoirs are the main environmental concerns worldwide. This study aimed to determine how M. aeruginosa (Ma) modifies the population growth of Pseudokirchneriella subcapitata (Ps) and Ankistrodesmus falcatus (Af). Growth kinetics were determined for each species and in the combinations: Ps-Ma, Af-Ma, Af-Ps, and Ps-Af-Ma. At the end of experiments, photosynthetic pigments, phycobiliproteins, and microcystins were quantified. A logistic equation significantly described the growth trend for all of the tested species, enabling the identification of negative effects on early stages in the population growth of co-cultures with the cyanobacterium; in addition, the interaction effects on the growth rate and in the maximum attainable population density were determined. The biomasses of A. falcatus and P. subcapitata were significantly higher when cultured individually than in all of the combinations with the cyanobacterium. The concentrations of chlorophyll a and b, as well as carotenoids, were lower in combined cultures, but phycobiliprotein content in the cultures with M. aeruginosa was not significantly affected. Microcystis aeruginosa negatively affected the growth of the microalgae, but A. falcatus was significantly more inhibited than P. subcapitata; however, microcystin concentrations were significantly reduced in the co-cultures with microalgae. These results could help to explain the displacements of microalgae when cyanobacteria are present, giving rise to cyanobacterial blooms in eutrophic freshwaters.


Subject(s)
Cyanobacteria , Microalgae , Microcystis , Chlorophyll A , Population Growth
20.
Environ Sci Pollut Res Int ; 28(37): 52381-52391, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34009576

ABSTRACT

Cyanobacteria massive proliferations are common in freshwater bodies worldwide, causing adverse effects on aquatic ecosystems and public health. Numerous species develop blooms. Most of them correspond to the toxic microcystin-producing cyanobacterium Microcystis aeruginosa. Microorganisms recovered from Antarctic environment can be considered an unexploited source of antimicrobial compounds. Data about their activity against cyanobacteria are scant or inexistent. This study aimed to evaluate the capacity of Antarctic bacteria to inhibit the proliferation of M. aeruginosa BCPUSP232 and to degrade microcystin-LR (MC-LR). Cell-free extracts of seventy-six bacterial strains were initially tested for antimicrobial activity. Unidentified (UN) strains 62 and ES7 and Psychromonas arctica were able to effectively lyse M. aeruginosa. Eight strains showed MIC ranging from 0.55 to 3.00 mg mL-1, with ES7 showing the best antimicrobial activity. Arthrobacter sp. 443 and UN 383 were the most efficient in degrading MC-LR, with 24.87 and 23.85% degradation, respectively. To our knowledge, this is the first report of antimicrobial and MC-LR degradation activities by Antarctic bacteria, opening up perspectives for their future application as an alternative or supporting approach to help mitigate cyanobacterial blooms.


Subject(s)
Microcystins , Microcystis , Antarctic Regions , Ecosystem , Gammaproteobacteria , Marine Toxins
SELECTION OF CITATIONS
SEARCH DETAIL