Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.277
1.
Bull Environ Contam Toxicol ; 112(6): 83, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822863

To investigate the toxicological effects of polystyrene microplastics (PS-MPs), cadmium (Cd), and their combined contamination on the growth and physiological responses of V. faba seedlings, this experiment employed a hydroponic method. The Hoagland nutrient solution served as the control, changes in root growth, physiological and biochemical indicators of V. faba seedlings under different concentrations of PS-MPs (10, 100 mg/L) alone and combined with 0.5 mg/L Cd. The results demonstrated that the root biomass, root vitality, generation rate of superoxide radicals (O2·-), malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity increased with increasing concentration under the influence of PS-MPs alone, while the soluble sugar content and peroxidase (POD) activity decreased. In the combined treatment with Cd, the trends of these indicators are generally similar to the PS-MPs alone treatment group. However, root vitality and SOD activity showed an inverse relationship with the concentration of PS-MPs. Furthermore, laser confocal and electron microscopy scanning revealed that the green fluorescent polystyrene microspheres entered the root tips of the V. faba and underwent agglomeration in the treatment group with a low concentration of PS-MPs alone and a high concentration of composite PS-MPs with Cd.


Cadmium , Microplastics , Seedlings , Superoxide Dismutase , Vicia faba , Vicia faba/drug effects , Vicia faba/growth & development , Seedlings/drug effects , Seedlings/growth & development , Cadmium/toxicity , Microplastics/toxicity , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism , Water Pollutants, Chemical/toxicity , Plant Roots/drug effects , Plant Roots/growth & development
2.
Sci Rep ; 14(1): 12423, 2024 05 30.
Article En | MEDLINE | ID: mdl-38816478

Foraminifera are single-celled protists which are important mediators of the marine carbon cycle. In our study, we explored the potential impact of polystyrene (PS) microplastic particles on two symbiont-bearing large benthic foraminifera species-Heterostegina depressa and Amphistegina lobifera-over a period of three weeks, employing three different approaches: investigating (1) stable isotope (SI) incorporation-via 13C- and 15N-labelled substrates-of the foraminifera to assess their metabolic activity, (2) photosynthetic efficiency of the symbiotic diatoms using imaging PAM fluorometry, and (3) microscopic enumeration of accumulation of PS microplastic particles inside the foraminiferal test. The active feeder A. lobifera incorporated significantly more PS particles inside the cytoplasm than the non-feeding H. depressa, the latter accumulating the beads on the test surface. Photosynthetic area of the symbionts tended to decrease in the presence of microplastic particles in both species, suggesting that the foraminiferal host cells started to digest their diatom symbionts. Compared to the control, the presence of microplastic particles lead to reduced SI uptake in A. lobifera, which indicates inhibition of inorganic carbon and nitrogen assimilation. Competition for particulate food uptake was demonstrated between algae and microplastic particles of similar size. Based on our results, both species seem to be sensitive to microplastic pollution, with non-feeding H. depressa being more strongly affected.


Coral Reefs , Foraminifera , Microplastics , Foraminifera/metabolism , Foraminifera/physiology , Microplastics/toxicity , Diatoms/metabolism , Diatoms/physiology , Photosynthesis/drug effects , Symbiosis , Polystyrenes
3.
Sci Total Environ ; 934: 173178, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38750733

Humans produce 350 million metric tons of plastic waste per year, leading to microplastic pollution and widespread environmental contamination, particularly in aquatic environments. This subsequently impacts aquatic organisms in myriad ways, yet the vast majority of research is conducted in marine, rather than freshwater systems. In this study, we exposed eggs and hatchlings of the Chinese soft-shelled turtle (Pelodiscus sinensis) to 80-nm polystyrene nanoplastics (PS-NPs) and monitored the impacts on development, behavior and the gut microbiome. We demonstrate that 80-nm PS-NPs can penetrate the eggshell and move into developing embryos. This led to metabolic impairments, as evidenced by bradycardia (a decreased heart rate), which persisted until hatching. We found no evidence that nanoplastic exposure affected hatchling morphology, growth rates, or levels of boldness and exploration, yet we discuss some potential caveats here. Exposure to nanoplastics reduced the diversity and homogeneity of gut microbiota in P. sinensis, with the level of disruption correlating to the length of environmental exposure (during incubation only or post-hatching also). Thirteen core genera (with an initial abundance >1 %) shifted after nanoplastic treatment: pathogenic bacteria increased, beneficial probiotic bacteria decreased, and there was an increase in the proportion of negative correlations between bacterial genera. These changes could have profound impacts on the viability of turtles throughout their lives. Our study highlights the toxicity of environmental NPs to the embryonic development and survival of freshwater turtles. We provide insights about population trends of P. sinensis in the wild, and future directions for research.


Gastrointestinal Microbiome , Turtles , Water Pollutants, Chemical , Turtles/microbiology , Turtles/physiology , Animals , Gastrointestinal Microbiome/drug effects , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Behavior, Animal/drug effects
4.
Chemosphere ; 358: 142220, 2024 Jun.
Article En | MEDLINE | ID: mdl-38710410

Microplastics have become a prevalent environmental pollutant due to widespread release and production. Algae, as primary producers, play a crucial role in maintaining the ecological balance of freshwater environments. Despite reports on the inhibition of microalgae by microplastics, the size-dependent effects on microalgae and associated molecular mechanism remain poorly understood. This study investigates the impacts of three polystyrene micro/nano-plastics (PS-MNPs) with different sizes (100 nm, 350 nm, and 6 µm) and concentrations (25-200 mg/L) on Chlamydomonas reinhardtii (C. reinhardtii) throughout its growth period. Results reveal size- and concentration-dependent growth inhibition and induction of oxidative stress by PS-MNPs, with microalgae exhibiting increased vulnerability to smaller-sized and higher-concentration PS-MNPs. Proteomics analysis elucidates the size-dependent suppression of proteins involved in the photosynthesis process by PS-MNPs. Photosynthetic activity assays demonstrate that smaller PS-MNPs more significantly reduce chlorophyll content and the maximal photochemical efficiency of photosystem II. Finally, electron microscope and Western blot assays collectively confirm the size effect of PS-MNPs on microalgae growth is attributable to suppressed protein expression rather than shading effects. This study contributes to advancing our understanding of the intricate interactions between micro/nano-plastics and algae at the molecular level, emphasizing the efficacy of proteomics in dissecting the mechanistic aspects of microplastics-induced biological effects on environmental indicator organisms.


Chlamydomonas reinhardtii , Microplastics , Photosynthesis , Polystyrenes , Proteomics , Chlamydomonas reinhardtii/drug effects , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/growth & development , Polystyrenes/toxicity , Polystyrenes/chemistry , Microplastics/toxicity , Photosynthesis/drug effects , Oxidative Stress/drug effects , Chlorophyll/metabolism , Water Pollutants, Chemical/toxicity , Microalgae/drug effects , Plastics/toxicity , Particle Size , Photosystem II Protein Complex/metabolism
5.
J Environ Manage ; 359: 121077, 2024 May.
Article En | MEDLINE | ID: mdl-38718604

Tetrabromobisphenol A (TBBPA) and microplastics are emerging contaminants of widespread concern. However, little is known about the effects of combined exposure to TBBPA and microplastics on the physicochemical properties and microbial metabolism of anaerobic granular sludge. This study investigated the effects of TBBPA, polystyrene microplastics (PS MP) and polybutylene succinate microplastics (PBS MP) on the physicochemical properties, microbial communities and microbial metabolic levels of anaerobic granular sludge. The results showed that chemical oxygen demand (COD) removal of sludge was lowest in the presence of TBBPA alone and PS MP alone with 33.21% and 30.06%, respectively. The microorganisms promoted the secretion of humic substances under the influence of TBBPA, PS MP and PBS MP. The lowest proportion of genes controlling glycolytic metabolism in sludge was 1.52% when both TBBPA and PS MP were added. Microbial reactive oxygen species were increased in anaerobic granular sludge exposed to MPS. In addition, TBBPA treatment decreased electron transfer of the anaerobic granular sludge and disrupted the pathway of anaerobic microorganisms in acquiring adenosine triphosphate, and MPs attenuated the negative effects of TBBPA on the acetate methanogenesis process of the anaerobic granular sludge. This study provides a reference for evaluating the impact of multiple pollutants on anaerobic granular sludge.


Microplastics , Polybrominated Biphenyls , Sewage , Polybrominated Biphenyls/toxicity , Polybrominated Biphenyls/metabolism , Microplastics/toxicity , Anaerobiosis , Reactive Oxygen Species/metabolism
6.
Chemosphere ; 358: 142275, 2024 Jun.
Article En | MEDLINE | ID: mdl-38719125

Microplastics (MPs) are widespread environmental contaminants that have been detected in animals and humans. However, their toxic effects on terrestrial mammals and the underlying mechanisms are still not well understood. Herein, we explored the role of gut microbiota in mediating the toxicity of micro- and nano-sized polystyrene plastics (PS-MPs/PS-NPs) using an antibiotic depleted mice model. The results showed that PS-MPs and PS-NPs exposure disrupted the composition and structure of the gut microbiota. Specifically, these particles led to an increase in pathogenic Esherichia-shigella, while depleting probiotics such as Akkermansia and Lactobacillus. Comparatively, PS-NPs particles had more pronounced effect, leading to obviously shifted the colon transcriptional profiles characterized by inducing the enrichment of colon metabolism and immune-related pathways (i.e., upregulated in genes like udgh, ugt1a1, ugt1a6a, ugt1a7c and ugt2b34). Additionally, both PS-MPs and PS-NPs induced oxidative stress, gut-liver damage and systemic inflammation in mice. Mechanistically, we confirmed that PS particles disturbed gut microbiota, activating TLR2-My88-NF-κB pathway to trigger the release of inflammatory cytokine IL-1ß and TNF-α. The damage and inflammation caused by both size of PS particles was alleviated when the gut microbiota was depleted. In conclusion, our findings deepen the understanding of the molecule mechanisms by which gut microbiota mediate the toxicity of PS particles, informing health implications of MPs pollution.


Gastrointestinal Microbiome , Microplastics , Polystyrenes , Animals , Gastrointestinal Microbiome/drug effects , Polystyrenes/toxicity , Mice , Microplastics/toxicity , Nanoparticles/toxicity , Nanoparticles/chemistry , Oxidative Stress/drug effects , Particle Size , Inflammation/chemically induced , Environmental Pollutants/toxicity , Male , NF-kappa B/metabolism
7.
Cells ; 13(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38727304

We have described the influence of selected factors that increase the toxicity of nanoplastics (NPs) and microplastics (MPs) with regard to cell viability, various types of cell death, reactive oxygen species (ROS) induction, and genotoxicity. These factors include plastic particle size (NPs/MPs), zeta potential, exposure time, concentration, functionalization, and the influence of environmental factors and cell type. Studies have unequivocally shown that smaller plastic particles are more cytotoxic, penetrate cells more easily, increase ROS formation, and induce oxidative damage to proteins, lipids, and DNA. The toxic effects also increase with concentration and incubation time. NPs with positive zeta potential are also more toxic than those with a negative zeta potential because the cells are negatively charged, inducing stronger interactions. The deleterious effects of NPs and MPs are increased by functionalization with anionic or carboxyl groups, due to greater interaction with cell membrane components. Cationic NPs/MPs are particularly toxic due to their greater cellular uptake and/or their effects on cells and lysosomal membranes. The effects of polystyrene (PS) vary from one cell type to another, and normal cells are more sensitive to NPs than cancerous ones. The toxicity of NPs/MPs can be enhanced by environmental factors, including UV radiation, as they cause the particles to shrink and change their shape, which is a particularly important consideration when working with environmentally-changed NPs/MPs. In summary, the cytotoxicity, oxidative properties, and genotoxicity of plastic particles depends on their concentration, duration of action, and cell type. Also, NPs/MPs with a smaller diameter and positive zeta potential, and those exposed to UV and functionalized with amino groups, demonstrate higher toxicity than larger, non-functionalized and environmentally-unchanged particles with a negative zeta potential.


Cell Death , DNA Damage , Microplastics , Nanoparticles , Oxidative Stress , Oxidative Stress/drug effects , Microplastics/toxicity , Humans , Nanoparticles/toxicity , Nanoparticles/chemistry , Cell Death/drug effects , Reactive Oxygen Species/metabolism , Animals , Particle Size
8.
Article En | MEDLINE | ID: mdl-38693670

Polyethylene terephthalate (PET) is a common plastic widely used in food and beverage packaging that poses a serious risk to human health and the environment due to the continual rise in its production and usage. After being produced and used, PET accumulates in the environment and breaks down into nanoplastics (NPs), which are then consumed by humans through water and food sources. The threats to human health and the environment posed by PET-NPs are of great concern worldwide, yet little is known about their biological impacts. Herein, the smallest sized PET-NPs so far (56 nm) with an unperturbed PET structure were produced by a modified dilution-precipitation method and their potential cytotoxicity was evaluated in Saccharomyces cerevisiae. Exposure to PET-NPs decreased cell viability due to oxidative stress induction revealed by the increased expression levels of stress response related-genes as well as increased lipid peroxidation. Cell death induced by PET-NP exposure was mainly through apoptosis, while autophagy had a protective role.


Oxidative Stress , Polyethylene Terephthalates , Saccharomyces cerevisiae , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Oxidative Stress/drug effects , Polyethylene Terephthalates/toxicity , Nanoparticles/toxicity , Apoptosis/drug effects , Microplastics/toxicity , Lipid Peroxidation/drug effects
9.
Sci Total Environ ; 932: 172864, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38697532

The increasing interfacial impacts of polystyrene nanoplastics (PS) and per- and polyfluoroalkyl substances (PFAS) complex aquatic environments are becoming more evident, drawing attention to the potential risks to aquatic animal health and human seafood safety. This study aims to investigate the relative impacts following exposure (7 days) of Crassostrea hongkongensis oysters to the traditional PFAS congener, perfluorooctanoic acid (PFOA) at 50 µg/L, and its novel alternative, hexafluoropropylene oxide dimer acid (HFPO-DA), also known as GenX at 50 µg/L, in conjunction with fluorescent polystyrene nanoplastics (PS, 80 nm) at 1 mg/L. The research focuses on assessing the effects of combined exposure on oxidative stress responses and gut microbiota in the C. hongkongensis. Comparing the final results of PS + GenX (PG) and PS + PFOA (PF) groups, we observed bioaccumulation of PS in both groups, with the former causing more pronounced histopathological damage to the gills and intestines. Furthermore, the content of antioxidant enzymes induced by PG was higher than that of PF, including Superoxide Dismutase (SOD), Catalase (CAT), Glutathione Reductase (GR) and Glutathione Peroxidase (GSH). Additionally, in both PG and PF groups, the expression levels of several immune-related genes were significantly upregulated, including tnfα, cat, stat, tlr-4, sod, and ß-gbp, with no significant difference between these two groups (p > 0.05). Combined exposure induced significant changes in the gut microbiota of C. hongkongensis at its genus level, with a significant increase in Legionella and a notable decrease in Endozoicomonas and Lactococcus caused by PG. These shifts led to beneficial bacteria declining and pathogenic microbes increasing. Consequently, the microbial community structure might be disrupted. In summary, our findings contribute to a deeper understanding of the comparative toxicities of marine bivalves under combined exposure of traditional and alternative PFAS.


Caprylates , Crassostrea , Fluorocarbons , Gastrointestinal Microbiome , Oxidative Stress , Polystyrenes , Water Pollutants, Chemical , Animals , Fluorocarbons/toxicity , Gastrointestinal Microbiome/drug effects , Oxidative Stress/drug effects , Crassostrea/drug effects , Crassostrea/microbiology , Water Pollutants, Chemical/toxicity , Caprylates/toxicity , Polystyrenes/toxicity , Microplastics/toxicity
10.
Sci Total Environ ; 932: 172915, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38719035

The increasing trend regarding the use of plastics has arisen an exponential concern on the fate of their derived products to the environment. Among these derivatives, microplastics and nanoplastics (MNPs) have been featured for their associated environmental impact due to their low molecular size and high surface area, which has prompted their ubiquitous transference among all environmental interfaces. Due to the heterogenous chemical composition of MNPs, the study of these particles has focused a high number of studies, as a result of the myriad of associated physicochemical properties that contribute to the co-transference of a wide range of contaminants, thus becoming a major challenge for the scientific community. In this sense, both primary and secondary MNPs are well-known to be adscribed to industrial and urbanized areas, from which they are massively released to the environment through a multiscale level, involving the atmosphere, hydrosphere, and lithosphere. Consequently, much research has been conducted on the understanding of the interconnection between those interfaces, that motivate the spread of these contaminants to biological systems, being mostly represented by the biosphere, especially phytosphere and, finally, the anthroposphere. These findings have highlighted the potential hazardous risk for human health through different mechanisms from the environment, requiring a much deeper approach to define the real risk of MNPs exposure. As a result, there is a gap of knowledge regarding the environmental impact of MNPs from a high-throughput perspective. In this review, a metabolomics-based overview on the impact of MNPs to all environmental interfaces was proposed, considering this technology a highly valuable tool to decipher the real impact of MNPs on biological systems, thus opening a novel perspective on the study of these contaminants.


Metabolomics , Microplastics , Microplastics/toxicity , Environmental Pollutants , Nanoparticles/toxicity , Environmental Monitoring
11.
Front Public Health ; 12: 1385387, 2024.
Article En | MEDLINE | ID: mdl-38799687

Background: Nanoplastics, an emerging form of pollution, are easily consumed by organisms and pose a significant threat to biological functions due to their size, expansive surface area, and potent ability to penetrate biological systems. Recent findings indicate an increasing presence of airborne nanoplastics in atmospheric samples, such as polystyrene (PS), raising concerns about potential risks to the human respiratory system. Methods: This study investigates the impact of 800 nm diameter-PS nanoparticles (PS-NPs) on A549, a human lung adenocarcinoma cell line, examining cell viability, redox balance, senescence, apoptosis, and internalization. We also analyzed the expression of hallmark genes of these processes. Results: We demonstrated that PS-NPs of 800 nm in diameter significantly affected cell viability, inducing oxidative stress, cellular senescence, and apoptosis. PS-NPs also penetrated the cytoplasm of A549 cells. These nanoparticles triggered the transcription of genes comprised in the antioxidant network [SOD1 (protein name: superoxide dismutase 1, soluble), SOD2 (protein name: superoxide dismutase 2, mitochondrial), CAT (protein name: catalase), Gpx1 (protein name: glutathione peroxidase 1), and HMOX1 (protein name: heme oxygenase 1)], senescence-associated secretory phenotype [Cdkn1a (protein name: cyclin-dependent kinase inhibitor 1A), IL1A (protein name: interleukin 1 alpha), IL1B (protein name: interleukin 1 beta), IL6 (protein name: interleukin 6), and CXCL8 (protein name: C-X-C motif chemokine ligand 8)], and others involved in the apoptosis modulation [BAX (protein name: Bcl2 associated X, apoptosis regulator), CASP3 (protein name: caspase 3), and BCL2 (protein name: Bcl2, apoptosis regulator)]. Conclusion: Collectively, this investigation underscores the importance of concentration (dose-dependent effect) and exposure duration as pivotal factors in assessing the toxic effects of PS-NPs on alveolar epithelial cells. Greater attention needs to be directed toward comprehending the risks of cancer development associated with air pollution and the ensuing environmental toxicological impacts on humans and other terrestrial mammals.


Alveolar Epithelial Cells , Apoptosis , Cellular Senescence , Nanoparticles , Oxidative Stress , Polystyrenes , Humans , Oxidative Stress/drug effects , Apoptosis/drug effects , Polystyrenes/toxicity , Cellular Senescence/drug effects , A549 Cells , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Cell Survival/drug effects , Microplastics/toxicity
12.
J Environ Sci (China) ; 144: 225-235, 2024 Oct.
Article En | MEDLINE | ID: mdl-38802233

Microplastics, a new type of emerging pollutant, is ubiquitous in terrestrial and water environments. Microplastics have become a growing concern due to their impacts on the environment, animal, and human health. Birds also suffer from microplastics contamination. In this study, we examined the toxic effects of polystyrene microplastics (PS-MPs) exposure on physical barrier, microbial community, and immune function in the cecum of a model bird species-Japanese quail (Coturnix japonica). The one-week-old birds were fed on environmentally relevant concentrations of 20 µg/kg, 400 µg/kg, and 8 mg/kg PS-MPs in the diet for 5 weeks. The results showed that microplastics could cause microstructural damages characterized by lamina propria damage and epithelial cell vacuolation and ultrastructural injuries including microvilli breakage and disarrangement as well as mitochondrial vacuolation in the cecum of quails. In particular, blurry tight junctions, wider desmosomes spacing, and gene expression alteration indicated cecal tight junction malfunction. Moreover, mucous layer breakdown and mucin decrease indicated that chemical barrier was disturbed by PS-MPs. PS-MPs also changed cecal microbial diversity. In addition, structural deformation of cecal tonsils and increasing proinflammatory cytokines suggested cecal immune disorder and inflammation responses by PS-MPs exposure. Our results suggested that microplastics negatively affected digestive system and might pose great health risks to terrestrial birds.


Cecum , Coturnix , Microplastics , Polystyrenes , Animals , Microplastics/toxicity , Polystyrenes/toxicity , Cecum/drug effects , Cecum/microbiology , Coturnix/immunology , Gastrointestinal Microbiome/drug effects
13.
Sci Rep ; 14(1): 11784, 2024 05 23.
Article En | MEDLINE | ID: mdl-38782918

Microplastics, particles under 5 mm, pervade aquatic environments, notably in Tarragona's coastal region (NE Iberian Peninsula), hosting a major plastic production complex. To investigate weathering and yellowness impact on plastic pellets toxicity, sea-urchin embryo tests were conducted with pellets from three locations-near the source and at increasing distances. Strikingly, distant samples showed toxicity to invertebrate early stages, contrasting with innocuous results near the production site. Follow-up experiments highlighted the significance of weathering and yellowing in elevated pellet toxicity, with more weathered and colored pellets exhibiting toxicity. This research underscores the overlooked realm of plastic leachate impact on marine organisms while proposes that prolonged exposure of plastic pellets in the environment may lead to toxicity. Despite shedding light on potential chemical sorption as a toxicity source, further investigations are imperative to comprehend weathering, yellowing, and chemical accumulation in plastic particles.


Larva , Microplastics , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Larva/drug effects , Sea Urchins/drug effects , Plastics/toxicity , Plastics/chemistry , Environmental Monitoring/methods
14.
Ecotoxicol Environ Saf ; 278: 116415, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38703406

The combined pollution of microplastics (MPs) and sulfamethoxazole (SMZ) often occurs in aquatic ecosystems, posing a serious threat to animal and human health. However, little is known about the liver damage caused by the single or co-exposure of MPs and SMZ, and its specific mechanisms are still poorly understood. In this study, we investigated the effects of co-exposure to 20 µm or 80 nm MPs and SMZ in both larval and adult zebrafish models. Firstly, we observed a significant decrease in the number of hepatocytes and the liver damage in larval zebrafish worsened following co-exposure to SMZ and MPs. Additionally, the number of macrophages and neutrophils decreased, while the expression of inflammatory cytokines and antioxidant enzyme activities increased after co-exposure in larval zebrafish. Transcriptome analysis revealed significant changes in gene expression in the co-exposed groups, particularly in processes related to oxidation-reduction, inflammatory response, and the MAPK signaling pathway in the liver of adult zebrafish. Co-exposure of SMZ and MPs also promoted hepatocyte apoptosis and inhibited proliferation levels, which was associated with the translocation of Nrf2 from the cytoplasm to the nucleus and an increase in protein levels of Nrf2 and NF-kB p65 in the adult zebrafish. Furthermore, our pharmacological experiments demonstrated that inhibiting ROS and blocking the MAPK signaling pathway partially rescued the liver injury induced by co-exposure both in larval and adult zebrafish. In conclusion, our findings suggest that co-exposure to SMZ and MPs induces hepatic dysfunction through the ROS-mediated MAPK signaling pathway in zebrafish. This information provides novel insights into the potential environmental risk of MPs and hazardous pollutants co-existence in aquatic ecosystems.


Microplastics , Reactive Oxygen Species , Sulfamethoxazole , Water Pollutants, Chemical , Zebrafish , Animals , Sulfamethoxazole/toxicity , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Reactive Oxygen Species/metabolism , MAP Kinase Signaling System/drug effects , Liver/drug effects , Chemical and Drug Induced Liver Injury/pathology , Larva/drug effects , Apoptosis/drug effects , Hepatocytes/drug effects
15.
Ecotoxicol Environ Saf ; 278: 116390, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38705037

Microplastics (MPs) and benzo[a]pyrene (B[a]P) are prevalent environmental pollutants. Numerous studies have extensively reported their individual adverse effects on organisms. However, the combined effects and mechanisms of exposure in mammals remain unknown. Thus, this study aims to investigate the potential effects of oral administration of 0.5µm polystyrene (PS) MPs (1 mg/mL or 5 mg/mL), B[a]P (1 mg/mL or 5 mg/mL) and combined (1 mg/mL or 5 mg/mL) on 64 male SD rats by gavage method over 6-weeks. The results demonstrate that the liver histopathological examination showed that the liver lobules in the combined (5 mg/kg) group had blurred and loose boundaries, liver cord morphological disorders, and significant steatosis. The levels of AST, ALT, TC, and TG in the combined dose groups were significantly higher than those in the other groups, the combined (5 mg/kg) group had the lowest levels of antioxidant enzymes and the highest levels of oxidants. The expression of Nrf2 was lowest and the expression of P38, NF-κB, and TNF-α was highest in the combined (5 mg/kg) group. In conclusion, these findings indicate that the combination of PSMPs and B[a]P can cause the highest levels of oxidative stress and elicit markedly enhanced toxic effects, which cause severe liver damage.


Benzo(a)pyrene , Liver , Microplastics , Oxidative Stress , Polystyrenes , Rats, Sprague-Dawley , Animals , Oxidative Stress/drug effects , Benzo(a)pyrene/toxicity , Microplastics/toxicity , Male , Polystyrenes/toxicity , Liver/drug effects , Liver/pathology , Rats , Environmental Pollutants/toxicity , Antioxidants/metabolism , NF-kappa B/metabolism , NF-E2-Related Factor 2/metabolism
16.
Ecotoxicol Environ Saf ; 278: 116422, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38705040

Although more attention has been paid to microplastics (MPs) pollution in environment, research on the synthetic influence of microplastic and heavy metals remains limited. To help fill this information gap, we investigated the adsorption behavior of virgin polyvinyl chloride microplastics (PVCMPs) (≤450 µm white spherical powder) on cadmium (II). The effects on seed germination, seedling growth, photosynthetic system, oxidative stress indicators of lettuce, and changes in Cd bioavailability were evaluated under Cd2+ (25 µmol/L), PVCMPs (200 mg/L), and PVCMP-Cd combined (200 mg/L + 25 µmol/L) exposures in hydroponic system. The results demonstrated that the PVCMPs effectively adsorbed Cd ions, which validated by the pseudo-second-order kinetic and the Langmuir isotherm models, indicating the sorption of Cd2+ on the PVCMPs was primary chemisorption and approximates monomolecular layer sorption. Compared to MPs, Cd significantly inhibits plant seed germination and seedling growth and development. However, Surprising improvement in seed germination under PVCMPs-Cd exposure was observed. Moreover, Cd2+ and MPs alone or combined stress caused oxidative stress with reactive oxygen species (ROS) including H2O2, O2- and Malondialdehyde (MDA) accumulation in plants, and substantially damaged to photosynthesis. With the addition of PVCMPs, the content of Cd in the leaves significantly (P<0.01) decreased by 1.76-fold, and the translocation factor and Cd2+removal rate in the water substantially (P<0.01) decreased by 6.73-fold and 1.67-fold, respectively in contrast to Cd2+ stress alone. Therefore, it is concluded the PVCMP was capable of reducing Cd contents in leaves, alleviating Cd toxicity in lettuce. Notably, this study provides a scientific foundation and reference for comprehending the toxicological interactions between microplastics and heavy metals in the environment.


Cadmium , Germination , Hydroponics , Lactuca , Microplastics , Oxidative Stress , Water Pollutants, Chemical , Lactuca/drug effects , Lactuca/growth & development , Lactuca/metabolism , Cadmium/toxicity , Microplastics/toxicity , Germination/drug effects , Water Pollutants, Chemical/toxicity , Oxidative Stress/drug effects , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism , Photosynthesis/drug effects , Adsorption , Polyvinyl Chloride , Reactive Oxygen Species/metabolism
17.
Ecotoxicol Environ Saf ; 278: 116393, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38714083

Micro(nano)plastic, as a new type of environmental pollutant, have become a potential threat to the life and health of various stages of biology. However, it is not yet clear whether they will affect brain development in the fetal stage. Therefore, this study aims to explore the potential effects of nanoplastics on the development of fetal rat brains. To assess the allocation of NPs (25 nm and 50 nm) in various regions of the fetal brain, pregnant rats were exposed to concentrations (50, 10, 2.5, and 0.5 mg/kg) of PS-NPs. Our results provided evidence of the transplacental transfer of PS-NPs to the fetal brain, with a prominent presence observed in several cerebral regions, notably the cerebellum, hippocampus, striatum, and prefrontal cortex. This distribution bias might be linked to the developmental sequence of each brain region. Additionally, we explored the influence of prenatal exposure on the myelin development of the cerebellum, given its the highest PS-NP accumulation in offspring. Compared with control rats, PS-NPs exposure caused a significant reduction in myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) expression, a decrease in myelin thickness, an increase in cell apoptosis, and a decline in the oligodendrocyte population. These effects gave rise to motor deficits. In conclusion, our results identified the specific distribution of NPs in the fetal brain following prenatal exposure and revealed that prenatal exposure to PS-NPs can suppress myelin formation in the cerebellum of the fetus.


Brain , Myelin Sheath , Polystyrenes , Animals , Female , Pregnancy , Brain/drug effects , Brain/embryology , Brain/metabolism , Myelin Sheath/drug effects , Myelin Sheath/metabolism , Rats , Polystyrenes/toxicity , Environmental Pollutants/toxicity , Myelin Basic Protein/metabolism , Maternal Exposure , Nanoparticles/toxicity , Apoptosis/drug effects , Microplastics/toxicity , Rats, Sprague-Dawley , Maternal-Fetal Exchange , Fetus/drug effects
18.
Aquat Toxicol ; 271: 106933, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705000

The occurrence of microplastics (MPs) in aquatic ecosystems and their ability to absorb hydrophobic pollutants, such as persistent organic pollutants (POPs), is currently a significant concern. MPs, which are the main breakdown product of plastics, have been frequently detected in the environment, posing serious threats to organisms' health. One particular pollutant, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), is a dominant congener of PBDEs and is highly toxic to organisms. However, there is limited knowledge regarding the exposure of marine fishes to PBDEs through MPs and their combined toxic effects. In this study, the embryo toxicity of Hexagrammos otakii was conducted to investigate the combined effects of MPs and BDE-47. The results showed that MPs and BDE-47 co-exposure had detrimental effects on embryonic development, such as reduced hatchability, increased mortality, decreased heart rate, and body malformation. Moreover, the combined toxicity of these substances appeared more pronounced harmful effects compared to exposure to BDE-47 alone. Histopathological examination revealed that co-exposure can cause greater damage to hatching glands and yolk. The enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways included phagosome, metabolism of xenobiotics by cytochrome P450, TCA cycle, and Wnt signaling pathway, which are closely related to embryonic growth. BDE-47 and MPs may activate the Wnt signaling pathway to affect the normal development of embryos. Our results suggest that MPs and BDE-47 exposure may cause growth disorders in the early life stages of H.otakii, leading to abnormal embryonic development. All these results will contribute to the further study of the ecological risk assessment and toxicity of MPs and organic pollutant mixtures in marine fish.


Embryo, Nonmammalian , Halogenated Diphenyl Ethers , Microplastics , Water Pollutants, Chemical , Animals , Halogenated Diphenyl Ethers/toxicity , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Embryo, Nonmammalian/drug effects , Polystyrenes/toxicity , Embryonic Development/drug effects
19.
Chemosphere ; 358: 142162, 2024 Jun.
Article En | MEDLINE | ID: mdl-38697568

This study investigates the combined impact of microplastics (MP) and Chlorpyriphos (CPF) on sea urchin larvae (Paracentrotus lividus) under the backdrop of ocean warming and acidification. While the individual toxic effects of these pollutants have been previously reported, their combined effects remain poorly understood. Two experiments were conducted using different concentrations of CPF (EC10 and EC50) based on previous studies from our group. MP were adsorbed in CPF to simulate realistic environmental conditions. Additionally, water acidification and warming protocols were implemented to mimic future ocean conditions. Sea urchin embryo toxicity tests were conducted to assess larval development under various treatment combinations of CPF, MP, ocean acidification (OA), and temperature (OW). Morphometric measurements and biochemical analyses were performed to evaluate the effects comprehensively. Results indicate that combined stressors lead to significant morphological alterations, such as increased larval width and reduced stomach volume. Furthermore, biochemical biomarkers like acetylcholinesterase (AChE), glutathione S-transferase (GST), and glutathione reductase (GRx) activities were affected, indicating oxidative stress and impaired detoxification capacity. Interestingly, while temperature increase was expected to enhance larval growth, it instead induced thermal stress, resulting in lower growth rates. This underscores the importance of considering multiple stressors in ecological assessments. Biochemical biomarkers provided early indications of stress responses, complementing traditional growth measurements. The study highlights the necessity of holistic approaches when assessing environmental impacts on marine ecosystems. Understanding interactions between pollutants and environmental stressors is crucial for effective conservation strategies. Future research should delve deeper into the impacts at lower biological levels and explore adaptive mechanisms in marine organisms facing multiple stressors. By doing so, we can better anticipate and mitigate the adverse effects of anthropogenic pollutants on marine biodiversity and ecosystem health.


Biomarkers , Climate Change , Larva , Paracentrotus , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Larva/drug effects , Larva/growth & development , Biomarkers/metabolism , Paracentrotus/drug effects , Glutathione Transferase/metabolism , Microplastics/toxicity , Acetylcholinesterase/metabolism , Oxidative Stress/drug effects , Seawater/chemistry , Glutathione Reductase/metabolism
20.
Sci Total Environ ; 934: 173236, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38761522

During plastic waste degradation into micro/nanoplastics (MNPLs) their physicochemical characteristics including surface properties (charge, functionalization, biocorona, etc.) can change, potentially affecting their biological effects. This paper focuses on the surface functionalization of MNPLs to determine if it has a direct impact on the toxicokinetic and toxicodynamic interactions in human umbilical vein endothelial cells (HUVECs), at different exposure times. Pristine polystyrene nanoplastics (PS-NPLs), as well as their carboxylated (PS-C-NPLs) and aminated (PS-A-NPLs) forms, all around 50 nm, were used in a wide battery of toxicological assays. These assays encompassed evaluations on cell viability, cell internalization, induction of intracellular reactive oxygen species (iROS), and genotoxicity. The experiments were conducted at a concentration of 100 µg/mL, chosen to ensure a high internalization rate across all treatments while maintaining a sub-toxic concentration. Our results show that all PS-NPLs are internalized by HUVECs, but the internalization dynamic depends on the particle's functionalization. PS-NPLs and PS-C-NPLs internalization modify the morphology of the cell increasing its inner complexity/granularity. Regarding cell toxicity, only PS-A-NPLs reduced cell viability. Intracellular ROS was induced by the three different PS-NPLs but at different time points. Genotoxic damage was induced by the three PS-NPLs at short exposures (2 h), but not for PS-C-NPLs at 24 h. Overall, this study suggests that the toxicological effects of PSNPLs on HUVEC cells are surface-dependent, highlighting the relevance of using human-derived primary cells as a target.


Cell Survival , Human Umbilical Vein Endothelial Cells , Microplastics , Reactive Oxygen Species , Humans , Reactive Oxygen Species/metabolism , Microplastics/toxicity , Cell Survival/drug effects , Nanoparticles/toxicity , Surface Properties , Polystyrenes/toxicity , Endothelial Cells/drug effects
...