Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.312
1.
Med Oncol ; 41(6): 137, 2024 May 05.
Article En | MEDLINE | ID: mdl-38705933

Metastasis poses a significant challenge in combating tumors. Even in papillary thyroid cancer (PTC), which typically exhibits a favorable prognosis, high recurrence rates are attributed to metastasis. Cytoplasmic linker protein 170 (CLIP170) functions as a classical microtubule plus-end tracking protein (+TIP) and has shown close association with cell migration. Nevertheless, the specific impact of CLIP170 on PTC cells remains to be elucidated. Our analysis of the GEO and TCGA databases unveiled an association between CLIP170 and the progression of PTC. To explore the impact of CLIP170 on PTC cells, we conducted various assays. We evaluated its effects through CCK-8, wound healing assay, and transwell assay after knocking down CLIP170. Additionally, the influence of CLIP170 on the cellular actin structure was examined via immunofluorescence; we further investigated the molecular expressions of epithelial-mesenchymal transition (EMT) and the transforming growth factor-ß (TGF-ß) signaling pathways through Western blotting and RT-qPCR. These findings were substantiated through an in vivo nude mouse model of lung metastasis. We observed a decreased expression of CLIP170 in PTC in contrast to normal thyroid tissue. Functionally, the knockdown of CLIP170 (CLIP170KD) notably enhanced the metastatic potential and EMT of PTC cells, both in vitro and in vivo. Mechanistically, CLIP170KD triggered the activation of the TGF-ß pathway, subsequently promoting tumor cell migration, invasion, and EMT. Remarkably, the TGF-ß inhibitor LY2157299 effectively countered TGF-ß activity and significantly reversed tumor metastasis and EMT induced by CLIP170 knockdown. In summary, these findings collectively propose CLIP170 as a promising therapeutic target to mitigate metastatic tendencies in PTC.


Epithelial-Mesenchymal Transition , Microtubule-Associated Proteins , Neoplasm Proteins , Signal Transduction , Thyroid Cancer, Papillary , Thyroid Neoplasms , Transforming Growth Factor beta , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , Cell Movement , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Lung Neoplasms/genetics , Mice, Nude , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Neoplasm Metastasis , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/genetics , Transforming Growth Factor beta/metabolism
2.
J Exp Clin Cancer Res ; 43(1): 150, 2024 May 29.
Article En | MEDLINE | ID: mdl-38807192

BACKGROUND: Ovarian cancer has a high mortality rate mainly due to its resistance to currently used therapies. This resistance has been associated with the presence of cancer stem cells (CSCs), interactions with the microenvironment, and intratumoral heterogeneity. Therefore, the search for new therapeutic targets, particularly those targeting CSCs, is important for improving patient prognosis. HOOK1 has been found to be transcriptionally altered in a substantial percentage of ovarian tumors, but its role in tumor initiation and development is still not fully understood. METHODS: The downregulation of HOOK1 was performed in ovarian cancer cell lines using CRISPR/Cas9 technology, followed by growth in vitro and in vivo assays. Subsequently, migration (Boyden chamber), cell death (Western-Blot and flow cytometry) and stemness properties (clonal heterogeneity analysis, tumorspheres assay and flow cytometry) of the downregulated cell lines were analysed. To gain insights into the specific mechanisms of action of HOOK1 in ovarian cancer, a proteomic analysis was performed, followed by Western-blot and cytotoxicity assays to confirm the results found within the mass spectrometry. Immunofluorescence staining, Western-blotting and flow cytometry were also employed to finish uncovering the role of HOOK1 in ovarian cancer. RESULTS: In this study, we observed that reducing the levels of HOOK1 in ovarian cancer cells reduced in vitro growth and migration and prevented tumor formation in vivo. Furthermore, HOOK1 reduction led to a decrease in stem-like capabilities in these cells, which, however, did not seem related to the expression of genes traditionally associated with this phenotype. A proteome study, along with other analysis, showed that the downregulation of HOOK1 also induced an increase in endoplasmic reticulum stress levels in these cells. Finally, the decrease in stem-like properties observed in cells with downregulated HOOK1 could be explained by an increase in cell death in the CSC population within the culture due to endoplasmic reticulum stress by the unfolded protein response. CONCLUSION: HOOK1 contributes to maintaining the tumorigenic and stemness properties of ovarian cancer cells by preserving protein homeostasis and could be considered an alternative therapeutic target, especially in combination with inducers of endoplasmic reticulum or proteotoxic stress such as proteasome inhibitors.


Autophagy , Endoplasmic Reticulum Stress , Neoplastic Stem Cells , Ovarian Neoplasms , Female , Humans , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Mice , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Animals , Cell Line, Tumor , Proteostasis , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Cell Proliferation , Cell Movement
3.
Nat Commun ; 15(1): 3779, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710684

The α-Aurora kinase is a crucial regulator of spindle microtubule organization during mitosis in plants. Here, we report a post-mitotic role for α-Aurora in reorganizing the phragmoplast microtubule array. In Arabidopsis thaliana, α-Aurora relocated from spindle poles to the phragmoplast midzone, where it interacted with the microtubule cross-linker MAP65-3. In a hypomorphic α-Aurora mutant, MAP65-3 was detected on spindle microtubules, followed by a diffuse association pattern across the phragmoplast midzone. Simultaneously, phragmoplast microtubules remained belatedly in a solid disk array before transitioning to a ring shape. Microtubules at the leading edge of the matured phragmoplast were often disengaged, accompanied by conspicuous retentions of MAP65-3 at the phragmoplast interior edge. Specifically, α-Aurora phosphorylated two residues towards the C-terminus of MAP65-3. Mutation of these residues to alanines resulted in an increased association of MAP65-3 with microtubules within the phragmoplast. Consequently, the expansion of the phragmoplast was notably slower compared to wild-type cells or cells expressing a phospho-mimetic variant of MAP65-3. Moreover, mimicking phosphorylation reinstated disrupted MAP65-3 behaviors in plants with compromised α-Aurora function. Overall, our findings reveal a mechanism in which α-Aurora facilitates cytokinesis progression through phosphorylation-dependent restriction of MAP65-3 associating with microtubules at the phragmoplast midzone.


Arabidopsis Proteins , Arabidopsis , Cytokinesis , Microtubule-Associated Proteins , Microtubules , Arabidopsis/metabolism , Arabidopsis/genetics , Microtubules/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Phosphorylation , Mutation , Spindle Apparatus/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Plants, Genetically Modified , Mitosis
4.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732079

Long-term spaceflight is known to induce disruptions in circadian rhythms, which are driven by a central pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus, but the underlying molecular mechanisms remain unclear. Here, we developed a rat model that simulated microgravity and isolation environments through tail suspension and isolation (TSI). We found that the TSI environment imposed circadian disruptions to the core body temperature, heart rate, and locomotor-activity rhythms of rats, especially in the amplitude of these rhythms. In TSI model rats' SCNs, the core circadian gene NR1D1 showed higher protein but not mRNA levels along with decreased BMAL1 levels, which indicated that NR1D1 could be regulated through post-translational regulation. The autophagosome marker LC3 could directly bind to NR1D1 via the LC3-interacting region (LIR) motifs and induce the degradation of NR1D1 in a mitophagy-dependent manner. Defects in mitophagy led to the reversal of NR1D1 degradation, thereby suppressing the expression of BMAL1. Mitophagy deficiency and subsequent mitochondrial dysfunction were observed in the SCN of TSI models. Urolithin A (UA), a mitophagy activator, demonstrated an ability to enhance the amplitude of core body temperature, heart rate, and locomotor-activity rhythms by prompting mitophagy induction to degrade NR1D1. Cumulatively, our results demonstrate that mitophagy exerts circadian control by regulating NR1D1 degradation, revealing mitophagy as a potential target for long-term spaceflight as well as diseases with SCN circadian disruption.


ARNTL Transcription Factors , Circadian Rhythm , Mitophagy , Nuclear Receptor Subfamily 1, Group D, Member 1 , Animals , Rats , Circadian Rhythm/physiology , Male , ARNTL Transcription Factors/metabolism , ARNTL Transcription Factors/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Weightlessness Simulation , Suprachiasmatic Nucleus/metabolism , Suprachiasmatic Nucleus/physiology , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Body Temperature , Heart Rate , Rats, Sprague-Dawley , Proteolysis
5.
Int J Mol Sci ; 25(10)2024 May 09.
Article En | MEDLINE | ID: mdl-38791174

The spindle and kinetochore-associated complex subunit 3 (SKA3) is a protein essential for proper chromosome segregation during mitosis and thus responsible for maintaining genome stability. Although its involvement in the pathogenesis of various cancer types has been reported, the potential clinicopathological significance of SKA3 in pancreatic ductal adenocarcinoma (PDAC) has not been fully elucidated. Therefore, this study aimed to assess clinicopathological associations and prognostic value of SKA3 in PDAC. For this purpose, in-house immunohistochemical analysis on tissue macroarrays (TMAs), as well as a bioinformatic examination using publicly available RNA-Seq dataset, were performed. It was demonstrated that SKA3 expression at both mRNA and protein levels was significantly elevated in PDAC compared to control tissues. Upregulated mRNA expression constituted an independent unfavorable prognostic factor for the overall survival of PDAC patients, whereas altered SKA3 protein levels were associated with significantly better clinical outcomes. The last observation was particularly clear in the early-stage tumors. These findings render SKA3 a promising prognostic biomarker for patients with pancreatic ductal adenocarcinoma. However, further studies are needed to confirm this conclusion.


Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/mortality , Male , Prognosis , Female , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/mortality , Aged , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenocarcinoma/mortality , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Cell Cycle Proteins
6.
J Cell Biol ; 223(8)2024 Aug 05.
Article En | MEDLINE | ID: mdl-38743010

Basal bodies (BBs) are conserved eukaryotic structures that organize cilia. They are comprised of nine, cylindrically arranged, triplet microtubules (TMTs) connected to each other by inter-TMT linkages which stabilize the structure. Poc1 is a conserved protein important for BB structural integrity in the face of ciliary forces transmitted to BBs. To understand how Poc1 confers BB stability, we identified the precise position of Poc1 in the Tetrahymena BB and the effect of Poc1 loss on BB structure. Poc1 binds at the TMT inner junctions, stabilizing TMTs directly. From this location, Poc1 also stabilizes inter-TMT linkages throughout the BB, including the cartwheel pinhead and the inner scaffold. The full localization of the inner scaffold protein Fam161A requires Poc1. As ciliary forces are increased, Fam161A is reduced, indicative of a force-dependent molecular remodeling of the inner scaffold. Thus, while not essential for BB assembly, Poc1 promotes BB interconnections that establish an architecture competent to resist ciliary forces.


Basal Bodies , Cilia , Microtubules , Protozoan Proteins , Tetrahymena thermophila , Basal Bodies/metabolism , Cilia/metabolism , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Microtubules/metabolism , Protein Binding , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Tetrahymena thermophila/metabolism , Tetrahymena thermophila/genetics
7.
Neoplasia ; 53: 101003, 2024 Jul.
Article En | MEDLINE | ID: mdl-38759377

Dynamic changes in the endoplasmic reticulum (ER) morphology are central to maintaining cellular homeostasis. Microtubules (MT) facilitate the continuous remodeling of the ER network into sheets and tubules by coordinating with many ER-shaping protein complexes, although how this process is controlled by extracellular signals remains unknown. Here we report that TAK1, a kinase responsive to various growth factors and cytokines including TGF-ß and TNF-α, triggers ER tubulation by activating αTAT1, an MT-acetylating enzyme that enhances ER-sliding. We show that this TAK1/αTAT1-dependent ER remodeling promotes cell survival by actively downregulating BOK, an ER membrane-associated proapoptotic effector. While BOK is normally protected from degradation when complexed with IP3R, it is rapidly degraded upon their dissociation during the ER sheets-to-tubules conversion. These findings demonstrate a distinct mechanism of ligand-induced ER remodeling and suggest that the TAK1/αTAT1 pathway may be a key target in ER stress and dysfunction.


Endoplasmic Reticulum , MAP Kinase Kinase Kinases , Microtubules , Signal Transduction , Microtubules/metabolism , Endoplasmic Reticulum/metabolism , Humans , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Acetylation , Animals , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Acetyltransferases/metabolism , Acetyltransferases/genetics , Endoplasmic Reticulum Stress , Mice , Microtubule Proteins
8.
Adv Exp Med Biol ; 1452: 21-35, 2024.
Article En | MEDLINE | ID: mdl-38805123

Tubulin plays a fundamental role in cellular function and as the subject for microtubule-active agents in the treatment of ovarian cancer. Microtubule-binding proteins (e.g., tau, MAP1/2/4, EB1, CLIP, TOG, survivin, stathmin) and posttranslational modifications (e.g., tyrosination, deglutamylation, acetylation, glycation, phosphorylation, polyamination) further diversify tubulin functionality and may permit additional opportunities to understand microtubule behavior in disease and to develop microtubule-modifying approaches to combat ovarian cancer. Tubulin-based structures that project from suspended ovarian cancer cells known as microtentacles may contribute to metastatic potential of ovarian cancer cells and could represent an exciting novel therapeutic target.


Microtubules , Neoplasm Metastasis , Ovarian Neoplasms , Protein Processing, Post-Translational , Tubulin , Humans , Tubulin/metabolism , Tubulin/chemistry , Female , Microtubules/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/drug therapy , Animals , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/drug therapy
9.
Nat Commun ; 15(1): 4467, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796459

As daughter centrioles assemble during G2, they recruit conserved Ana3/RTTN followed by its partner Rcd4/PPP1R35. Together, this contributes to the subsequent recruitment of Ana1/CEP295, required for the centriole's conversion to a centrosome. Here, we show that Rcd4/PPP1R35 is also required to maintain 9-fold centriole symmetry in the Drosophila male germline; its absence causes microtubule triplets to disperse into a reduced number of doublet or singlet microtubules. rcd4-null mutant spermatocytes display skinny centrioles that elongate normally and localize centriolar components correctly. Mutant spermatocytes also have centrioles of normal girth that splay at their proximal ends when induced to elongate by Ana1 overexpression. Skinny and splayed spermatid centrioles can still recruit a proximal centriole-like (PCL) structure marking a capability to initiate features of centriole duplication in developing sperm. Thus, stable 9-fold symmetry of microtubule triplets is not essential for centriole growth, correct longitudinal association of centriole components, and aspects of centriole duplication.


Centrioles , Drosophila Proteins , Microtubules , Spermatocytes , Centrioles/metabolism , Centrioles/ultrastructure , Centrioles/genetics , Animals , Male , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Spermatocytes/metabolism , Microtubules/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Spermatids/metabolism , Spermatids/cytology , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Mutation , Drosophila
10.
J Med Virol ; 96(6): e29690, 2024 Jun.
Article En | MEDLINE | ID: mdl-38804180

Autophagy is a degradational pathway with pivotal roles in cellular homeostasis and survival, including protection of neurons in the central nervous system (CNS). The significance of autophagy as antiviral defense mechanism is recognized and some viruses hijack and modulate this process to their advantage in certain cell types. Here, we present data demonstrating that the human neurotropic herpesvirus varicella zoster virus (VZV) induces autophagy in human SH-SY5Y neuronal cells, in which the pathway exerts antiviral activity. Productively VZV-infected SH-SY5Y cells showed increased LC3-I-LC3-II conversion as well as co-localization of the viral glycoprotein E and the autophagy receptor p62. The activation of autophagy was dependent on a functional viral genome. Interestingly, inducers of autophagy reduced viral transcription, whereas inhibition of autophagy increased viral transcript expression. Finally, the genotype of patients with severe ocular and brain VZV infection were analyzed to identify potential autophagy-associated inborn errors of immunity. Two patients expressing genetic variants in the autophagy genes ULK1 and MAP1LC3B2, respectively, were identified. Notably, cells of both patients showed reduced autophagy, alongside enhanced viral replication and death of VZV-infected cells. In conclusion, these results demonstrate a neuro-protective role for autophagy in the context of VZV infection and suggest that failure to mount an autophagy response is a potential predisposing factor for development of severe VZV disease.


Autophagy , Herpesvirus 3, Human , Neurons , Humans , Herpesvirus 3, Human/physiology , Herpesvirus 3, Human/pathogenicity , Neurons/virology , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Virus Replication , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Varicella Zoster Virus Infection/virology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Cell Line , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Host-Pathogen Interactions
11.
PeerJ ; 12: e17032, 2024.
Article En | MEDLINE | ID: mdl-38770093

Purpose: This study seeks to identify potential clinical biomarkers for osteoarthritis (OA) using bioinformatics and investigate OA mechanisms through cellular assays. Methods: Differentially Expressed Genes (DEGs) from GSE52042 (four OA samples, four control samples) were screened and analyzed with protein-protein interaction (PPI) analysis. Overlapping genes in GSE52042 and GSE206848 (seven OA samples, and seven control samples) were identified and evaluated using Gene Set Enrichment Analysis (GSEA) and clinical diagnostic value analysis to determine the hub gene. Finally, whether and how the hub gene impacts LPS-induced OA progression was explored by in vitro experiments, including Western blotting (WB), co-immunoprecipitation (Co-IP), flow cytometry, etc. Result: Bioinformatics analysis of DEGs (142 up-regulated and 171 down-regulated) in GSE52042 identified two overlapping genes (U2AF2, TPX2) that exhibit significant clinical diagnostic value. These genes are up-regulated in OA samples from both GSE52042 and GSE206848 datasets. Notably, TPX2, which AUC = 0.873 was identified as the hub gene. In vitro experiments have demonstrated that silencing TPX2 can alleviate damage to chondrocytes induced by lipopolysaccharide (LPS). Furthermore, there is a protein interaction between TPX2 and MMP13 in OA. Excessive MMP13 can attenuate the effects of TPX2 knockdown on LPS-induced changes in OA protein expression, cell growth, and apoptosis. Conclusion: In conclusion, our findings shed light on the molecular mechanisms of OA and suggested TPX2 as a potential therapeutic target. TPX2 could promote the progression of LPS-induced OA by up-regulating the expression of MMP13, which provides some implications for clinical research.


Cell Cycle Proteins , Chondrocytes , Disease Progression , Lipopolysaccharides , Matrix Metalloproteinase 13 , Microtubule-Associated Proteins , Osteoarthritis , Up-Regulation , Lipopolysaccharides/pharmacology , Osteoarthritis/genetics , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/chemically induced , Humans , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chondrocytes/metabolism , Chondrocytes/pathology , Chondrocytes/drug effects , Computational Biology , Protein Interaction Maps
12.
Elife ; 122024 May 17.
Article En | MEDLINE | ID: mdl-38757694

The fragile X syndrome (FXS) represents the most prevalent form of inherited intellectual disability and is the first monogenic cause of autism spectrum disorder. FXS results from the absence of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein). Neuronal migration is an essential step of brain development allowing displacement of neurons from their germinal niches to their final integration site. The precise role of FMRP in neuronal migration remains largely unexplored. Using live imaging of postnatal rostral migratory stream (RMS) neurons in Fmr1-null mice, we observed that the absence of FMRP leads to delayed neuronal migration and altered trajectory, associated with defects of centrosomal movement. RNA-interference-induced knockdown of Fmr1 shows that these migratory defects are cell-autonomous. Notably, the primary Fmrp mRNA target implicated in these migratory defects is microtubule-associated protein 1B (MAP1B). Knocking down MAP1B expression effectively rescued most of the observed migratory defects. Finally, we elucidate the molecular mechanisms at play by demonstrating that the absence of FMRP induces defects in the cage of microtubules surrounding the nucleus of migrating neurons, which is rescued by MAP1B knockdown. Our findings reveal a novel neurodevelopmental role for FMRP in collaboration with MAP1B, jointly orchestrating neuronal migration by influencing the microtubular cytoskeleton.


Cell Movement , Fragile X Mental Retardation Protein , Mice, Knockout , Microtubule-Associated Proteins , Neurons , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/genetics , Animals , Neurons/metabolism , Neurons/physiology , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Mice , Fragile X Syndrome/metabolism , Fragile X Syndrome/genetics , Gene Knockdown Techniques
13.
Yi Chuan ; 46(5): 398-407, 2024 May 20.
Article En | MEDLINE | ID: mdl-38763774

Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic, and irreversible interstitial lung disease with unknown cause. To explore the role and regulatory mechanism of leucine-rich repeat-containing protein 15 (LRRC15) in IPF, bleomycin (BLM)-induced pulmonary fibrosis in mouse and A549 cells were constructed, and the expression of LRRC15 were detected. Then, MTT, GFP-RFP-LC3 dual fluorescent labeling system and Western blotting were used to investigate the effects of LRRC15 on cell activity and autophagy after transfection of siLRRC15, respectively. The results indicated that the expression of LRRC15 was significantly increased after the BLM treatment in mouse lung tissue and A549 cells. The designed and synthesized siLRRC15 followed by transfection into A549 cells resulted in a dramatic reduction in LRRC15 expression and partially restored the cell damage induced by BLM. Moreover, the expression of LC3-II and P62 were up-regulated, the amount of autophagosome were increased by GFP-RFP-LC3 dual fluorescent labeling assay after BLM treatment. Meanwhile, this study also showed that the key autophagy proteins LC3-II, ATG5 and ATG7 were up-regulated, P62 was down-regulated and autophagic flux were enhanced after further treatment of A549 cells with siLRRC15. The above findings suggest that LRRC15 is an indicator of epithelial cell damage and may participate in the regulation of fibrosis through autophagy mechanism in IPF. This study provides necessary theoretical basis for further elucidating the mechanism of IPF.


Autophagy , Bleomycin , Animals , Humans , Male , Mice , A549 Cells , Autophagy/drug effects , Bleomycin/pharmacology , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/genetics , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism
14.
Int J Mol Sci ; 25(10)2024 May 18.
Article En | MEDLINE | ID: mdl-38791543

Doublecortin, encoded by the DCX gene, plays a crucial role in the neuronal migration process during brain development. Pathogenic variants of the DCX gene are the major causes of the "lissencephaly (LIS) spectrum", which comprehends a milder phenotype like Subcortical Band Heterotopia (SBH) in heterozygous female subjects. We performed targeted sequencing in three unrelated female cases with SBH. We identified three DCX-related variants: a novel missense (c.601A>G: p.Lys201Glu), a novel nonsense (c.210C>G: p.Tyr70*), and a previously identified nonsense (c.907C>T: p.Arg303*) variant. The novel c.601A>G: p.Lys201Glu variant shows a mother-daughter transmission pattern across four generations. The proband exhibits focal epilepsy and achieved seizure freedom with a combination of oxcarbazepine and levetiracetam. All other affected members have no history of epileptic seizures. Brain MRIs of the affected members shows predominant fronto-central SBH with mixed pachygyria on the overlying cortex. The two nonsense variants were identified in two unrelated probands with SBH, severe drug-resistant epilepsy and intellectual disability. These novel DCX variants further expand the genotypic-phenotypic correlations of lissencephaly spectrum disorders. Our documented phenotypic descriptions of three unrelated families provide valuable insights and stimulate further discussions on DCX-SBH cases.


Classical Lissencephalies and Subcortical Band Heterotopias , Doublecortin Domain Proteins , Doublecortin Protein , Microtubule-Associated Proteins , Pedigree , Phenotype , Humans , Female , Microtubule-Associated Proteins/genetics , Classical Lissencephalies and Subcortical Band Heterotopias/genetics , Classical Lissencephalies and Subcortical Band Heterotopias/pathology , Neuropeptides/genetics , Codon, Nonsense/genetics , Adult , Mutation, Missense , Child , Magnetic Resonance Imaging , Child, Preschool , Adolescent
15.
J Cell Sci ; 137(8)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38587461

Mitochondrial fission is a tightly regulated process involving multiple proteins and cell signaling. Despite extensive studies on mitochondrial fission factors, our understanding of the regulatory mechanisms remains limited. This study shows the critical role of a mitochondrial GTPase, GTPBP8, in orchestrating mitochondrial fission in mammalian cells. Depletion of GTPBP8 resulted in drastic elongation and interconnectedness of mitochondria. Conversely, overexpression of GTPBP8 shifted mitochondrial morphology from tubular to fragmented. Notably, the induced mitochondrial fragmentation from GTPBP8 overexpression was inhibited in cells either depleted of the mitochondrial fission protein Drp1 (also known as DNM1L) or carrying mutated forms of Drp1. Importantly, downregulation of GTPBP8 caused an increase in oxidative stress, modulating cell signaling involved in the increased phosphorylation of Drp1 at Ser637. This phosphorylation hindered the recruitment of Drp1 to mitochondria, leading to mitochondrial fission defects. By contrast, GTPBP8 overexpression triggered enhanced recruitment and assembly of Drp1 at mitochondria. In summary, our study illuminates the cellular function of GTPBP8 as a pivotal modulator of the mitochondrial division apparatus, inherently reliant on its influence on Drp1.


Dynamins , Microtubule-Associated Proteins , Mitochondria , Mitochondrial Dynamics , Monomeric GTP-Binding Proteins , Humans , Dynamins/metabolism , Dynamins/genetics , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Mitochondria/metabolism , Mitochondrial Dynamics/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Oxidative Stress , Phosphorylation , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism
16.
Nat Cell Biol ; 26(5): 731-744, 2024 May.
Article En | MEDLINE | ID: mdl-38594588

Mitochondrial fission occurs in many cellular processes, but the regulation of fission is poorly understood. We show that long-chain acyl-coenzyme A (LCACA) activates two related mitochondrial fission proteins, MiD49 and MiD51, by inducing their oligomerization, which activates their ability to stimulate the DRP1 GTPase. The 1:1 stoichiometry of LCACA:MiD in the oligomer suggests interaction in the previously identified nucleotide-binding pocket, and a point mutation in this pocket reduces LCACA binding and LCACA-induced oligomerization for MiD51. In cells, this LCACA binding mutant does not assemble into puncta on mitochondria or rescue MiD49/51 knockdown effects on mitochondrial length and DRP1 recruitment. Furthermore, cellular treatment with BSA-bound oleic acid, which causes increased LCACA, promotes mitochondrial fission in an MiD49/51-dependent manner. These results suggest that LCACA is an endogenous ligand for MiDs, inducing mitochondrial fission and providing a potential mechanism for fatty-acid-induced mitochondrial division. Finally, MiD49 or MiD51 oligomers synergize with Mff, but not with actin filaments, in DRP1 activation, suggesting distinct pathways for DRP1 activation.


Acyl Coenzyme A , Dynamins , GTP Phosphohydrolases , Mitochondria , Mitochondrial Dynamics , Mitochondrial Proteins , Mitochondrial Dynamics/drug effects , Dynamins/metabolism , Dynamins/genetics , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Acyl Coenzyme A/metabolism , Protein Multimerization , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Animals , Protein Binding , HeLa Cells , HEK293 Cells , Oleic Acid/pharmacology , Oleic Acid/metabolism , Membrane Proteins , Peptide Elongation Factors
17.
J Mol Histol ; 55(3): 317-328, 2024 Jun.
Article En | MEDLINE | ID: mdl-38630414

BACKGROUND: Autophagy plays multifaceted roles in regulating hepatocellular carcinoma (HCC) and the mechanisms involved are under-explored. Regulatory microRNAs (miRNAs) have been reported to target autophagy proteins but their roles in HCC is not well studied. Using HCC patient tissues, this study aims to investigate the association of autophagy with several clinicopathological parameters as well as identifying the autophagy-related miRNAs and the possible pathways. METHODS AND RESULTS: Autophagy level in the HCC patient-derived cancer and non-cancer tissues was determined by immunohistochemistry (IHC) targeting SQSTM1, LC3A and LC3B proteins. Significance tests of clinicopathological variables were tested using the Fisher's exact or Chi-square tests. Gene and miRNA expression assays were carried out and analyzed using Nanostring platform and software followed by validation of other online bioinformatics tools, namely String and miRabel. Autophagy expression was significantly higher in cancerous tissues compared to adjacent non-cancer tissues. High LC3B expression was associated with advanced tumor histology grade and tumor location. Nanostring gene expression analysis revealed that SQSTM1, PARP1 and ATG9A genes were upregulated in HCC tissues compared to non-cancer tissues while SIRT1 gene was downregulated. These genes are closely related to an autophagy pathway in HCC. Further, using miRabel tool, three downregulated miRNAs (hsa-miR-16b-5p, hsa-miR-34a-5p, and hsa-miR-660-5p) and one upregulated miRNA (hsa-miR-539-5p) were found to closely interact with the abovementioned autophagy-related genes. We then mapped out the possible pathway involving the genes and miRNAs in HCC tissues. CONCLUSIONS: We conclude that autophagy events are more active in HCC tissues compared to the adjacent non-cancer tissues. We also reported the possible role of several miRNAs in regulating autophagy-related genes in the autophagy pathway in HCC. This may contribute to the development of potential therapeutic targets for improving HCC therapy. Future investigations are warranted to validate the target genes reported in this study using a larger sample size and more targeted molecular technique.


Autophagy , Carcinoma, Hepatocellular , Gene Expression Regulation, Neoplastic , Liver Neoplasms , MicroRNAs , Microtubule-Associated Proteins , Sequestosome-1 Protein , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Autophagy/genetics , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Male , Female , Middle Aged , Aged , Signal Transduction/genetics , Adult
18.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 125-129, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38650141

Myocardial ischemia/reperfusion injury (MIRI) is an irreversible adverse event during the management of coronary heart disease that lacks effective controls. The underlying mechanism of MIRI still requires further investigation. Recent studies have suggested that overexpression of ATF3 protects against MIRI by regulating inflammatory responses, ferroptosis, and autophagy. The downstream target of ATF3, EGR1, also showed cardioprotective properties against MIRI by promoting autophagy. Therefore, further investigating the effect of ATF3/EGR1 pathway on MIRI-induced inflammation and autophagy is needed. Cardiomyocyte MIRI model was established by challenging H9C2 cells with hypoxia/reoxygenation (H/R). The ATF3 overexpression-H/R cell model by transfecting ATF3 plasmid into the H9C2 cell line. The transcription levels of ATF3 and EGR1 were determined using RT-qPCR, the levels of TNF-α and IL-6 were determined using ELISA kits, the protein expression of LC3 I, LC3 II, and P62 was determined via WB, and microstructure of H9C2 cell was observed by transmission electron microscopy (TEM). Overexpression of ATF3 significantly downregulated Egr1 levels, indicating that EGR1 might be the target of ATF3. By upregulating ATF3 levels, the extracellular levels of the inflammatory cytokines TNF-α and IL-6 significantly decreased, and the protein expression of the autophagy markers LC3 I, LC3 II, and P62 significantly increased. TEM results revealed that the cell line in the H/R-ATF3 group exhibited a higher abundance of autophagosome enclosures of mitochondria. The results indicated that ATF3/EGR1 may alleviate inflammation and improve autophagy in an H/R-induced MIRI model of cardiomyocytes.


Activating Transcription Factor 3 , Autophagy , Early Growth Response Protein 1 , Inflammation , Myocardial Reperfusion Injury , Myocytes, Cardiac , Tumor Necrosis Factor-alpha , Activating Transcription Factor 3/metabolism , Activating Transcription Factor 3/genetics , Autophagy/genetics , Early Growth Response Protein 1/metabolism , Early Growth Response Protein 1/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Animals , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Rats , Cell Line , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Interleukin-6/metabolism , Interleukin-6/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Signal Transduction , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics
20.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38674078

Canonical autophagy is an evolutionarily conserved process that forms double-membrane structures and mediates the degradation of long-lived proteins (LLPs). Noncanonical autophagy (NCA) is an important alternative pathway involving the formation of microtubule-associated protein 1 light chain 3 (LC3)-positive structures that are independent of partial core autophagy proteins. NCA has been defined by the conjugation of ATG8s to single membranes (CASM). During canonical autophagy and NCA/CASM, LC3 undergoes a lipidation modification, and ATG16L1 is a crucial protein in this process. Previous studies have reported that the WDR domain of ATG16L1 is not necessary for canonical autophagy. However, our study found that WDR domain deficiency significantly impaired LLP degradation in basal conditions and slowed down LC3-II accumulation in canonical autophagy. We further demonstrated that the observed effect was due to a reduced interaction between ATG16L1 and FIP200/WIPI2, without affecting lysosome function or fusion. Furthermore, we also found that the WDR domain of ATG16L1 is crucial for chemical-induced NCA/CASM. The results showed that removing the WDR domain or introducing the K490A mutation in ATG16L1 significantly inhibited the NCA/CASM, which interrupted the V-ATPase-ATG16L1 axis. In conclusion, this study highlights the significance of the WDR domain of ATG16L1 for both canonical autophagy and NCA functions, improving our understanding of its role in autophagy.


Autophagy-Related Proteins , Autophagy , Membrane Proteins , Microtubule-Associated Proteins , Phosphate-Binding Proteins , WD40 Repeats , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Autophagy/genetics , Humans , WD40 Repeats/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Lysosomes/metabolism , HEK293 Cells , HeLa Cells
...