Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.303
Filter
1.
Bull Exp Biol Med ; 177(3): 379-382, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39134810

ABSTRACT

Variable number tandem repeat (VNTR) polymorphisms of the human neonatal IgG Fc receptor α-chain gene (FCGRT) are known to influence the expression levels of FCGRT and IgG in serum. Monkeys are considered to be a relevant biological model for studying the effects of immunobiological drugs. The study determined the functional VNTR polymorphisms of the FCGRT gene in 109 male rhesus macaques from the nursery of the Kurchatov Complex of Medical Primatology. PCR amplification of samples was carried out followed by electrophoretic separation of DNA fragments in a 2% agarose gel. Individual DNA amplification products were sequenced (according to Sanger system) in forward and reverse directions to confirm the specificity. The genotyping showed that the VNTR polymorphism of the FCGRT gene in the studied population of rhesus macaques is presented by 9 variants. The frequency of the VNTR5 allele associated with lower IgG levels was 14.2%, and the most common one was the VNTR7 allele (25.2%). We also identified alleles that have not been previously reported: VNTR3, VNTR4, VNTR6, VNTR8, and VNTR9. The study allows to consider rhesus macaques as a potential model for studying the immunological response depending on the genetic VNTR variant of FCGRT.


Subject(s)
Alleles , Macaca mulatta , Minisatellite Repeats , Polymorphism, Genetic , Animals , Macaca mulatta/genetics , Minisatellite Repeats/genetics , Polymorphism, Genetic/genetics , Male , Gene Frequency/genetics , Immunoglobulin G/blood , Immunoglobulin G/genetics , Receptors, Fc/genetics , Genotype , Histocompatibility Antigens Class I
2.
Virol J ; 21(1): 187, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148126

ABSTRACT

Enterovirus 71 (EV-71) has strong neurotropism, and it is the main pathogen causing severe hand, foot, and mouth disease (HFMD). In clinical observations, significant differences were observed in the severity and prognosis of HFMD among children who were also infected with EV-71. Genetic differences among individuals could be one of the important causes of differences in susceptibility to EV-71-induced HFMD. As P-selectin glycoprotein ligand-1 (PSGL-1) is an important receptor of EV-71, the correlation between single-nucleotide polymorphisms (SNPs) in PSGL-1 and the susceptibility to severe HFMD following EV-71 infection is worth studying. Given the role of PSGL-1 in immunity, the correlations between PSGL-1 SNPs and the immune status after EV-71 infection are also worth studying. Meanwhile, PSGL-1 variable number of tandem repeats (VNTR) represents a research hotspot in cardiovascular and cerebrovascular diseases, but PSGL-1 VNTR polymorphism has not been investigated in HFMD caused by EV-71 infection. In this study, specific gene fragments were amplified by polymerase chain reaction, and PSGL-1 VNTR sequences were genotyped using an automatic nucleic acid analyzer. The correlations of PSGL-1 VNTR polymorphism with the susceptibility to EV-71-associated severe HFMD and the post-infection immune status were analyzed. The PSGL-1 VNTR A allele was identified as a susceptible SNP for severe HFMD. The risk of severe HFMD was higher for AA + AB genotype carriers than for BB genotype carriers. The counts of peripheral blood lymphocyte subsets were lower in AA + AB genotype carries than in BB genotype carries. In conclusion, PSGL-1 VNTR polymorphism is associated with the susceptibility to EV-71-induced severe HFMD and the immune status after infection. PSGL-1 VNTR might play a certain role in the pathogenesis of severe cases.


Subject(s)
Enterovirus A, Human , Genetic Predisposition to Disease , Hand, Foot and Mouth Disease , Membrane Glycoproteins , Minisatellite Repeats , Humans , Hand, Foot and Mouth Disease/genetics , Hand, Foot and Mouth Disease/immunology , Hand, Foot and Mouth Disease/virology , Membrane Glycoproteins/genetics , Enterovirus A, Human/immunology , Enterovirus A, Human/genetics , Male , Female , Infant , Minisatellite Repeats/genetics , Child, Preschool , Polymorphism, Single Nucleotide , Genotype , Child
3.
Am J Hum Genet ; 111(8): 1700-1716, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38991590

ABSTRACT

The secreted mucins MUC5AC and MUC5B are large glycoproteins that play critical defensive roles in pathogen entrapment and mucociliary clearance. Their respective genes contain polymorphic and degenerate protein-coding variable number tandem repeats (VNTRs) that make the loci difficult to investigate with short reads. We characterize the structural diversity of MUC5AC and MUC5B by long-read sequencing and assembly of 206 human and 20 nonhuman primate (NHP) haplotypes. We find that human MUC5B is largely invariant (5,761-5,762 amino acids [aa]); however, seven haplotypes have expanded VNTRs (6,291-7,019 aa). In contrast, 30 allelic variants of MUC5AC encode 16 distinct proteins (5,249-6,325 aa) with cysteine-rich domain and VNTR copy-number variation. We group MUC5AC alleles into three phylogenetic clades: H1 (46%, ∼5,654 aa), H2 (33%, ∼5,742 aa), and H3 (7%, ∼6,325 aa). The two most common human MUC5AC variants are smaller than NHP gene models, suggesting a reduction in protein length during recent human evolution. Linkage disequilibrium and Tajima's D analyses reveal that East Asians carry exceptionally large blocks with an excess of rare variation (p < 0.05) at MUC5AC. To validate this result, we use Locityper for genotyping MUC5AC haplogroups in 2,600 unrelated samples from the 1000 Genomes Project. We observe a signature of positive selection in H1 among East Asians and a depletion of the likely ancestral haplogroup (H3). In Europeans, H3 alleles show an excess of common variation and deviate from Hardy-Weinberg equilibrium (p < 0.05), consistent with heterozygote advantage and balancing selection. This study provides a generalizable strategy to characterize complex protein-coding VNTRs for improved disease associations.


Subject(s)
Alleles , Genetic Variation , Haplotypes , Minisatellite Repeats , Mucin 5AC , Mucin-5B , Phylogeny , Humans , Mucin-5B/genetics , Animals , Mucin 5AC/genetics , Mucin 5AC/metabolism , Minisatellite Repeats/genetics , DNA Copy Number Variations , Primates/genetics
4.
Leg Med (Tokyo) ; 70: 102469, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38870841

ABSTRACT

Monoamine oxidase A (MAOA) catalyzes oxidative deamination of catecholamines. A functional variable number tandem repeat (VNTR) polymorphism in the promoter region of the MAOA gene has been previously reported. In the present study, we measured serum adrenaline (Adr), noradrenaline (Nad), and dopamine (DA) levels in 90 male and 34 female Japanese autopsy cases in which amphetamines or psychotropic drugs were not detected.We examined the frequencies of MAOA-uVNTR alleles in these cases and investigated the effects of the MAOA-uVNTR polymorphism on serum Adr, Nad, and DA levels. Evaluation indicated no significant association between MAOA-uVNTR polymorphism and serum Adr, Nad, or DA levels in males, although a significant association between MAOA-uVNTR polymorphism and serum Adr and DA levels were observed in females. Females with the 3/3 genotype had higher serum Adr and DA levels than those with a 4-repeat allele (3/4 and 4/4 genotypes) (p = 0.048 and 0.020, respectively). There was no significant association between MAOA-uVNTR polymorphism and serum Nad levels in females. The present study indicates that MAOA-uVNTR polymorphism influences serum Adr and DA levels only in females.


Subject(s)
Minisatellite Repeats , Monoamine Oxidase , Polymorphism, Genetic , Promoter Regions, Genetic , Humans , Monoamine Oxidase/genetics , Monoamine Oxidase/blood , Male , Female , Minisatellite Repeats/genetics , Promoter Regions, Genetic/genetics , Adult , Middle Aged , Catecholamines/blood , Autopsy , Aged , Genotype , Young Adult , Dopamine/blood , Aged, 80 and over , Epinephrine/blood
5.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791534

ABSTRACT

C-type lectins play a crucial role as pathogen-recognition receptors for the dengue virus, which is responsible for causing both dengue fever (DF) and dengue hemorrhagic fever (DHF). DHF is a serious illness caused by the dengue virus, which exists in four different serotypes: DEN-1, DEN-2, DEN-3, and DEN-4. We conducted a genetic association study, during a significant DEN-2 outbreak in southern Taiwan, to explore how variations in the neck-region length of L-SIGN (also known as CD209L, CD299, or CLEC4M) impact the severity of dengue infection. PCR genotyping was utilized to identify polymorphisms in variable-number tandem repeats. We constructed L-SIGN variants containing either 7- or 9-tandem repeats and transfected these constructs into K562 and U937 cells, and cytokine and chemokine levels were evaluated using enzyme-linked immunosorbent assays (ELISAs) following DEN-2 virus infection. The L-SIGN allele 9 was observed to correlate with a heightened risk of developing DHF. Subsequent results revealed that the 9-tandem repeat was linked to elevated viral load alongside predominant T-helper 2 (Th2) cell responses (IL-4 and IL-10) in K562 and U937 cells. Transfecting K562 cells in vitro with L-SIGN variants containing 7- and 9-tandem repeats confirmed that the 9-tandem repeat transfectants facilitated a higher dengue viral load accompanied by increased cytokine production (MCP-1, IL-6, and IL-8). Considering the higher prevalence of DHF and an increased frequency of the L-SIGN neck's 9-tandem repeat in the Taiwanese population, individuals with the 9-tandem repeat may necessitate more stringent protection against mosquito bites during dengue outbreaks in Taiwan.


Subject(s)
Dengue Virus , Lectins, C-Type , Receptors, Cell Surface , Severe Dengue , Virus Replication , Adult , Female , Humans , Male , Middle Aged , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cytokines/metabolism , Cytokines/genetics , Dengue Virus/genetics , Dengue Virus/immunology , K562 Cells , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Minisatellite Repeats/genetics , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Severe Dengue/immunology , Severe Dengue/virology , Severe Dengue/genetics , Taiwan , U937 Cells , Viral Load , Virus Replication/genetics
6.
Sci Rep ; 14(1): 10932, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740892

ABSTRACT

SINE-VNTR-Alu (SVA) retrotransposons are transposable elements which represent a source of genetic variation. We previously demonstrated that the presence/absence of a human-specific SVA, termed SVA_67, correlated with the progression of Parkinson's disease (PD). In the present study, we demonstrate that SVA_67 acts as expression quantitative trait loci, thereby exhibiting a strong regulatory effect across the genome using whole genome and transcriptomic data from the Parkinson's progression markers initiative cohort. We further show that SVA_67 is polymorphic for its variable number tandem repeat domain which correlates with both regulatory properties in a luciferase reporter gene assay in vitro and differential expression of multiple genes in vivo. Additionally, this variation's utility as a biomarker is reflected in a correlation with a number of PD progression markers. These experiments highlight the plethora of transcriptomic and phenotypic changes associated with SVA_67 polymorphism which should be considered when investigating the missing heritability of neurodegenerative diseases.


Subject(s)
Alu Elements , Disease Progression , Minisatellite Repeats , Parkinson Disease , Polymorphism, Genetic , Retroelements , Parkinson Disease/genetics , Humans , Minisatellite Repeats/genetics , Retroelements/genetics , Alu Elements/genetics , Quantitative Trait Loci , Biomarkers , Short Interspersed Nucleotide Elements/genetics
7.
PLoS Negl Trop Dis ; 18(4): e0012143, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38662795

ABSTRACT

Trachoma is the leading infectious cause of blindness worldwide and is now largely confined to around 40 low- and middle-income countries. It is caused by Chlamydia trachomatis (Ct), a contagious intracellular bacterium. The World Health Organization recommends mass drug administration (MDA) with azithromycin for treatment and control of ocular Ct infections, alongside improving facial cleanliness and environmental conditions to reduce transmission. To understand the molecular epidemiology of trachoma, especially in the context of MDA and transmission dynamics, the identification of Ct genotypes could be useful. While many studies have used the Ct major outer membrane protein gene (ompA) for genotyping, it has limitations. Our study applies a typing system novel to trachoma, Multiple Loci Variable Number Tandem Repeat Analysis combined with ompA (MLVA-ompA). Ocular swabs were collected post-MDA from four trachoma-endemic zones in Ethiopia between 2011-2017. DNA from 300 children with high Ct polymerase chain reaction (PCR) loads was typed using MLVA-ompA, utilizing 3 variable number tandem repeat (VNTR) loci within the Ct genome. Results show that MLVA-ompA exhibited high discriminatory power (0.981) surpassing the recommended threshold for epidemiological studies. We identified 87 MLVA-ompA variants across 26 districts. No significant associations were found between variants and clinical signs or chlamydial load. Notably, overall Ct diversity significantly decreased after additional MDA rounds, with a higher proportion of serovar A post-MDA. Despite challenges in sequencing one VNTR locus (CT1299), MLVA-ompA demonstrated cost-effectiveness and efficiency relative to whole genome sequencing, providing valuable information for trachoma control programs on local epidemiology. The findings suggest the potential of MLVA-ompA as a reliable tool for typing ocular Ct and understanding transmission dynamics, aiding in the development of targeted interventions for trachoma control.


Subject(s)
Bacterial Outer Membrane Proteins , Chlamydia trachomatis , Genotype , Minisatellite Repeats , Trachoma , Chlamydia trachomatis/genetics , Chlamydia trachomatis/isolation & purification , Chlamydia trachomatis/classification , Trachoma/epidemiology , Trachoma/microbiology , Trachoma/drug therapy , Humans , Ethiopia/epidemiology , Minisatellite Repeats/genetics , Bacterial Outer Membrane Proteins/genetics , Female , Male , Child, Preschool , Molecular Typing/methods , Azithromycin/therapeutic use , Genetic Variation , Infant , Child , Anti-Bacterial Agents/pharmacology , DNA, Bacterial/genetics
8.
Hum Mol Genet ; 33(11): 1001-1014, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38483348

ABSTRACT

The CEL gene encodes carboxyl ester lipase, a pancreatic digestive enzyme. CEL is extremely polymorphic due to a variable number tandem repeat (VNTR) located in the last exon. Single-base deletions within this VNTR cause the inherited disorder MODY8, whereas little is known about VNTR single-base insertions in pancreatic disease. We therefore mapped CEL insertion variants (CEL-INS) in 200 Norwegian patients with pancreatic neoplastic disorders. Twenty-eight samples (14.0%) carried CEL-INS alleles. Most common were insertions in repeat 9 (9.5%), which always associated with a VNTR length of 13 repeats. The combined INS allele frequency (0.078) was similar to that observed in a control material of 416 subjects (0.075). We performed functional testing in HEK293T cells of a set of CEL-INS variants, in which the insertion site varied from the first to the 12th VNTR repeat. Lipase activity showed little difference among the variants. However, CEL-INS variants with insertions occurring in the most proximal repeats led to protein aggregation and endoplasmic reticulum stress, which upregulated the unfolded protein response. Moreover, by using a CEL-INS-specific antibody, we observed patchy signals in pancreatic tissue from humans without any CEL-INS variant in the germline. Similar pancreatic staining was seen in knock-in mice expressing the most common human CEL VNTR with 16 repeats. CEL-INS proteins may therefore be constantly produced from somatic events in the normal pancreatic parenchyma. This observation along with the high population frequency of CEL-INS alleles strongly suggests that these variants are benign, with a possible exception for insertions in VNTR repeats 1-4.


Subject(s)
Minisatellite Repeats , Pancreas, Exocrine , Humans , Minisatellite Repeats/genetics , Animals , Mice , Pancreas, Exocrine/metabolism , Pancreas, Exocrine/enzymology , HEK293 Cells , Mutagenesis, Insertional/genetics , Alleles , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/enzymology , Gene Frequency , Male , Female , Lipase/genetics
9.
Asian J Psychiatr ; 91: 103831, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37988928

ABSTRACT

OBJECTIVE: There seems to be an association between the DRD4 48-bp VNTR polymorphisms and antipsychotic treatment response, but there is a rare reference to confirm this finding. Hence, the present study tried to investigate the association between DRD4 48-bp VNTR polymorphisms and the treatment response of antipsychotics in patients with schizophrenia in Taiwan, using a propensity score matching (PSM) method. METHODS: A total of 882 participants were enrolled in this study and completed informed consent, research questionnaires, including demographic information and the revised Chinese version Beliefs about Voices Questionnaire, and blood sampling. For descreasing of the selection bias and confounding variables, the PSM nearest neighbor matching method was used to select 765 paitents with schizophrenia (ratio of 1:8 between 85 persistent auditory hallucination and 680 controls) with matched and controlled the age and gender. RESULTS: Schizophrenia patients with DRD4 4 R homozygosity had a lower rate of good antipsychotic treatment response than the other DRD4 genotype carriers (DRD4 non-4/4). Among those 4 R homozygosity carriers, 60 cases of 503 (11.9%) retain persistent auditory hallucinations. Furthermore, this subgroup of patients is accounted for up to 70.6% of cases with poor neuroleptic treatment response. CONCLUSIONS: A poor treatment outcome for patients with the 4 R homozygosity had presented,that comparing with those DRD non-4/4 genotype carriers. DRD4 VNTR 4 R homozygosity could be a genetic biomarker to predict poor antipsychotic treatment response in schizophrenia. Patients with DRD 4/4 probably receive novel antipsychotic medications preferentially or in combination with alternative therapy, such as psychotherapy or milieu therapy.


Subject(s)
Antipsychotic Agents , Schizophrenia , Humans , Schizophrenia/drug therapy , Schizophrenia/genetics , Antipsychotic Agents/therapeutic use , Receptors, Dopamine D4/genetics , Minisatellite Repeats/genetics , Genotype , Hallucinations/genetics , Hallucinations/drug therapy , Biomarkers
10.
Article in English | MEDLINE | ID: mdl-37610137

ABSTRACT

OBJECTIVE: Circadian rhythmicity has been shown to contribute to the regulation of key physiological and cognitive processes related to performance. The period homolog 3 (PER3) is expressed in a circadian pattern in the suprachiasmatic nucleus. Therefore, in this study, we aimed to evaluate the role of the variable tandem repeat (VNTR) variant of the PER3 gene in athletic performance in the Turkish population. METHODS: This study included 223 subjects, which consisted of 123 athletes and 100 sedentary controls. Blood samples were drawn from all subjects. DNA was extracted from whole-blood samples. The PER3 VNTR variant was genotyped using the polymerase chain reaction-restriction method (PCR). The results of the analyses were evaluated for statistical significance. RESULTS: The mean ages of athletes and controls were 22 ± 2.814 and 23 ± 3.561, respectively. Endurance athletes in the group were 21.1%, and sprint athletes were 78.9%. There was no statistical significance in terms of PER3 VNTR genotype distribution or allele frequency. In the recessive model, a statistically significant association was observed when the athletes were compared with the controls according to 4/4 + 4/5 versus 5/5 genotype (p = 0.020). CONCLUSION: In this case-control study, for the first time in our country, we obtained findings suggesting that the PER3 VNTR variant may affect sports performance in the Turkish population. Results need to be replicated in different ethnic and larger samples.


Subject(s)
Minisatellite Repeats , Polymorphism, Genetic , Humans , Minisatellite Repeats/genetics , Case-Control Studies , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Circadian Rhythm/genetics , Gene Frequency , Genotype , Athletes
11.
Vet Microbiol ; 287: 109909, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37925876

ABSTRACT

Mycoplasma iowae is a worldwide spread and economically important avian pathogen that mostly infects turkeys. Currently, multi-locus sequence typing (MLST) serves as the gold standard method for strain identification in M. iowae. However, additional robust genotyping methods are required to effectively monitor M. iowae infections and conduct epidemiological investigations. The first aim of this study was to develop genotyping assays with high resolution, that specifically target M. iowae, namely a multiple-locus variable number of tandem-repeats analysis (MLVA) and a core genome multi-locus sequence typing (cgMLST) schema. The second aim was the determination of relationships among a diverse selection of M. iowae strains and clinical isolates with a previous and the newly developed assays. The MLVA was designed based on the analyses of tandem-repeat (TR) regions in the six serotype reference strains (I, J, K, N, Q and R). The cgMLST schema was developed based on the coding sequences (CDSs) common in 95% of the examined 99 isolates. The samples were submitted for a previously published MLST assay for comparison with the developed methods. Out of 94 TR regions identified, 17 alleles were selected for further evaluation by PCR. Finally, seven alleles were chosen to establish the MLVA assay. Additionally, whole genome sequence analyses identified a total of 676 CDSs shared by 95% of the isolates, all of which were included into the developed cgMLST schema. The MLVA discriminated 19 distinct genotypes (GT), while with the cgMLST assay 79 sequence types (ST) could be determined with Simpson's diversity indices of 0.810 (MLVA) and 0.989 (cgMLST). The applied assays consistently identified the same main clusters among the diverse selection of isolates, thereby demonstrating their suitability for various genetic analyses and their ability to yield congruent results.


Subject(s)
Mycoplasma iowae , Animals , Multilocus Sequence Typing/methods , Multilocus Sequence Typing/veterinary , Genotype , Genotyping Techniques/veterinary , Tandem Repeat Sequences , Minisatellite Repeats/genetics , Phylogeny
12.
BMC Genomics ; 24(1): 690, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37978434

ABSTRACT

BACKGROUND: As a population genetic tool, mitochondrial DNA is commonly divided into the ~ 1-kb control region (CR), in which single nucleotide variant (SNV) diversity is relatively high, and the coding region, in which selective constraint is greater and diversity lower, but which provides an informative phylogeny. In some species, the CR contains variable tandemly repeated sequences that are understudied due to heteroplasmy. Domestic cats (Felis catus) have a recent origin and therefore traditional CR-based analysis of populations yields only a small number of haplotypes. RESULTS: To increase resolution we used Nanopore sequencing to analyse 119 cat mitogenomes via a long-amplicon approach. This greatly improves discrimination (from 15 to 87 distinct haplotypes in our dataset) and defines a phylogeny showing similar starlike topologies within all major clades (haplogroups), likely reflecting post-domestication expansion. We sequenced RS2, a CR tandem array of 80-bp repeat units, placing RS2 array structures within the phylogeny and increasing overall haplotype diversity. Repeat number varies between 3 and 12 (median: 4) with over 30 different repeat unit types differing largely by SNVs. Five SNVs show evidence of independent recurrence within the phylogeny, and seven are involved in at least 11 instances of rapid spread along repeat arrays within haplogroups. CONCLUSIONS: In defining mitogenome variation our study provides key information for the forensic genetic analysis of cat hair evidence, and for the first time a phylogenetically informed picture of tandem repeat variation that reveals remarkably dynamic mutation processes at work in the mitochondrion.


Subject(s)
Genome, Mitochondrial , Cats/genetics , Animals , Genetic Variation , Minisatellite Repeats/genetics , Mitochondria , Mutation
13.
Nucleic Acids Res ; 51(21): 11453-11465, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37823611

ABSTRACT

SINE-VNTR-Alu (SVA) retrotransposons are evolutionarily young and still-active transposable elements (TEs) in the human genome. Several pathogenic SVA insertions have been identified that directly mutate host genes to cause neurodegenerative and other types of diseases. However, due to their sequence heterogeneity and complex structures as well as limitations in sequencing techniques and analysis, SVA insertions have been less well studied compared to other mobile element insertions. Here, we identified polymorphic SVA insertions from 3646 whole-genome sequencing (WGS) samples of >150 diverse populations and constructed a polymorphic SVA insertion reference catalog. Using 20 long-read samples, we also assembled reference and polymorphic SVA sequences and characterized the internal hexamer/variable-number-tandem-repeat (VNTR) expansions as well as differing SVA activity for SVA subfamilies and human populations. In addition, we developed a module to annotate both reference and polymorphic SVA copies. By characterizing the landscape of both reference and polymorphic SVA retrotransposons, our study enables more accurate genotyping of these elements and facilitate the discovery of pathogenic SVA insertions.


Subject(s)
Genome, Human , Retroelements , Humans , Alu Elements , Genome, Human/genetics , Minisatellite Repeats/genetics , Retroelements/genetics , Short Interspersed Nucleotide Elements
14.
BMC Genomics ; 24(1): 400, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37460951

ABSTRACT

BACKGROUND: Drug resistant Mycobacterium tuberculosis prevention and care is a major challenge in Ethiopia. The World health organization has designated Ethiopia as one of the 30 high burden multi-drug resistant tuberculosis (MDR-TB) countries. There is limited information regarding genetic diversity and transmission dynamics of MDR-TB in Ethiopia. OBJECTIVE: To investigate the molecular epidemiology and transmission dynamics of MDR-TB strains using whole genome sequence (WGS) in the Amhara region. METHODS: Forty-five MDR-TB clinical isolates from Amhara region were collected between 2016 and 2018, and characterized using WGS and 24-loci Mycobacterium Interspersed Repetitive Units Variable Number of Tandem Repeats (MIRU-VNTR) typing. Clusters were defined based on the maximum distance of 12 single nucleotide polymorphisms (SNPs) or alleles as the upper threshold of genomic relatedness. Five or less SNPs or alleles distance or identical 24-loci VNTR typing is denoted as surrogate marker for recent transmission. RESULTS: Forty-one of the 45 isolates were analyzed by WGS and 44% (18/41) of the isolates were distributed into 4 clusters. Of the 41 MDR-TB isolates, 58.5% were classified as lineage 4, 36.5% lineage 3 and 5% lineage 1. Overall, TUR genotype (54%) was the predominant in MDR-TB strains. 41% (17/41) of the isolates were clustered into four WGS groups and the remaining isolates were unique strains. The predominant cluster (Cluster 1) was composed of nine isolates belonging to lineage 4 and of these, four isolates were in the recent transmission links. CONCLUSIONS: Majority of MDR-TB strain cluster and predominance of TUR lineage in the Amhara region give rise to concerns for possible ongoing transmission. Efforts to strengthen TB laboratory to advance diagnosis, intensified active case finding, and expanded contact tracing activities are needed in order to improve rapid diagnosis and initiate early treatment. This would lead to the interruption of the transmission chain and stop the spread of MDR-TB in the Amhara region.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Antitubercular Agents/therapeutic use , Tuberculosis/genetics , Mycobacterium tuberculosis/genetics , Ethiopia/epidemiology , Molecular Epidemiology , Tuberculosis, Multidrug-Resistant/drug therapy , Genotype , Whole Genome Sequencing , Minisatellite Repeats/genetics
15.
Neuropsychopharmacol Rep ; 43(3): 338-345, 2023 09.
Article in English | MEDLINE | ID: mdl-37202909

ABSTRACT

BACKGROUND: One potential cause of suicide is serotonergic dysfunction. Sex differences have been reported to modulate the effects of serotonergic polymorphisms. Monoamine oxidase A (MAOA) is an enzyme that degrades serotonin and is located on the X chromosome. A previous study indicated that the upstream (u) variable number of tandem repeat (VNTR) in the MAOA gene promoter may be associated with suicide. However, a meta-analysis showed that this polymorphism may not be related to suicide. According to a recent study, compared with the uVNTR, the distal (d)VNTR and the haplotypes of the two VNTRs modulate MAOA expression. METHODS: We examined the two VNTRs in the MAOA gene promoter in 1007 subjects who committed suicide and 844 healthy controls. We analyzed the two VNTRs using fluorescence-based polymerase chain reaction assays. We conducted a meta-analysis for the two VNTRs to update it. RESULTS: Our results demonstrated that neither the genotype-based associations nor allele/haplotype frequencies of the two VNTRs were significantly associated with suicide. In the meta-analysis, we did not indicate relationships between uVNTR and suicide nor did we identify articles analyzing dVNTR in suicide. CONCLUSION: Overall, we did not find a relationship between the two VNTRs in the MAOA promoter and suicide completion; thus, warranting further studies are required.


Subject(s)
Minisatellite Repeats , Suicide , Female , Humans , Male , Minisatellite Repeats/genetics , Monoamine Oxidase/genetics , Polymorphism, Genetic , Promoter Regions, Genetic
16.
Sci Rep ; 13(1): 6746, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37185604

ABSTRACT

The objective of this study was to genotype Mycobacterium tuberculosis complex isolated from humans and cattle in northern Iran. Over the course of one year, a total of 120 human and 21 cattle isolates were tested using region of difference (RD)-based polymerase chain reaction (PCR) and mycobacterial interspersed repetitive unites-variable number tandem repeats (MIRU-VNTR). In M. tuberculosis, out of 120 isolates investigated, the most common genotype detected was NEW-1 (53.3%), followed by CAS/ Delhi (24.1%), Haarlem (5%), Beijing (4.16%), Uganda I (4.16%), S (3.3%), Ural (0.83%), TUR (0.83%), Uganda II (0.83%), Lam (0.83%) and Cameroon (0.83%). The HGDI rate was 0.9981 and the clustering rate was 10.83. Of the isolates, QUB26 had the highest allele diversity (h: 0.76), while the loci Mtub29 and MIRU24 had the lowest (h: 0). In M. Bovis, out of 123 collected tissue samples, 21 (17%) grew on culture media. The HGDI rate was 0.71 and clustering rate was 85.7%. The locus ETRC had the highest allele diversity (h: 0.45). The findings of this study suggest that there is high genetic diversity among M. tuberculosis isolates in Khorasan Razavi Province, which is consistent with similar results from other studies in other provinces in Iran and neighboring countries. This indicates that the prevalent genotypes in this study are spreading in the Middle East region. Furthermore, considering that M. Bovis isolates were identified in two clusters, it seems that all of them have a common origin and are circulating among the livestock farms in the province.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Cattle , Animals , Mycobacterium tuberculosis/genetics , Genotype , Iran/epidemiology , Minisatellite Repeats/genetics , Tuberculosis/epidemiology , Tuberculosis/veterinary , Tuberculosis/genetics , Bacterial Typing Techniques
17.
PLoS One ; 18(5): e0285491, 2023.
Article in English | MEDLINE | ID: mdl-37167330

ABSTRACT

Cassava Bacterial Blight (CBB) is a destructive disease widely distributed in the different areas where this crop is grown. Populations studies have been performed at local and national scales revealing a geographical genetic structure with temporal variations. A global epidemiology analysis of its causal agent Xanthomonas phaseoli pv. manihotis (Xpm) is needed to better understand the expansion of the disease for improving the monitoring of CBB. We targeted new tandem repeat (TR) loci with large repeat units, i.e. minisatellites, that we multiplexed in a scheme of Multi-Locus Variable number of TR Analysis (MLVA-8). This genotyping scheme separated 31 multilocus haplotypes in three clusters of single-locus variants and a singleton within a worldwide collection of 93 Xpm strains isolated over a period of fifty years. The major MLVA-8 cluster 1 grouped strains originating from all countries, except the unique Chinese strain. On the contrary, all the Xpm strains genotyped using the previously developed MLVA-14 microsatellite scheme were separated as unique haplotypes. We further propose an MLVA-12 scheme which takes advantage of combining TR loci with different mutation rates: the eight minisatellites and four faster evolving microsatellite markers, for global epidemiological surveillance. This MLVA-12 scheme identified 78 haplotypes and separated most of the strains in groups of double-locus variants (DLV) supporting some phylogenetic relationships. DLV groups were subdivided into closely related clusters of strains most often sharing the same geographical origin and isolated over a short period, supporting epidemiological relationships. The main MLVA-12 DLV group#1 was composed by strains from South America and all the African strains. The MLVA-12 scheme combining both minisatellite and microsatellite loci with different discriminatory power is expected to increase the accuracy of the phylogenetic signal and to minimize the homoplasy effects. Further investigation of the global epidemiology of Xpm will be helpful for a better control of CBB worldwide.


Subject(s)
Manihot , Minisatellite Repeats , Minisatellite Repeats/genetics , Manihot/genetics , Phylogeny , Genotype , Microsatellite Repeats/genetics , Bacterial Typing Techniques
18.
Genes Genomics ; 45(7): 887-899, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37133721

ABSTRACT

BACKGROUND: The variable number of tandem repeat (VNTR) analyses are methods based on the detection of repeated sequences within the human genome. In order to perform DNA typing at the personal laboratory, it is necessary to improve the VNTR analysis. OBJECTIVE: The VNTR markers were difficult to popularize because PCR amplification was difficult due to its GC-rich and long nucleotide sequence. The aim of this study was to select the multiple VNTR markers that could only be identified by PCR amplification and electrophoresis. METHODS: We genotyped each of the 15 VNTR markers using genomic DNA from 260 unrelated individuals by PCR amplification. Differences in the fragment length of PCR products are visualized by agarose gel electrophoresis. To confirm their usefulness as a DNA fingerprint these 15 markers were simultaneously analyzed with the DNA of 213 individuals and verified the statistical significance. In addition, to investigate the usefulness of each of the 15 VNTR markers as paternity markers, Mendelian segregation by meiotic division within a family consisting of two or three generations was confirmed. RESULTS: Fifteen VNTR loci selected in this study could be easily amplified by PCR and analyzed by electrophoresis, and were newly named DTM1 ~ 15. The number of total alleles in each VNTR showed from 4 to 16, and 100 to 1600 bp in length, and their heterozygosity ranged from 0.2341 to 0.7915. In simultaneous analysis of 15 markers from 213 DNAs, the probability of chance appearing the same genotype in different individuals was less than 4.09E-12, indicating its usefulness as a DNA fingerprint. These loci were transmitted through meiosis by Mendelian inheritance in families. CONCLUSION: Fifteen VNTR markers have been found to be useful as DNA fingerprints for personal identification and kinship analysis that can be used at the personal laboratory level.


Subject(s)
DNA Fingerprinting , Minisatellite Repeats , Humans , DNA Fingerprinting/methods , Minisatellite Repeats/genetics , Polymerase Chain Reaction , Paternity , DNA
19.
Genome Res ; 33(4): 511-524, 2023 04.
Article in English | MEDLINE | ID: mdl-37037626

ABSTRACT

Understanding the impact of DNA variation on human traits is a fundamental question in human genetics. Variable number tandem repeats (VNTRs) make up ∼3% of the human genome but are often excluded from association analysis owing to poor read mappability or divergent repeat content. Although methods exist to estimate VNTR length from short-read data, it is known that VNTRs vary in both length and repeat (motif) composition. Here, we use a repeat-pangenome graph (RPGG) constructed on 35 haplotype-resolved assemblies to detect variation in both VNTR length and repeat composition. We align population-scale data from the Genotype-Tissue Expression (GTEx) Consortium to examine how variations in sequence composition may be linked to expression, including cases independent of overall VNTR length. We find that 9422 out of 39,125 VNTRs are associated with nearby gene expression through motif variations, of which only 23.4% are accessible from length. Fine-mapping identifies 174 genes to be likely driven by variation in certain VNTR motifs and not overall length. We highlight two genes, CACNA1C and RNF213, that have expression associated with motif variation, showing the utility of RPGG analysis as a new approach for trait association in multiallelic and highly variable loci.


Subject(s)
Adenosine Triphosphatases , Minisatellite Repeats , Humans , Minisatellite Repeats/genetics , Phenotype , Haplotypes , Gene Expression , Adenosine Triphosphatases/genetics , Ubiquitin-Protein Ligases/genetics
20.
PLoS One ; 18(3): e0283684, 2023.
Article in English | MEDLINE | ID: mdl-36996016

ABSTRACT

Enterohemorrhagic Escherichia coli O157 (O157) strains can be subdivided into clades based on their single-nucleotide polymorphisms, but such analysis using conventional methods requires intense effort by laboratories. Although multi-locus variable-number tandem repeat analysis (MLVA), which can be performed with low laboratory burden, has been used as a molecular epidemiological tool, it has not been evaluated whether MLVA can be used the clade subdivision of O157 strains like it can for that of other pathogenic bacteria. This study aimed to establish a method for subdividing O157 strains into clades using MLVA data. The standardized index of association, ISA, for O157 strains isolated in Chiba prefecture, Japan (Chiba isolates) revealed the presence of unique tandem repeat patterns in each major clade (clades 2, 3, 7, 8, and 12). A likelihood database of tandem repeats for these clades was then constructed using the Chiba isolates, and a formula for maximum a posteriori (MAP) estimation was constructed. The ratio of the number of O157 strains putatively subdivided into a clade by MAP estimation from MLVA data relative to the number of O157 strains subdivided using single-nucleotide polymorphism analysis (designated as the concordance ratio [CR]) was calculated using the Chiba isolates and O157 strains isolated in Yamagata prefecture (Yamagata isolates). The CRs for the major Chiba and Yamagata isolate clades, other than clade 2, were 89%-100%. Although the CR for clade 2 Chiba isolates was >95%, that of the Yamagata isolates was only 78.9%. However, these clade 2 CRs were not significantly different from one another, indicating that clade 2 strains can be subdivided correctly by MAP estimation. In conclusion, this study expands the utility of MLVA, previously applied predominantly for molecular epidemiological analysis, into a low-laboratory-burden tool for subdividing O157 strains into phylogenetic groups.


Subject(s)
Enterohemorrhagic Escherichia coli , Escherichia coli Infections , Escherichia coli O157 , Humans , Enterohemorrhagic Escherichia coli/genetics , Phylogeny , Escherichia coli Infections/microbiology , Minisatellite Repeats/genetics , Tandem Repeat Sequences
SELECTION OF CITATIONS
SEARCH DETAIL