Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 262
Filter
1.
Physiol Genomics ; 56(8): 555-566, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38881427

ABSTRACT

Thirteen-lined ground squirrels (TLGSs) are obligate hibernators that cycle between torpor (low metabolic rate and body temperature) and interbout euthermia (IBE; typical euthermic body temperature and metabolism) from late autumn to spring. Many physiological changes occur throughout hibernation, including a reduction in liver mitochondrial metabolism during torpor, which is reversed during arousal to interbout euthermia. Nuclear-encoded microRNA (miRNA, small posttranscriptional regulator molecules) differ in abundance throughout TLGS hibernation and have been shown to regulate mitochondrial gene expression in mammalian cell culture (where they are referred to as mitomiRs). This study characterized differences in mitomiR profiles from TLGS liver mitochondria isolated during summer, torpor, and IBE, and predicted their mitochondrial targets. Using small RNA sequencing, differentially abundant mitomiRs were identified between hibernation states, and using quantitative PCR analysis, we quantified the expression of predicted mitochondrial mRNA targets. Most differences in mitomiR abundances were seasonal (i.e., between summer and winter) with only one mitomiR differentially abundant between IBE and torpor. Multiple factor analysis (MFA) revealed three clusters divided by hibernation states, where clustering was predominantly driven by mitomiR abundances. Nine of these differentially abundant mitomiRs had predicted mitochondrial RNA targets, including subunits of electron transfer system complexes I and IV, 12S rRNA, and two tRNAs. Overall, mitomiRs were predicted to suppress the expression of their mitochondrial targets and may have some involvement in regulating protein translation in mitochondria. This study found differences in mitomiR abundances between seasons and hibernation states of TLGS and suggests potential mechanisms for regulating the mitochondrial electron transfer system.NEW & NOTEWORTHY During the hibernation season, thirteen-lined ground squirrels periodically increase metabolism remarkably between torpor and interbout euthermia (IBE). This process involves rapid reactivation of mitochondrial respiration. We predicted that mitochondrial microRNA (mitomiRs) might be altered during this response. We found that the abundance of 38 liver mitomiRs differs based on hibernation state (summer, IBE, and torpor). Small RNA sequencing identified mitomiR profiles, including some mitomiRs that are predicted to bind to mitochondrial RNAs.


Subject(s)
Hibernation , MicroRNAs , Sciuridae , Animals , Sciuridae/genetics , Hibernation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Seasons , Torpor/genetics , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria, Liver/metabolism , Mitochondria, Liver/genetics
2.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928146

ABSTRACT

Mitochondrial quality control is essential in mitochondrial function. To examine the importance of Parkin-dependent mechanisms in mitochondrial quality control, we assessed the impact of modulating Parkin on proteome flux and mitochondrial function in a context of reduced mtDNA fidelity. To accomplish this, we crossed either the Parkin knockout mouse or ParkinW402A knock-in mouse lines to the Polg mitochondrial mutator line to generate homozygous double mutants. In vivo longitudinal isotopic metabolic labeling was followed by isolation of liver mitochondria and synaptic terminals from the brain, which are rich in mitochondria. Mass spectrometry and bioenergetics analysis were assessed. We demonstrate that slower mitochondrial protein turnover is associated with loss of mtDNA fidelity in liver mitochondria but not synaptic terminals, and bioenergetic function in both tissues is impaired. Pathway analysis revealed loss of mtDNA fidelity is associated with disturbances of key metabolic pathways, consistent with its association with metabolic disorders and neurodegeneration. Furthermore, we find that loss of Parkin leads to exacerbation of Polg-driven proteomic consequences, though it may be bioenergetically protective in tissues exhibiting rapid mitochondrial turnover. Finally, we provide evidence that, surprisingly, dis-autoinhibition of Parkin (ParkinW402A) functionally resembles Parkin knockout and fails to rescue deleterious Polg-driven effects. Our study accomplishes three main outcomes: (1) it supports recent studies suggesting that Parkin dependence is low in response to an increased mtDNA mutational load, (2) it provides evidence of a potential protective role of Parkin insufficiency, and (3) it draws into question the therapeutic attractiveness of enhancing Parkin function.


Subject(s)
DNA Polymerase gamma , DNA, Mitochondrial , Mice, Knockout , Mutation , Ubiquitin-Protein Ligases , Animals , DNA Polymerase gamma/genetics , DNA Polymerase gamma/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Mice , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Proteomics/methods , Proteome/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria, Liver/metabolism , Mitochondria, Liver/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics
3.
PLoS One ; 17(7): e0271606, 2022.
Article in English | MEDLINE | ID: mdl-35834573

ABSTRACT

AIM: Associating Liver Partition and Portal vein ligation for Staged hepatectomy (ALPPS) is a modification of two-stage hepatectomy profitable for patients with inoperable hepatic tumors by standard techniques. Unfortunately, initially poor postoperative outcome was associated with ALPPS, in which mitochondrial dysfunction played an essential role. Inhibition of cyclophilins has been already proposed to be efficient as a mitochondrial therapy in liver diseases. To investigate the effect of Cyclophilin D (CypD) depletion on mitochondrial function, biogenesis and liver regeneration following ALPPS a CypD knockout (KO) mice model was created. METHODS: Male wild type (WT) (n = 30) and CypD KO (n = 30) mice underwent ALPPS procedure. Animals were terminated pre-operatively and 24, 48, 72 or 168 h after the operation. Mitochondrial functional studies and proteomic analysis were performed. Regeneration rate and mitotic activity were assessed. RESULTS: The CypD KO group displayed improved mitochondrial function, as both ATP production (P < 0.001) and oxygen consumption (P < 0.05) were increased compared to the WT group. The level of mitochondrial biogenesis coordinator peroxisome proliferator-activated receptor γ co-activator 1-α (PGC1-α) was also elevated in the CypD KO group (P < 0.001), which resulted in the induction of the mitochondrial oxidative phosphorylation system. Liver growth increased in the CypD KO group compared to the WT group (P < 0.001). CONCLUSIONS: Our study demonstrates the beneficial effect of CypD depletion on the mitochondrial vulnerability following ALPPS. Based on our results we propose that CypD inhibition should be further investigated as a possible mitochondrial therapy following ALPPS.


Subject(s)
Hepatectomy , Liver Neoplasms , Liver Regeneration , Mitochondria, Liver , Peptidyl-Prolyl Isomerase F , Animals , Peptidyl-Prolyl Isomerase F/genetics , Cyclophilins/genetics , Hepatectomy/methods , Ligation/methods , Liver/pathology , Liver/surgery , Liver Neoplasms/pathology , Liver Neoplasms/surgery , Liver Regeneration/genetics , Liver Regeneration/physiology , Male , Mice , Mitochondria, Liver/genetics , Mitochondria, Liver/metabolism , Portal Vein/surgery , Proteomics
4.
FASEB J ; 36(1): e22091, 2022 01.
Article in English | MEDLINE | ID: mdl-34919756

ABSTRACT

Hepatoencephalopathy due to combined oxidative phosphorylation deficiency type 1 (COXPD1) is a recessive mitochondrial translation disorder caused by mutations in GFM1, a nuclear gene encoding mitochondrial elongation factor G1 (EFG1). Patients with COXPD1 typically present hepatoencephalopathy early after birth with rapid disease progression, and usually die within the first few weeks or years of life. We have generated two different mouse models: a Gfm1 knock-in (KI) harboring the p.R671C missense mutation, found in at least 10 patients who survived more than 1 year, and a Gfm1 knock-out (KO) model. Homozygous KO mice (Gfm1-/- ) were embryonically lethal, whereas homozygous KI (Gfm1R671C/R671C ) mice were viable and showed normal growth. R671C mutation in Gfm1 caused drastic reductions in the mitochondrial EFG1 protein content in different organs. Six- to eight-week-old Gfm1R671C/R671C mice showed partial reductions of in organello mitochondrial translation and respiratory complex IV enzyme activity in the liver. Compound heterozygous Gfm1R671C/- showed a more pronounced decrease of EFG1 protein in liver and brain mitochondria, as compared with Gfm1R671C/R671C mice. At 8 weeks of age, their mitochondrial translation rates were significantly reduced in both tissues. Additionally, Gfm1R671C/- mice showed combined oxidative phosphorylation deficiency (reduced complex I and IV enzyme activities in liver and brain), and blue native polyacrylamide gel electrophoresis analysis revealed lower amounts of both affected complexes. We conclude that the compound heterozygous Gfm1R671C/- mouse presents a clear dysfunctional molecular phenotype, showing impaired mitochondrial translation and combined respiratory chain dysfunction, making it a suitable animal model for the study of COXPD1.


Subject(s)
Hepatic Encephalopathy/metabolism , Metabolism, Inborn Errors/metabolism , Mitochondria, Liver/metabolism , Mitochondrial Proteins/metabolism , Mutation, Missense , Oxidative Phosphorylation , Peptide Elongation Factor G/metabolism , Protein Biosynthesis , Amino Acid Substitution , Animals , Disease Models, Animal , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Hepatic Encephalopathy/genetics , Metabolism, Inborn Errors/genetics , Mice , Mice, Knockout , Mitochondria, Liver/genetics , Mitochondrial Proteins/genetics , Peptide Elongation Factor G/genetics
5.
Biochim Biophys Acta Mol Basis Dis ; 1868(1): 166298, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34751152

ABSTRACT

In the diagnostic work-up of a newborn infant with a metabolic crisis, lethal multiorgan failure on day six of life, and increased excretion of 3-methylglutaconic acid, we found using whole genome sequencing a homozygous SERAC1 mutation indicating MEGDHEL syndrome (3-methylglutaconic aciduria with deafness-dystonia, hepatopathy, encephalopathy, and Leigh-like syndrome). The SERAC1 protein is located at the contact site between mitochondria and the endoplasmic reticulum (ER) and is crucial for cholesterol trafficking. Our aim was to investigate the effect of the homozygous truncating mutation on mitochondrial structure and function. In the patient fibroblasts, no SERAC1 protein was detected, the mitochondrial network was severely fragmented, and the cristae morphology was altered. Filipin staining showed uneven localization of unesterified cholesterol. The calcium buffer function between cytoplasm and mitochondria was deficient. In liver mitochondria, complexes I, III, and IV were clearly decreased. In transfected COS-1 cells the mutant protein with the a 45-amino acid C-terminal truncation was distributed throughout the cell, whereas wild-type SERAC1 partially colocalized with the mitochondrial marker MT-CO1. The structural and functional mitochondrial abnormalities, caused by the loss of SERAC1, suggest that the crucial disease mechanism is disrupted interplay between the ER and mitochondria leading to decreased influx of calcium to mitochondria and secondary respiratory chain deficiency.


Subject(s)
Carboxylic Ester Hydrolases/genetics , Metabolism, Inborn Errors/genetics , Mitochondria, Liver/genetics , Mitochondrial Diseases/genetics , Calcium/metabolism , Cholesterol/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Female , Glutarates/metabolism , Humans , Infant, Newborn , Male , Metabolism, Inborn Errors/metabolism , Metabolism, Inborn Errors/pathology , Mitochondria, Liver/metabolism , Mitochondria, Liver/pathology , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Whole Genome Sequencing
6.
Signal Transduct Target Ther ; 6(1): 401, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34848680

ABSTRACT

Met tyrosine kinase, a receptor for a hepatocyte growth factor (HGF), plays a critical role in tumor growth, metastasis, and drug resistance. Mitochondria are highly dynamic and undergo fission and fusion to maintain a functional mitochondrial network. Dysregulated mitochondrial dynamics are responsible for the progression and metastasis of many cancers. Here, using structured illumination microscopy (SIM) and high spatial and temporal resolution live cell imaging, we identified mitochondrial trafficking of receptor tyrosine kinase Met. The contacts between activated Met kinase and mitochondria formed dramatically, and an intact HGF/Met axis was necessary for dysregulated mitochondrial fission and cancer cell movements. Mechanically, we found that Met directly phosphorylated outer mitochondrial membrane protein Fis1 at Tyr38 (Fis1 pY38). Fis1 pY38 promoted mitochondrial fission by recruiting the mitochondrial fission GTPase dynamin-related protein-1 (Drp1) to mitochondria. Fragmented mitochondria fueled actin filament remodeling and lamellipodia or invadopodia formation to facilitate cell metastasis in hepatocellular carcinoma (HCC) cells both in vitro and in vivo. These findings reveal a novel and noncanonical pathway of Met receptor tyrosine kinase in the regulation of mitochondrial activities, which may provide a therapeutic target for metastatic HCC.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Membrane Proteins/metabolism , Mitochondria, Liver/metabolism , Mitochondrial Dynamics , Mitochondrial Proteins/metabolism , Proto-Oncogene Proteins c-met/metabolism , Carcinoma, Hepatocellular/genetics , HeLa Cells , Humans , Liver Neoplasms/genetics , Membrane Proteins/genetics , Mitochondria, Liver/genetics , Mitochondrial Proteins/genetics , Phosphorylation , Proto-Oncogene Proteins c-met/genetics
7.
J Biol Chem ; 297(6): 101388, 2021 12.
Article in English | MEDLINE | ID: mdl-34762911

ABSTRACT

Nicotinamide phosphoribosyltransferase (NAMPT) converts nicotinamide to NAD+. As low hepatic NAD+ levels have been linked to the development of nonalcoholic fatty liver disease, we hypothesized that ablation of hepatic Nampt would affect susceptibility to liver injury in response to diet-induced metabolic stress. Following 3 weeks on a low-methionine and choline-free 60% high-fat diet, hepatocyte-specific Nampt knockout (HNKO) mice accumulated less triglyceride than WT littermates but had increased histological scores for liver inflammation, necrosis, and fibrosis. Surprisingly, liver injury was also observed in HNKO mice on the purified control diet. This HNKO phenotype was associated with decreased abundance of mitochondrial proteins, especially proteins involved in oxidoreductase activity. High-resolution respirometry revealed lower respiratory capacity in purified control diet-fed HNKO liver. In addition, fibrotic area in HNKO liver sections correlated negatively with hepatic NAD+, and liver injury was prevented by supplementation with NAD+ precursors nicotinamide riboside and nicotinic acid. MS-based proteomic analysis revealed that nicotinamide riboside supplementation rescued hepatic levels of oxidoreductase and OXPHOS proteins. Finally, single-nucleus RNA-Seq showed that transcriptional changes in the HNKO liver mainly occurred in hepatocytes, and changes in the hepatocyte transcriptome were associated with liver necrosis. In conclusion, HNKO livers have reduced respiratory capacity, decreased abundance of mitochondrial proteins, and are susceptible to fibrosis because of low NAD+ levels. Our data suggest a critical threshold level of hepatic NAD+ that determines the predisposition to liver injury and supports that NAD+ precursor supplementation can prevent liver injury and nonalcoholic fatty liver disease progression.


Subject(s)
Hepatocytes/metabolism , Mitochondria, Liver/metabolism , NAD/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Cytokines/deficiency , Cytokines/metabolism , Mice , Mice, Knockout , Mitochondria, Liver/genetics , NAD/genetics , Nicotinamide Phosphoribosyltransferase/deficiency , Nicotinamide Phosphoribosyltransferase/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Oxidative Phosphorylation , Phenotype
8.
Genes (Basel) ; 12(9)2021 09 18.
Article in English | MEDLINE | ID: mdl-34573421

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the leading liver chronic disease featuring hepatic steatosis. Mitochondrial ß-oxidation participates in the derangement of lipid metabolism at the basis of NAFLD, and mitochondrial oxidative stress contributes to the onset of the disease. We evaluated the presence and effects of mitochondrial oxidative stress in the liver from rats fed a high-fat plus fructose (HF-F) diet inducing NAFLD. Supplementation with dehydroepiandrosterone (DHEA), a multitarget antioxidant, was tested for efficacy in delaying NAFLD. A marked mitochondrial oxidative stress was originated by all diets, as demonstrated by the decrease in Superoxide Dismutase 2 (SOD2) and Peroxiredoxin III (PrxIII) amounts. All diets induced a decrease in mitochondrial DNA content and an increase in its oxidative damage. The diets negatively affected mitochondrial biogenesis as shown by decreased peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α), mitochondrial transcription factor A (TFAM), and the COX-IV subunit from the cytochrome c oxidase complex. The reduced amounts of Beclin-1 and lipidated LC3 II form of the microtubule-associated protein 1 light chain 3 (LC3) unveiled the diet-related autophagy's decrease. The DHEA supplementation did not prevent the diet-induced changes. These results demonstrate the relevance of mitochondrial oxidative stress and the sequential dysfunction of the organelles in an obesogenic diet animal model of NAFLD.


Subject(s)
Dehydroepiandrosterone/pharmacology , Mitochondria, Liver/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/prevention & control , Animals , Antioxidants/pharmacology , Autophagy/drug effects , Autophagy/physiology , DNA, Mitochondrial , Diet, High-Fat/adverse effects , Disease Models, Animal , Male , Mitochondria, Liver/drug effects , Mitochondria, Liver/genetics , Non-alcoholic Fatty Liver Disease/etiology , Oxidative Stress , Peroxiredoxin III/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Rats, Wistar , Superoxide Dismutase/metabolism , Transcription Factors/metabolism
9.
Cells ; 10(8)2021 07 23.
Article in English | MEDLINE | ID: mdl-34440632

ABSTRACT

Ischemia/reperfusion (I/R) injury unavoidably occurs during hepatic resection and transplantation. Aged livers poorly tolerate I/R during surgical treatment. Although livers have a powerful endogenous inhibitor of calpains, calpastatin (CAST), I/R activates calpains, leading to impaired autophagy, mitochondrial dysfunction, and hepatocyte death. It is unknown how I/R in aged livers affects CAST. Human and mouse liver biopsies at different ages were collected during in vivo I/R. Hepatocytes were isolated from 3-month- (young) and 26-month-old (aged) mice, and challenged with short in vitro simulated I/R. Cell death, protein expression, autophagy, and mitochondrial permeability transition (MPT) between the two age groups were compared. Adenoviral vector was used to overexpress CAST. Significant cell death was observed only in reperfused aged hepatocytes. Before the commencement of ischemia, CAST expression in aged human and mouse livers and mouse hepatocytes was markedly greater than that in young counterparts. However, reperfusion substantially decreased CAST in aged human and mouse livers. In hepatocytes, reperfusion rapidly depleted aged cells of CAST, cleaved autophagy-related protein 5 (ATG5), and induced defective autophagy and MPT onset, all of which were blocked by CAST overexpression. Furthermore, mitochondrial morphology was shifted toward an elongated shape with CAST overexpression. In conclusion, CAST in aged livers is intrinsically short-lived and lost after short I/R. CAST depletion contributes to age-dependent liver injury after I/R.


Subject(s)
Calcium-Binding Proteins/metabolism , Hepatocytes/metabolism , Liver Diseases/metabolism , Liver/metabolism , Reperfusion Injury/metabolism , Age Factors , Animals , Autophagy , Autophagy-Related Protein 5/metabolism , Calcium-Binding Proteins/genetics , Calpain/metabolism , Cell Death , Cells, Cultured , Disease Models, Animal , Gene Expression Regulation , Hepatocytes/pathology , Humans , Liver/pathology , Liver Diseases/genetics , Liver Diseases/pathology , Male , Mice, Inbred C57BL , Mitochondria, Liver/genetics , Mitochondria, Liver/metabolism , Mitochondria, Liver/pathology , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Signal Transduction , Time Factors
10.
Mitochondrion ; 59: 246-254, 2021 07.
Article in English | MEDLINE | ID: mdl-34144205

ABSTRACT

Dapagliflozin (DAPA), a selective inhibitor of sodium/glucose cotransporter SGLT2, is currently used as a hypoglycemic agent in the treatment of diabetes mellitus. In this work, we have assessed the effect of DAPA treatment (1 mg/kg/day) on the ultrastructure and functions of the liver mitochondria of C57BL/6NCrl mice with type 2 diabetes mellitus (T2DM) induced by a high-fat diet combined with low-dose streptozotocin injections. An electron microscopy study showed that DAPA prevented the mitochondrial swelling and normalized the average mitochondrial size in hepatocytes of diabetic animals. The treatment with DAPA reversed the decline in the mtDNA copy number in the liver of diabetic mice. DAPA-treated T2DM mice showed increased expression of the Ppargc1a, Mfn2 and Drp1 in the liver tissue. The treatment of diabetic animals with DAPA normalized the mitochondrial respiratory control ratio, significantly decreased the level of lipid peroxidation products in liver mitochondria, and decreased their resistance to the opening of the mitochondrial permeability transition pore. At the same time, DAPA had no effects on the studied parameters of control animals. The paper discusses the possible mechanisms of the effect of dapagliflozin on mitochondrial dysfunction in the liver of diabetic animals.


Subject(s)
Benzhydryl Compounds/administration & dosage , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Diet, High-Fat/adverse effects , Glucosides/administration & dosage , Mitochondria, Liver/genetics , Obesity/complications , Animals , Benzhydryl Compounds/pharmacology , DNA, Mitochondrial/drug effects , DNA, Mitochondrial/genetics , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/metabolism , Dynamins/genetics , GTP Phosphohydrolases/genetics , Gene Dosage/drug effects , Glucosides/pharmacology , Lipid Peroxidation/drug effects , Male , Mice , Mice, Inbred C57BL , Mitochondria, Liver/drug effects , Obesity/chemically induced , Obesity/metabolism , Oxidative Phosphorylation/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Random Allocation , Sodium-Glucose Transporter 2 Inhibitors , Streptozocin
11.
Mol Cell Endocrinol ; 530: 111280, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33862186

ABSTRACT

The elevated thyroid-stimulating hormone (TSH) levels contribute to the abnormal expression/activity of several key hepatic lipid metabolism enzymes. Although miRNAs have been shown to play key roles in hepatic lipid metabolism and are found in isolated mitochondria, very little is known about the pathological and physiological significance of their mitochondrial distributions in regulating liver lipid metabolism. Here, we found that TSH significantly reduced the distribution of some miRNAs in mitochondria of hepatocytes, especially miR-449a, miR-449b-5p, and miR-5194. These three miRNAs inhibited their target genes PGC1B, ABCD1, ADIPOR1 and the downstream molecule PPARA. These effects synergistically suppressed fatty acid (FA) ß-oxidation in mitochondria and peroxisomes and decreased the translocation of cytosolic very long chain fatty acids to peroxisomes, which noticeably reduced FA catabolism and promoted triglyceride accumulation in hepatocytes. This study reveals the functional significance of changed miRNA mitochondrial-cytoplasmic distribution in the regulation of hepatic lipid metabolism.


Subject(s)
Fatty Acids/metabolism , Hepatocytes/cytology , MicroRNAs/genetics , Mitochondria, Liver/genetics , Thyrotropin/pharmacology , Cytosol/metabolism , Down-Regulation , HEK293 Cells , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , High-Throughput Nucleotide Sequencing , Humans , Sequence Analysis, RNA
12.
Biochimie ; 186: 28-32, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33857563

ABSTRACT

Glycogen storage disease type IV (GSD IV) is caused by mutations in the glycogen branching enzyme gene (GBE1) that lead to the accumulation of aberrant glycogen in affected tissues, mostly in the liver. To determine whether dysfunctional glycogen metabolism in GSD IV affects other components of cellular bioenergetics, we studied mitochondrial function in heterozygous Gbe1 knockout (Gbe1+/-) mice. Mitochondria isolated from the livers of Gbe1+/- mice showed elevated respiratory complex I activity and increased reactive oxygen species production, particularly by respiratory chain complex III. These observations indicate that GBE1 deficiency leads to broader rearrangements in energy metabolism and that the mechanisms underlying GSD IV pathogenesis may include more than merely mechanical cell damage caused by the presence of glycogen aggregates.


Subject(s)
Electron Transport Complex III/metabolism , Glycogen Debranching Enzyme System/deficiency , Glycogen Storage Disease Type IV/enzymology , Mitochondria, Liver/enzymology , Mitochondrial Proteins/metabolism , Animals , Electron Transport Complex III/genetics , Glycogen Debranching Enzyme System/metabolism , Glycogen Storage Disease Type IV/genetics , Glycogen Storage Disease Type IV/pathology , Mice , Mice, Knockout , Mitochondria, Liver/genetics , Mitochondria, Liver/pathology , Mitochondrial Proteins/genetics
13.
Int. j. morphol ; 39(2): 571-576, abr. 2021. ilus, tab
Article in English | LILACS | ID: biblio-1385373

ABSTRACT

SUMMARY: The world population is going through an obesity epidemic that has severe consequences for the health system. This study focused on studying hepatic mitochondria in obese animals induced by a high-fat (HF) diet and used the model-based stereology in electron micrographs for the quantitative study. Besides, the gene expressions of molecular markers of mitochondrial biogenesis carnitine palmitoyltransferase 1a (Cpt 1α), mitochondrial transcription factor a (Tfam), uncoupling protein 3 (Ucp 3), and nuclear respiratory factor 1 (Nrf 1) were analyzed. The HF diet caused a weight gain of +1820 % comparing the control group (C) with the HF group (from 0.32±0.31 g to 5.5±0.39 g, P<0.001). The HF group showed fat droplets in the hepatocyte cytoplasm (steatosis) and less dense and large mitochondria in transmission electron microscopy. The mitochondria size (cross-section) did not show a significant difference between the groups C and HF. However, the mitochondria numerical density per area was 30 % less, the mitochondrial surface density (outer membrane) was 20 % less, and the mitochondrial volume density was 22 % less in the HF group than the C group. The gene expressions of molecular markers of mitochondrial biogenesis Cpt 1α, Tfam, Ucp 3, and Nrf 1 decreased in the HF group compared to the C group. The quantitative results match perfectly with the molecular ones of mitochondrial biogenesis markers. In the future, it will be crucial to verify if and how these data recover with the reduction of obesity, which would be of significant interest given the current obesity epidemic that affects the world population.


RESUMEN: La población mundial atraviesa una epidemia de obesidad que tiene graves consecuencias para el sistema de salud. Este estudio se centró en el análisis de las mitocondrias hepáticas en animales obesos inducidos por una dieta alta en grasas (HF) y utilizó la estereología basada en modelos en micrografías electrónicas para el estudio cuantitativo. Además, se analizaron las expresiones génicas de los marcadores moleculares de la biogénesis mitocondrial carnitina palmitoiltransferasa 1a (Cpt 1α), factor de transcripción mitocondrial a (Tfam), proteína desacoplante 3 (Ucp 3) y factor respiratorio nuclear 1 (Nrf 1). La dieta HF provocó un aumento de peso de +1820 % comparando el grupo de control (C) con el grupo HF (de 0,32 ± 0,31 g a 5,5 ± 0,39 g, P <0,001). El grupo HF mostró gotas de grasa en el citoplasma de los hepatocitos (esteatosis) y mitocondrias menos densas y grandes en la microscopía electrónica de transmisión. El tamaño de las mitocondrias (sección transversal) no mostró una diferencia significativa entre los grupos C y HF. Sin embargo, la densidad numérica de mitocondrias por área fue 30% menor, la densidad de superficie mitocondrial (membrana externa) fue 20 % menor y la densidad de volumen mitocondrial fue 22 % menor en el grupo HF que en el grupo C. Las expresiones génicas de los marcadores moleculares de la biogénesis mitocondrial Cpt 1α, Tfam, Ucp 3 y Nrf 1 disminuyeron en el grupo HF en comparación con el grupo C. Los resultados cuantitativos coinciden perfectamente con los moleculares de los marcadores de biogénesis mitocondrial. En el futuro, será crucial verificar si estos datos se recuperan y cómo se recuperan con la reducción de la obesidad, lo que sería de gran interés dada la actual epidemia de obesidad que afecta a la población mundial.


Subject(s)
Animals , Male , Mice , Mitochondria, Liver/metabolism , Diet, High-Fat , Liver/metabolism , Obesity/metabolism , Organelle Biogenesis , Mitochondria, Liver/genetics , Mitochondria, Liver/ultrastructure , Weight Gain , Genetic Markers , Real-Time Polymerase Chain Reaction , Mice, Inbred C57BL
14.
Physiol Res ; 70(2): 245-253, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33676386

ABSTRACT

Long non-coding RNAs (lncRNAs) are crucial in chronic liver diseases, but the specific molecular mechanism of lncRNAs in alcoholic fatty liver (AFL) remains unclear. In this study, we investigated the in-depth regulatory mechanism of mTOR affected by AIRN non-protein coding RNA (lncRNA-AIRN) in the development of AFL. LncRNA-AIRN was highly expressed in the liver tissues of AFL C57BL/6mice and oleic acid+alcohol (O+A)treated AML-12cells by using quantitative real-timePCR. RNA pull-down and RNA immunoprecipitation experiments demonstrated that there was an interaction between lncRNA-AIRN and mTOR, and that interference with lncRNA-AIRN could promote the mTOR protein level. Results ofcycloheximide-chase assay showed that the proteinlevel of mTOR was decreased with the treatment time after the knockdown of lncRNA-AIRN. Furthermore, the knockdown of lncRNA-AIRN reducedmTOR protein level by promoting the E3 ubiquitin ligase FBXW7-mediated ubiquitination.The lncRNA-AIRN/mTORaxis was involved in the regulation of the mitophagy of O+A treated hepatocytes, which was confirmed by the cell transfection and the MTT assay.SPSS 16.0 was used for analyzing data. The difference between the two groups was analyzed by performing Student's t-test, and ANOVA was used to analyze the difference when more than two groups. P values < 0.05 were considered to be significantly different.Our findings demonstrated that the knockdown of lncRNA-AIRN influencedmitophagy in AFL by promoting mTOR ubiquitination.


Subject(s)
Fatty Liver, Alcoholic/enzymology , Hepatocytes/enzymology , Liver/enzymology , Mitochondria, Liver/enzymology , Mitophagy , RNA, Long Noncoding/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Cell Line , Disease Models, Animal , Down-Regulation , F-Box-WD Repeat-Containing Protein 7/metabolism , Fatty Liver, Alcoholic/genetics , Fatty Liver, Alcoholic/pathology , Hepatocytes/pathology , Liver/pathology , Male , Mice, Inbred C57BL , Mitochondria, Liver/genetics , Mitochondria, Liver/pathology , RNA, Long Noncoding/genetics , Signal Transduction , Ubiquitination
15.
J Clin Invest ; 131(4)2021 02 15.
Article in English | MEDLINE | ID: mdl-33586673

ABSTRACT

Sepsis is a leading cause of death in critical illness, and its pathophysiology varies depending on preexisting medical conditions. Here we identified nonalcoholic fatty liver disease (NAFLD) as an independent risk factor for sepsis in a large clinical cohort and showed a link between mortality in NAFLD-associated sepsis and hepatic mitochondrial and energetic metabolism dysfunction. Using in vivo and in vitro models of liver lipid overload, we discovered a metabolic coordination between hepatocyte mitochondria and liver macrophages that express triggering receptor expressed on myeloid cells-2 (TREM2). Trem2-deficient macrophages released exosomes that impaired hepatocytic mitochondrial structure and energy supply because of their high content of miR-106b-5p, which blocks Mitofusin 2 (Mfn2). In a mouse model of NAFLD-associated sepsis, TREM2 deficiency accelerated the initial progression of NAFLD and subsequent susceptibility to sepsis. Conversely, overexpression of TREM2 in liver macrophages improved hepatic energy supply and sepsis outcome. This study demonstrates that NAFLD is a risk factor for sepsis, providing a basis for precision treatment, and identifies hepatocyte-macrophage metabolic coordination and TREM2 as potential targets for future clinical trials.


Subject(s)
Cell Communication , Hepatocytes/metabolism , Macrophages/metabolism , Membrane Glycoproteins/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Receptors, Immunologic/metabolism , Sepsis/metabolism , Animals , Energy Metabolism/genetics , Female , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Hepatocytes/pathology , Humans , Macrophages/pathology , Male , Membrane Glycoproteins/genetics , Mice , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Mitochondria, Liver/genetics , Mitochondria, Liver/metabolism , Mitochondria, Liver/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Receptors, Immunologic/genetics , Sepsis/genetics , Sepsis/pathology
16.
Cardiovasc Res ; 117(11): 2340-2353, 2021 09 28.
Article in English | MEDLINE | ID: mdl-33523181

ABSTRACT

AIMS: Proteostasis maintains protein homeostasis and participates in regulating critical cardiometabolic disease risk factors including proprotein convertase subtilisin/kexin type 9 (PCSK9). Endoplasmic reticulum (ER) remodeling through release and incorporation of trafficking vesicles mediates protein secretion and degradation. We hypothesized that ER remodeling that drives mitochondrial fission participates in cardiometabolic proteostasis. METHODS AND RESULTS: We used in vitro and in vivo hepatocyte inhibition of a protein involved in mitochondrial fission, dynamin-related protein 1 (DRP1). Here, we show that DRP1 promotes remodeling of select ER microdomains by tethering vesicles at ER. A DRP1 inhibitor, mitochondrial division inhibitor 1 (mdivi-1) reduced ER localization of a DRP1 receptor, mitochondrial fission factor, suppressing ER remodeling-driven mitochondrial fission, autophagy, and increased mitochondrial calcium buffering and PCSK9 proteasomal degradation. DRP1 inhibition by CRISPR/Cas9 deletion or mdivi-1 alone or in combination with statin incubation in human hepatocytes and hepatocyte-specific Drp1-deficiency in mice reduced PCSK9 secretion (-78.5%). In HepG2 cells, mdivi-1 increased low-density lipoprotein receptor via c-Jun transcription and reduced PCSK9 mRNA levels via suppressed sterol regulatory binding protein-1c. Additionally, mdivi-1 reduced macrophage burden, oxidative stress, and advanced calcified atherosclerotic plaque in aortic roots of diabetic Apoe-deficient mice and inflammatory cytokine production in human macrophages. CONCLUSIONS: We propose a novel tethering function of DRP1 beyond its established fission function, with DRP1-mediated ER remodeling likely contributing to ER constriction of mitochondria that drives mitochondrial fission. We report that DRP1-driven remodeling of select ER micro-domains may critically regulate hepatic proteostasis and identify mdivi-1 as a novel small molecule PCSK9 inhibitor.


Subject(s)
Atherosclerosis/drug therapy , Dynamins/antagonists & inhibitors , Endoplasmic Reticulum/drug effects , Liver/drug effects , Mitochondria, Liver/drug effects , PCSK9 Inhibitors/pharmacology , Proprotein Convertase 9/metabolism , Quinazolinones/pharmacology , Animals , Atherosclerosis/enzymology , Atherosclerosis/genetics , Atherosclerosis/pathology , Disease Models, Animal , Dynamins/genetics , Dynamins/metabolism , Endoplasmic Reticulum/enzymology , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/pathology , Hep G2 Cells , Humans , Liver/enzymology , Liver/pathology , Mice, Knockout, ApoE , Mitochondria, Liver/enzymology , Mitochondria, Liver/genetics , Mitochondria, Liver/pathology , Mitochondrial Dynamics/drug effects , Proprotein Convertase 9/genetics , Proteasome Endopeptidase Complex , Protein Interaction Maps , Proteolysis , Proteostasis , Secretory Pathway
17.
STAR Protoc ; 2(1): 100275, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33511358

ABSTRACT

Targeted regulation of mitochondrial gene expression is challenging due to the lack of a mitochondria-specific delivery system. We have previously developed various stimuli-responsive nanoparticle (NP)-based delivery systems to transport nucleic acids for regulation of target gene expression. This protocol describes the design and preparation of an NP platform for mitochondria-specific gene delivery (mito-NP). We use mito-NP in primary liver fibroblasts that are transplanted into mice. Mito-NP can be used to deliver various nucleic acid therapeutics and to treat mitochondria-regulated diseases. For complete details on the use and execution of this protocol, please refer to Zhao et al. (2020).


Subject(s)
Fibroblasts , Gene Expression Regulation , Gene Transfer Techniques , Liver/metabolism , Mitochondria, Liver , Animals , Fibroblasts/metabolism , Fibroblasts/transplantation , Humans , Mice , Mitochondria, Liver/genetics , Mitochondria, Liver/metabolism
18.
Int J Mol Sci ; 22(3)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498298

ABSTRACT

Several genetic variants in the mitochondrial genome (mtDNA), including ancient polymorphisms, are associated with chronic inflammatory conditions, but investigating the functional consequences of such mtDNA polymorphisms in humans is challenging due to the influence of many other polymorphisms in both mtDNA and the nuclear genome (nDNA). Here, using the conplastic mouse strain B6-mtFVB, we show that in mice, a maternally inherited natural mutation (m.7778G > T) in the mitochondrially encoded gene ATP synthase 8 (mt-Atp8) of complex V impacts on the cellular metabolic profile and effector functions of CD4+ T cells and induces mild changes in oxidative phosphorylation (OXPHOS) complex activities. These changes culminated in significantly lower disease susceptibility in two models of inflammatory skin disease. Our findings provide experimental evidence that a natural variation in mtDNA influences chronic inflammatory conditions through alterations in cellular metabolism and the systemic metabolic profile without causing major dysfunction in the OXPHOS system.


Subject(s)
DNA, Mitochondrial/genetics , Epidermolysis Bullosa Acquisita/genetics , Lymphocytes/metabolism , Polymorphism, Single Nucleotide , Animals , Cells, Cultured , Cytokines/metabolism , Epidermolysis Bullosa Acquisita/metabolism , Mice , Mice, Inbred C57BL , Mitochondria, Liver/genetics , Mitochondria, Liver/metabolism , Mitochondrial Proton-Translocating ATPases/genetics
19.
Arterioscler Thromb Vasc Biol ; 41(2): 734-754, 2021 02.
Article in English | MEDLINE | ID: mdl-33297749

ABSTRACT

OBJECTIVE: NFU1 is a mitochondrial iron-sulfur scaffold protein, involved in iron-sulfur assembly and transfer to complex II and LAS (lipoic acid synthase). Patients with the point mutation NFU1G208C and CRISPR/CAS9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9)-generated rats develop mitochondrial dysfunction leading to pulmonary arterial hypertension. However, the mechanistic understanding of pulmonary vascular proliferation due to a single mutation in NFU1 remains unresolved. Approach and Results: Quantitative proteomics of isolated mitochondria showed the entire phenotypic transformation of NFU1G206C rats with a disturbed mitochondrial proteomic landscape, involving significant changes in the expression of 208 mitochondrial proteins. The NFU1 mutation deranged the expression pattern of electron transport proteins, resulting in a significant decrease in mitochondrial respiration. Reduced reliance on mitochondrial respiration amplified glycolysis in pulmonary artery smooth muscle cell (PASMC) and activated GPD (glycerol-3-phosphate dehydrogenase), linking glycolysis to oxidative phosphorylation and lipid metabolism. Decreased PDH (pyruvate dehydrogenase) activity due to the lipoic acid shortage is compensated by increased fatty acid metabolism and oxidation. PASMC became dependent on extracellular fatty acid sources due to upregulated transporters such as CD36 (cluster of differentiation 36) and CPT (carnitine palmitoyltransferase)-1. Finally, the NFU1 mutation produced a dysregulated antioxidant system in the mitochondria, leading to increased reactive oxygen species levels. PASMC from NFU1 rats showed apoptosis resistance, increased anaplerosis, and attained a highly proliferative phenotype. Attenuation of mitochondrial reactive oxygen species by mitochondrial-targeted antioxidant significantly decreased PASMC proliferation. CONCLUSIONS: The alteration in iron-sulfur metabolism completely transforms the proteomic landscape of the mitochondria, leading toward metabolic plasticity and redistribution of energy sources to the acquisition of a proliferative phenotype by the PASMC.


Subject(s)
Apoptosis , Cell Proliferation , Cellular Reprogramming , Energy Metabolism , Mitochondria, Liver/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Point Mutation , Animals , Cells, Cultured , Fatty Acids/metabolism , Female , Mitochondria, Liver/genetics , Mitochondria, Liver/pathology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Phenotype , Proteome , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Signal Transduction
20.
Aging Cell ; 19(11): e13166, 2020 11.
Article in English | MEDLINE | ID: mdl-33049094

ABSTRACT

Mitochondrial dysfunction is frequently associated with impairment in metabolic homeostasis and insulin action, and is thought to underlie cellular aging. However, it is unclear whether mitochondrial dysfunction is a cause or consequence of insulin resistance in humans. To determine the impact of intrinsic mitochondrial dysfunction on metabolism and insulin action, we performed comprehensive metabolic phenotyping of the polymerase gamma (PolG) D257A "mutator" mouse, a model known to accumulate supraphysiological mitochondrial DNA (mtDNA) point mutations. We utilized the heterozygous PolG mutator mouse (PolG+/mut ) because it accumulates mtDNA point mutations ~ 500-fold > wild-type mice (WT), but fails to develop an overt progeria phenotype, unlike PolGmut/mut animals. To determine whether mtDNA point mutations induce metabolic dysfunction, we examined male PolG+/mut mice at 6 and 12 months of age during normal chow feeding, after 24-hr starvation, and following high-fat diet (HFD) feeding. No marked differences were observed in glucose homeostasis, adiposity, protein/gene markers of metabolism, or oxygen consumption in muscle between WT and PolG+/mut mice during any of the conditions or ages studied. However, proteomic analyses performed on isolated mitochondria from 12-month-old PolG+/mut mouse muscle revealed alterations in the expression of mitochondrial ribosomal proteins, electron transport chain components, and oxidative stress-related factors compared with WT. These findings suggest that mtDNA point mutations at levels observed in mammalian aging are insufficient to disrupt metabolic homeostasis and insulin action in male mice.


Subject(s)
DNA, Mitochondrial/genetics , Mitochondria, Liver/metabolism , Mitochondria, Muscle/metabolism , Point Mutation , Animals , Diet, High-Fat , Disease Models, Animal , Homeostasis , Mice , Mitochondria, Liver/genetics , Mitochondria, Muscle/genetics , Nutrients , Starvation/genetics , Starvation/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL