Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
Physiol Rep ; 12(10): e16056, 2024 May.
Article in English | MEDLINE | ID: mdl-38777811

ABSTRACT

Permeability transition pore (PTP) opening dissipates ion and electron gradients across the internal mitochondrial membrane (IMM), including excess Ca2+ in the mitochondrial matrix. After opening, immediate PTP closure must follow to prevent outer membrane disruption, loss of cytochrome c, and eventual apoptosis. Flickering, defined as the rapid alternative opening/closing of PTP, has been reported in heart, which undergoes frequent, large variations in Ca2+. In contrast, in tissues that undergo depolarization events less often, such as the liver, PTP would not need to be as dynamic and thus these tissues would not be as resistant to stress. To evaluate this idea, it was decided to follow the reversibility of the permeability transition (PT) in isolated murine mitochondria from two different tissues: the very dynamic heart, and the liver, which suffers depolarizations less frequently. It was observed that in heart mitochondria PT remained reversible for longer periods and at higher Ca2+ loads than in liver mitochondria. In all cases, Ca2+ uptake was inhibited by ruthenium red and PT was delayed by Cyclosporine A. Characterization of this phenomenon included measuring the rate of oxygen consumption, organelle swelling and Ca2+ uptake and retention. Results strongly suggest that there are tissue-specific differences in PTP physiology, as it resists many more Ca2+ additions before opening in a highly active organ such as the heart than in an organ that seldom suffers Ca2+ loading, such as the liver.


Subject(s)
Calcium , Mitochondria, Heart , Mitochondria, Liver , Mitochondrial Membrane Transport Proteins , Mitochondrial Permeability Transition Pore , Rats, Wistar , Animals , Mitochondrial Permeability Transition Pore/metabolism , Male , Calcium/metabolism , Mitochondria, Heart/metabolism , Mitochondria, Liver/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Rats , Oxygen Consumption , Liver/metabolism , Mitochondrial Swelling/drug effects , Cyclosporine/pharmacology
2.
Life Sci ; 345: 122567, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38492919

ABSTRACT

The aim was to understand the direct impact of aerobic short-term exercise on lipid metabolism, specifically in regulating the mitochondrial carrier homolog 2 (MTCH2) and how it interferes with lipid metabolism in mesenteric adipose tissue. Swiss mice were divided into three groups: control, sedentary obese, and exercised obese. The obese groups were induced into obesity for fourteen weeks of a high-fat diet, and the trained submitted to seven aerobic exercise sessions. The exercise proved the significant increase of the pPerilipin-1, a hormone-sensitive lipase gene, and modulates lipid metabolism by increasing the expression of Mtch2 and acetyl Co-A carboxylase, perhaps occurring as feedback to regulate lipid metabolism in adipose tissue. In conclusion, we demonstrate, for the first time, how aerobic physical exercise increases Mtch2 transcription in mesenteric adipose tissue. This increase was due to changes in energy demand caused by exercise, confirmed by observing the significant reduction in mesenteric adipose tissue mass in the exercised group. Also, we showed that physical exercise increased the phosphorylative capacity of PLIN1, a protein responsible for the degradation of fatty acids in the lipid droplet, providing acyl and glycerol for cellular metabolism. Although our findings demonstrate evidence of MTCH2 as a protein that regulates lipid homeostasis, scant knowledge exists concerning the signaling of the MTCH2 pathway in regulatingfatty acid metabolism. Therefore, unveiling the means of molecular signaling of MTCH2 demonstrates excellent potential for treating obesity.


Subject(s)
Adipose Tissue , Lipid Metabolism , Mitochondrial Membrane Transport Proteins , Obesity , Physical Conditioning, Animal , Animals , Mice , Adipose Tissue/metabolism , Diet, High-Fat/adverse effects , Lipids , Mice, Obese , Mitochondrial Membrane Transport Proteins/metabolism , Obesity/metabolism , Physical Conditioning, Animal/physiology , Lipid Metabolism/genetics , Lipid Metabolism/physiology
3.
Rev Assoc Med Bras (1992) ; 69(10): e20230547, 2023.
Article in English | MEDLINE | ID: mdl-37820178

ABSTRACT

OBJECTIVE: Childhood epilepsy is a common neurological disorder with a prevalence of 300-600 cases per 100,000 people. It is associated with refractory epilepsies, global developmental delay, and epileptic encephalopathies, causing epileptic syndromes characterized by cognitive and behavioral disorders. METHODS: In this retrospective cohort study, patients with refractory epilepsy and global developmental delay, defined as epileptic encephalopathy, who applied to the Aydin 7Maternity and Children's Hospital Genetic Diagnosis Center and were followed in the pediatric neurology clinic of our hospital, between July 2018 and July 2021, were included. RESULTS: Targeted next-generation sequencing molecular genetics results were reviewed, and 3 ALDH7A1, 1 AARS, 3 CACNA1A, 1 CTNNB1, 1 DCX, 2 DBH, 2 DOCK7, 1 FOLR1, 2 GABRB3, 2 GCH1, 1 VGRIN2B, 1 GUF1, 3 KCNQ2, 2 KCNT1, 1 NECAP1, 1 PCDH19, 1 PNPO, 1 SCN8A, 1 SCN9A, 4 SCN1A, 2 SLC25A22, 1 SLC2A1, 2 SPTAN1, 2 SZT2, 4 TBC1D24, 2 TH, and 1 PCDH19 (X chromosome) mutations were detected in three of the patients using the next-generation sequencing method. CONCLUSION: Although the development of gene panels aids in diagnosis, there are still unidentified disorders in this illness category, which is highly variable in genotype and phenotype. Understanding the genetic etiology is vital for genetic counseling and, maybe, the future development of remedies for the etiology.


Subject(s)
Epilepsy , Child , Humans , Retrospective Studies , Epilepsy/genetics , Genotype , Phenotype , Mutation , High-Throughput Nucleotide Sequencing , Folate Receptor 1/genetics , Mitochondrial Membrane Transport Proteins/genetics , NAV1.7 Voltage-Gated Sodium Channel/genetics , Protocadherins
4.
Arch Insect Biochem Physiol ; 114(1): e22029, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37278151

ABSTRACT

Inorganic polyphosphate (polyP) is a biopolymer composed of phosphoanhydride-linked orthophosphate molecules. PolyP is engaged in a variety of cellular functions, including mitochondrial metabolism. Here, we examined the effects of polyP on electron transport chain enzymes and F1 Fo ATP synthase in tick embryos during embryonic development. The study found that polyPs containing medium and long chains (polyP15 and polyP65 ) enhanced the activity of complex I, complex II, complex III, and F1 Fo ATP synthase, while short polyP chains (polyP3 ) had no effect. The study also examined the activity of exopolyphosphatases (PPX) in various energy-demand situations. PPX activity was stimulated when ADP concentrations are high, characterizing a low-energy context. When complexes I-III and F1 Fo ATP synthase inhibitors were added in energized mitochondria, PPX activity decreased, whereas the mitochondrial uncoupler FCCP had no impact on PPX activity. Additionally, the study investigated the effect of polyP on mitochondrial swelling, finding that polyP causes mitochondrial swelling by increasing calcium effects on the mitochondrial permeability transition pore. The findings presented here to increase our understanding of the function of polyP in mitochondrial metabolism and its relationship to mitochondrial permeability transition pore opening in an arthropod model.


Subject(s)
Mitochondrial Permeability Transition Pore , Ticks , Animals , Mitochondrial Permeability Transition Pore/metabolism , Mitochondrial Permeability Transition Pore/pharmacology , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/pharmacology , Mitochondria/metabolism , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Polyphosphates/pharmacology , Polyphosphates/metabolism , Calcium/metabolism
5.
Biomolecules ; 13(5)2023 04 24.
Article in English | MEDLINE | ID: mdl-37238601

ABSTRACT

Among the adenylate carriers identified in Arabidopsis thaliana, only the AMP/ATP transporter ADNT1 shows increased expression in roots under waterlogging stress conditions. Here, we investigated the impact of a reduced expression of ADNT1 in A. thaliana plants submitted to waterlogging conditions. For this purpose, an adnt1 T-DNA mutant and two ADNT1 antisense lines were evaluated. Following waterlogging, ADNT1 deficiency resulted in a reduced maximum quantum yield of PSII electron transport (significantly for adnt1 and antisense Line 10), indicating a higher impact caused by the stress in the mutants. In addition, ADNT1 deficient lines showed higher levels of AMP in roots under nonstress condition. This result indicates that the downregulation of ADNT1 impacts the levels of adenylates. ADNT1-deficient plants exhibited a differential expression pattern of hypoxia-related genes with an increase in non-fermenting-related-kinase 1 (SnRK1) expression and upregulation of adenylate kinase (ADK) under stress and non-stress conditions. Together, these results indicated that the lower expression of ADNT1 is associated with an early "hypoxic status" due to the perturbation of the adenylate pool caused by reduced AMP import by mitochondria. This perturbation, which is sensed by SnRK1, results in a metabolic reprogramming associated with early induction of the fermentative pathway in ADNT1 deficient plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Mitochondrial Membrane Transport Proteins , Humans , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Hypoxia , Protein Serine-Threonine Kinases/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism
6.
J Bioenerg Biomembr ; 54(4): 203-213, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35902433

ABSTRACT

Propionic acid (PA) predominantly accumulates in tissues and biological fluids of patients affected by propionic acidemia that may manifest chronic renal failure along development. High urinary excretion of maleic acid (MA) has also been described. Considering that the underlying mechanisms of renal dysfunction in this disorder are poorly known, the present work investigated the effects of PA and MA (1-5 mM) on mitochondrial functions and cellular viability in rat kidney and cultured human embryonic kidney (HEK-293) cells. Mitochondrial membrane potential (∆ψm), NAD(P)H content, swelling and ATP production were measured in rat kidney mitochondrial preparations supported by glutamate or glutamate plus malate, in the presence or absence of Ca2+. MTT reduction and propidium iodide (PI) incorporation were also determined in intact renal cells pre-incubated with MA or PA for 24 h. MA decreased Δψm and NAD(P)H content and induced swelling in Ca2+-loaded mitochondria either respiring with glutamate or glutamate plus malate. Noteworthy, these alterations were fully prevented by cyclosporin A plus ADP, suggesting the involvement of mitochondrial permeability transition (mPT). MA also markedly inhibited ATP synthesis in kidney mitochondria using the same substrates, implying a strong bioenergetics impairment. In contrast, PA only caused milder changes in these parameters. Finally, MA decreased MTT reduction and increased PI incorporation in intact HEK-293 cells, indicating a possible association between mitochondrial dysfunction and cell death in an intact cell system. It is therefore presumed that the MA-induced disruption of mitochondrial functions involving mPT pore opening may be involved in the chronic renal failure occurring in propionic acidemia.


Subject(s)
Kidney Failure, Chronic , Propionic Acidemia , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Calcium/metabolism , Cyclosporine/metabolism , Cyclosporine/pharmacology , Glutamic Acid/pharmacology , HEK293 Cells , Humans , Kidney , Kidney Failure, Chronic/metabolism , Malates/metabolism , Malates/pharmacology , Maleates , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , NAD/metabolism , Permeability , Propidium/metabolism , Propidium/pharmacology , Propionic Acidemia/metabolism , Rats , Rats, Wistar
7.
Biochimie ; 200: 99-106, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35643212

ABSTRACT

The emergence of the COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a great threat to global health. ORF9b, an important accessory protein of SARS-CoV-2, plays a critical role in the viral host interaction, targeting TOM70, a member of the mitochondrial translocase of the outer membrane complex. The assembly between ORF9b and TOM70 is implicated in disrupting mitochondrial antiviral signaling, leading to immune evasion. We describe the expression, purification, and characterization of ORF9b alone or coexpressed with the cytosolic domain of human TOM70 in E. coli. ORF9b has 97 residues and was purified as a homodimer with an molecular mass of 22 kDa as determined by SEC-MALS. Circular dichroism experiments showed that Orf9b alone exhibits a random conformation. The ORF9b-TOM70 complex characterized by CD and differential scanning calorimetry showed that the complex is folded and more thermally stable than free TOM70, indicating strong binding. Importantly, protein-protein interaction assays demonstrated that full-length human Hsp90 is capable of binding to free TOM70 but not to the ORF9b-TOM70 complex. To narrow down the nature of this inhibition, the isolated C-terminal domain of Hsp90 was also tested. These results were used to build a model of the mechanism of inhibition, in which ORF9b efficiently targets two sites of interaction between TOM70 and Hsp90. The findings showed that ORF9b complexed with TOM70 prevents the interaction with Hsp90, and this is one major explanation for SARS-CoV-2 evasion of host innate immunity via the inhibition of the interferon activation pathway.


Subject(s)
COVID-19 , SARS-CoV-2 , Carrier Proteins/metabolism , Escherichia coli/metabolism , HSP90 Heat-Shock Proteins/metabolism , Humans , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Pandemics , Protein Binding
8.
Front Immunol ; 13: 861516, 2022.
Article in English | MEDLINE | ID: mdl-35711415

ABSTRACT

The hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is a rare autosomal recessive inborn error of the urea cycle caused by mutations in the SLC25A15 gene. Besides the well-known metabolic complications, patients often present intercurrent infections associated with acute hyperammonemia and metabolic decompensation. However, it is currently unknown whether intercurrent infections are associated with immunological alterations besides the known metabolic imbalances. Herein, we describe the case of a 3-years-old girl affected by the HHH syndrome caused by two novel SLC25A15 gene mutations associated with immune phenotypic and functional alterations. She was admitted to the hospital with an episode of recurrent otitis, somnolence, confusion, and lethargy. Laboratory tests revealed severe hyperammonemia, elevated serum levels of liver transaminases, hemostasis alterations, hyperglutaminemia and strikingly increased orotic aciduria. Noteworthy, serum protein electrophoresis showed a reduction in the gamma globulin fraction. Direct sequencing of the SLC25A15 gene revealed two heterozygous non-conservative substitutions in the exon 5: c.649G>A (p.Gly217Arg) and c.706A>G (p.Arg236Gly). In silico analysis indicated that both mutations significantly impair protein structure and function and are consistent with the patient clinical status confirming the diagnosis of HHH syndrome. In addition, the immune analysis revealed reduced levels of serum IgG and striking phenotypic and functional alterations in the T and B cell immune compartments. Our study has identified two non-previously described mutations in the SLC25A15 gene underlying the HHH syndrome. Moreover, we are reporting for the first time functional and phenotypic immunologic alterations in this rare inborn error of metabolism that would render the patient immunocompromised and might be related to the high frequency of intercurrent infections observed in patients bearing urea cycle disorders. Our results point out the importance of a comprehensive analysis to gain further insights into the underlying pathophysiology of the disease that would allow better patient care and quality of life.


Subject(s)
Hyperammonemia , Urea Cycle Disorders, Inborn , Amino Acid Transport Systems, Basic/genetics , Child, Preschool , Female , Humans , Hyperammonemia/complications , Hyperammonemia/diagnosis , Mitochondrial Membrane Transport Proteins , Ornithine/deficiency , Quality of Life , Urea Cycle Disorders, Inborn/complications , Urea Cycle Disorders, Inborn/diagnosis , Urea Cycle Disorders, Inborn/genetics
9.
J Exp Biol ; 225(1)2022 01 01.
Article in English | MEDLINE | ID: mdl-34904632

ABSTRACT

The interaction between supraphysiological cytosolic Ca2+ levels and mitochondrial redox imbalance mediates the mitochondrial permeability transition (MPT). The MPT is involved in cell death, diseases and aging. This study compared the liver mitochondrial Ca2+ retention capacity and oxygen consumption in the long-lived red-footed tortoise (Chelonoidis carbonaria) with those in the rat as a reference standard. Mitochondrial Ca2+ retention capacity, a quantitative measure of MPT sensitivity, was remarkably higher in tortoises than in rats. This difference was minimized in the presence of the MPT inhibitors ADP and cyclosporine A. However, the Ca2+ retention capacities of tortoise and rat liver mitochondria were similar when both MPT inhibitors were present simultaneously. NADH-linked phosphorylating respiration rates of tortoise liver mitochondria represented only 30% of the maximal electron transport system capacity, indicating a limitation imposed by the phosphorylation system. These results suggested underlying differences in putative MPT structural components [e.g. ATP synthase, adenine nucleotide translocase (ANT) and cyclophilin D] between tortoises and rats. Indeed, in tortoise mitochondria, titrations of inhibitors of the oxidative phosphorylation components revealed a higher limitation of ANT. Furthermore, cyclophilin D activity was approximately 70% lower in tortoises than in rats. Investigation of critical properties of mitochondrial redox control that affect MPT demonstrated that tortoise and rat liver mitochondria exhibited similar rates of H2O2 release and glutathione redox status. Overall, our findings suggest that constraints imposed by ANT and cyclophilin D, putative components or regulators of the MPT pore, are associated with the enhanced resistance to Ca2+-induced MPT in tortoises.


Subject(s)
Turtles , Animals , Calcium/metabolism , Peptidyl-Prolyl Isomerase F , Hydrogen Peroxide , Mitochondria, Liver/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Transmembrane Permeability-Driven Necrosis , Permeability , Rats , Turtles/metabolism
10.
J Bioenerg Biomembr ; 53(5): 525-539, 2021 10.
Article in English | MEDLINE | ID: mdl-34347214

ABSTRACT

S-adenosylmethionine (AdoMet) predominantly accumulates in tissues and biological fluids of patients affected by liver dysmethylating diseases, particularly glycine N-methyltransferase, S-adenosylhomocysteine hydrolase and adenosine kinase deficiencies, as well as in some hepatic mtDNA depletion syndromes, whose pathogenesis of liver dysfunction is still poorly established. Therefore, in the present work, we investigated the effects of S-adenosylmethionine (AdoMet) on mitochondrial functions and redox homeostasis in rat liver. AdoMet decreased mitochondrial membrane potential and Ca2+ retention capacity, and these effects were fully prevented by cyclosporin A and ADP, indicating mitochondrial permeability transition (mPT) induction. It was also verified that the thiol-alkylating agent NEM prevented AdoMet-induced ΔΨm dissipation, implying a role for thiol oxidation in the mPT pore opening. AdoMet also increased ROS production and provoked protein and lipid oxidation. Furthermore, AdoMet reduced GSH levels and the activities of aconitase and α-ketoglutarate dehydrogenase. Free radical scavengers attenuated AdoMet effects on lipid peroxidation and GSH levels, supporting a role of ROS in these effects. It is therefore presumed that disturbance of mitochondrial functions associated with mPT and redox unbalance may represent relevant pathomechanisms of liver damage provoked by AdoMet in disorders in which this metabolite accumulates.


Subject(s)
Liver/pathology , Mitochondrial Membrane Transport Proteins/drug effects , Oxidation-Reduction/drug effects , S-Adenosylmethionine/adverse effects , Animals , Male , Permeability , Rats , Rats, Wistar
11.
mBio ; 12(2)2021 04 06.
Article in English | MEDLINE | ID: mdl-33824204

ABSTRACT

Pyruvate is the final metabolite of glycolysis and can be converted into acetyl coenzyme A (acetyl-CoA) in mitochondria, where it is used as the substrate for the tricarboxylic acid cycle. Pyruvate availability in mitochondria depends on its active transport through the heterocomplex formed by the mitochondrial pyruvate carriers 1 and 2 (MPC1/MPC2). We report here studies on MPC1/MPC2 of Trypanosoma cruzi, the etiologic agent of Chagas disease. Endogenous tagging of T. cruziMPC1 (TcMPC1) and TcMPC2 with 3×c-Myc showed that both encoded proteins colocalize with MitoTracker to the mitochondria of epimastigotes. Individual knockout (KO) of TcMPC1 and TcMPC2 genes using CRISPR/Cas9 was confirmed by PCR and Southern blot analyses. Digitonin-permeabilized TcMPC1-KO and TcMPC2-KO epimastigotes showed reduced O2 consumption rates when pyruvate, but not succinate, was used as the mitochondrial substrate, while α-ketoglutarate increased their O2 consumption rates due to an increase in α-ketoglutarate dehydrogenase activity. Defective mitochondrial pyruvate import resulted in decreased Ca2+ uptake. The inhibitors UK5099 and malonate impaired pyruvate-driven oxygen consumption in permeabilized control cells. Inhibition of succinate dehydrogenase by malonate indicated that pyruvate needs to be converted into succinate to increase respiration. TcMPC1-KO and TcMPC2-KO epimastigotes showed little growth differences in standard or low-glucose culture medium. However, the ability of trypomastigotes to infect tissue culture cells and replicate as intracellular amastigotes was decreased in TcMPC-KOs. Overall, T. cruzi MPC1 and MPC2 are essential for cellular respiration in the presence of pyruvate, invasion of host cells, and replication of amastigotes.IMPORTANCETrypanosoma cruzi is the causative agent of Chagas disease. Pyruvate is the end product of glycolysis, and its transport into the mitochondrion is mediated by the mitochondrial pyruvate carrier (MPC) subunits. Using the CRISPR/Cas9 technique, we generated individual T. cruziMPC1 (TcMPC1) and TcMPC2 knockouts and demonstrated that they are essential for pyruvate-driven respiration. Interestingly, although glycolysis was reported as not an important source of energy for the infective stages, MPC was essential for normal host cell invasion and intracellular replication.


Subject(s)
Anion Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/genetics , Protozoan Proteins/genetics , Pyruvic Acid/metabolism , Trypanosoma cruzi/genetics , Trypanosoma cruzi/metabolism , Anion Transport Proteins/metabolism , Biological Transport , CRISPR-Cas Systems , DNA Replication , Gene Knockout Techniques , Protozoan Proteins/metabolism , Trypanosoma cruzi/pathogenicity
12.
Biomolecules ; 10(9)2020 08 24.
Article in English | MEDLINE | ID: mdl-32846873

ABSTRACT

Although structurally related, mitochondrial carrier family (MCF) proteins catalyze the specific transport of a range of diverse substrates including nucleotides, amino acids, dicarboxylates, tricarboxylates, cofactors, vitamins, phosphate and H+. Despite their name, they do not, however, always localize to the mitochondria, with plasma membrane, peroxisomal, chloroplast and thylakoid and endoplasmic reticulum localizations also being reported. The existence of plastid-specific MCF proteins is suggestive that the evolution of these proteins occurred after the separation of the green lineage. That said, plant-specific MCF proteins are not all plastid-localized, with members also situated at the endoplasmic reticulum and plasma membrane. While by no means yet comprehensive, the in vivo function of a wide range of these transporters is carried out here, and we discuss the employment of genetic variants of the MCF as a means to provide insight into their in vivo function complementary to that obtained from studies following their reconstitution into liposomes.


Subject(s)
Mitochondrial Membrane Transport Proteins/metabolism , Plant Proteins/metabolism , Amino Acid Transport Systems/genetics , Amino Acid Transport Systems/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Coenzyme A/metabolism , Gene Expression Regulation, Plant , Iron/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Uncoupling Proteins/genetics , Mitochondrial Uncoupling Proteins/metabolism , Models, Biological , NAD/metabolism , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Phosphate Transport Proteins/genetics , Phosphate Transport Proteins/metabolism , Plant Proteins/genetics
13.
Elife ; 92020 03 06.
Article in English | MEDLINE | ID: mdl-32142409

ABSTRACT

Mitochondria generate ATP and building blocks for cell growth and regeneration, using pyruvate as the main substrate. Here we introduce PyronicSF, a user-friendly GFP-based sensor of improved dynamic range that enables real-time subcellular quantitation of mitochondrial pyruvate transport, concentration and flux. We report that cultured mouse astrocytes maintain mitochondrial pyruvate in the low micromolar range, below cytosolic pyruvate, which means that the mitochondrial pyruvate carrier MPC is poised to exert ultrasensitive control on the balance between respiration and anaplerosis/gluconeogenesis. The functionality of the sensor in living tissue is demonstrated in the brain of Drosophila melanogaster larvae. Mitochondrial subpopulations are known to coexist within a given cell, which differ in their morphology, mobility, membrane potential, and vicinity to other organelles. The present tool can be used to investigate how mitochondrial diversity relates to metabolism, to study the role of MPC in disease, and to screen for small-molecule MPC modulators.


Subject(s)
Anion Transport Proteins/metabolism , Biosensing Techniques , Drosophila Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Monocarboxylic Acid Transporters/metabolism , Pyruvic Acid/metabolism , Animals , Anion Transport Proteins/genetics , COS Cells , Cell Line , Chlorocebus aethiops , Drosophila Proteins/genetics , Drosophila melanogaster , HEK293 Cells , HeLa Cells , Humans , Larva/metabolism , Mice , Mitochondrial Membrane Transport Proteins/genetics , Models, Biological , Monocarboxylic Acid Transporters/genetics
14.
J Physiol Biochem ; 76(1): 85-98, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31916218

ABSTRACT

The cardioprotective activity of rosuvastatin (R) is yet to be known. The objective of this study was to research whether R perfusion before global ischemia can mitigate myocardial ischemia-reperfusion damage, considering the metabolic condition in which these effects occur, and to contemplate potential mitochondrial benefits. Protein kinase B (Akt)/glycogen synthase kinase-3ß (GSK-3ß) and mitochondrial permeability transition pore (MPTP) are key elements in myocardial injury produced by ischemia-reperfusion. Isolated rat hearts were subjected to 25-min ischemia and 1-h reperfusion in the presence or absence of R, with or without Wortmannin (W), a phosphatidylinositol 3-kinase (PI3K)/Akt inhibitor. Akt and GSK-3ß were measured by Western blot analysis; lactate, glycogen, and G6PDH were determined; and Ca2+-induced MPTP opening was evaluated using a spectrophotometric method. Contractility was assessed by left ventricular developed pressure (LVDP), and rate-pressure product (RPP), peak rate of contraction and peak rate of relaxation (± dP/dt), and left ventricular end-diastolic pressure (LVEDP) were determined. Tissue samples were extracted to evaluate mitochondrial damage by electron microscopy and to assess infarct size. Statistical analysis employed ANOVA (n = 6/per group). Myocardial infarct size was significantly reduced by R, which also improved cardiac function. MPTP opening was delayed to 300 µM CaCl2, while use of W resulted in MPTP opening at 200 µM CaCl2. Electron microscopy showed better mitochondrial preservation with R, which reduced lactic acid production, increased glycogen consumption and G6PDH activity, as well as phosphorylation of Akt and GSK-3ß. R before ischemia is cardioprotective against ischemic and reperfusion damage, activating Akt and regulating GSK-3ß negatively and attenuating the MPTP opening.


Subject(s)
Cardiotonic Agents/therapeutic use , Glycogen Synthase Kinase 3 beta/metabolism , Mitochondria, Heart/drug effects , Myocardial Reperfusion Injury/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Rosuvastatin Calcium/therapeutic use , Animals , Female , Heart/drug effects , In Vitro Techniques , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Myocardial Infarction/pathology , Rats , Rats, Wistar
15.
Circulation ; 140(21): 1720-1733, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31533452

ABSTRACT

BACKGROUND: The mitochondrial calcium uniporter (mtCU) is an ≈700-kD multisubunit channel residing in the inner mitochondrial membrane required for mitochondrial Ca2+ (mCa2+) uptake. Here, we detail the contribution of MCUB, a paralog of the pore-forming subunit MCU, in mtCU regulation and function and for the first time investigate the relevance of MCUB to cardiac physiology. METHODS: We created a stable MCUB knockout cell line (MCUB-/-) using CRISPR-Cas9n technology and generated a cardiac-specific, tamoxifen-inducible MCUB mutant mouse (CAG-CAT-MCUB x MCM; MCUB-Tg) for in vivo assessment of cardiac physiology and response to ischemia/reperfusion injury. Live-cell imaging and high-resolution spectrofluorometery were used to determine intracellular Ca2+ exchange and size-exclusion chromatography; blue native page and immunoprecipitation studies were used to determine the molecular function and impact of MCUB on the high-molecular-weight mtCU complex. RESULTS: Using genetic gain- and loss-of-function approaches, we show that MCUB expression displaces MCU from the functional mtCU complex and thereby decreases the association of mitochondrial calcium uptake 1 and 2 (MICU1/2) to alter channel gating. These molecular changes decrease MICU1/2-dependent cooperative activation of the mtCU, thereby decreasing mCa2+ uptake. Furthermore, we show that MCUB incorporation into the mtCU is a stress-responsive mechanism to limit mCa2+ overload during cardiac injury. Indeed, overexpression of MCUB is sufficient to decrease infarct size after ischemia/reperfusion injury. However, MCUB incorporation into the mtCU does come at a cost; acute decreases in mCa2+ uptake impair mitochondrial energetics and contractile function. CONCLUSIONS: We detail a new regulatory mechanism to modulate mtCU function and mCa2+ uptake. Our results suggest that MCUB-dependent changes in mtCU stoichiometry are a prominent regulatory mechanism to modulate mCa2+ uptake and cellular physiology.


Subject(s)
Calcium Channels/metabolism , Calcium Signaling , Calcium/metabolism , Membrane Proteins/metabolism , Mitochondria, Heart/metabolism , Mitochondrial Proteins/metabolism , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Animals , CRISPR-Cas Systems , Calcium Channels/deficiency , Calcium Channels/genetics , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Disease Models, Animal , Energy Metabolism , Female , Gene Knockout Techniques , HeLa Cells , Humans , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Heart/pathology , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Proteins/deficiency , Mitochondrial Proteins/genetics , Myocardial Contraction , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/pathology , Ventricular Function, Left
16.
Thyroid ; 29(12): 1755-1764, 2019 12.
Article in English | MEDLINE | ID: mdl-31456501

ABSTRACT

Background: Thyroid hormone status in hypothyroidism (HT) downregulates key elements in Ca2+ handling within the heart, reducing contractility, impairing the basal energetic balance, and increasing the risk of cardiovascular disease. Mitochondrial Ca2+ transport is reduced in HT, and tolerance to reperfusion damage has been documented, but the precise mechanism is not well understood. Therefore, we aimed to determine the stoichiometry and activity of the mitochondrial Ca2+ uniporter or uniplex in an HT model and the relevance to the opening of the mitochondrial permeability transition pores (mPTP) during ischemia/reperfusion (I/R) injury. Methods: An HT model was established in Wistar rats by treatment with 6-propylthiouracil for 28 days. Uniplex composition and activity were determined in cardiac mitochondria. Hearts were perfused ex vivo to induce I/R injury, and functional parameters related to contractility and tissue viability were evaluated. Results: The cardiac stoichiometry between two subunits of the uniplex (MICU1/MCU) increased by 25% in animals with HT. The intramitochondrial Ca2+ content was reduced by 40% and was less prone to the mPTP opening. After I/R injury, ischemic contracture and the onset of ventricular fibrillation were delayed in animals with HT, concomitant with a reduction in oxidative damage and mitochondrial dysfunction. Conclusions: Our results suggest that HT is associated with an increase in the cardiac MICU1/MCU ratio, thereby changing the stoichiometry between these subunits to increase the threshold to cytosolic Ca2+ and reduce mitochondrial Ca2+ overload. Our results also demonstrate that this HT model can be used to explore the role of mitochondrial Ca2+ transport in cardiac diseases due to its induced tolerance to cardiac damage.


Subject(s)
Calcium/metabolism , Hypothyroidism/metabolism , Hypothyroidism/physiopathology , Mitochondria, Heart/metabolism , Myocardial Reperfusion Injury/physiopathology , Animals , Antithyroid Agents , Cytosol/metabolism , Hypothyroidism/chemically induced , Male , Mitochondrial Membrane Transport Proteins , Mitochondrial Permeability Transition Pore , Oxidative Stress , Propylthiouracil , Rats , Rats, Wistar , Ventricular Fibrillation/etiology , Ventricular Fibrillation/physiopathology
17.
Cell Physiol Biochem ; 53(3): 465-479, 2019.
Article in English | MEDLINE | ID: mdl-31464387

ABSTRACT

BACKGROUND/AIMS: Cyclophilin D (CypD) mediates the mitochondrial permeability transition pore (mPTP) opening that contributes to mitochondrial dysfunction. CypD is regulated by its acetylation/deacetylation state that depends on Sirtuin-3 (SIRT3) mitochondrial deacetylase. Since obesity and metabolic syndrome decrease SIRT3 activity and expression, we tested the hypothesis that CypD hyperacetylation promotes mitochondrial dysfunction under this pathophysiological state, which is associated with ventricular dysfunction and heart failure. METHODS: Myocardial tissue samples from patients with left ventricular heart failure, with either obesity or normal weight, were processed for the expression of SIRT3 and acetylation profile by Western Blot (WB). In addition, a rat model of obesity and metabolic syndrome induced by 30% (w/v) of sucrose was conducted. The WB analysis was used to determine the levels of mitochondrial expression of SIRT3, Adenine Nucleotide Translocator (ANT), CypD and the acetylation profile, as well as immunoprecipitation to establish the acetylation levels of CypD. Mitochondrial function was assessed by oxygen consumption analysis and maximum Ca2+ retention capacity. Oxidative stress was assessed by aconitase activity, protein carbonyl and thiol groups content. RESULTS: SIRT3 expression in the biopsies of the failing human hearts showed a 46% decrease in the expression levels of obese patients in comparison to the non-obese patients (p=0.0219). Remarkably, body mass index was associated with protein acetylation (0.627; p = 0.035), suggesting that the acetylation profiles of the failing hearts of obese patients are partly mediated by a reduction in SIRT3, which is also associated with higher BNP levels, indicating a more severe ventricular dysfunction (-0.636; p = 0.043). Accordingly, obese rats demonstrated a SIRT3 mitochondrial expression decrease of 22% concomitantly with a hyperacetylated mitochondrial profile, including CypD. Cardiac mitochondria from obese animals were 2.5-fold more prone to mPTP opening than the controls. CONCLUSION: Our results indicate that obesity reduces SIRT3 expression and that CypD hyperacetylation increases mPTP opening, suggesting that the activation of SIRT3 might be a potential target to decrease ventricular dysfunction and slow the progression of heart failure.


Subject(s)
Mitochondria, Heart/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Obesity/metabolism , Sirtuin 3/metabolism , Acetylation , Adult , Aged , Animals , Body Mass Index , Calcium/metabolism , Peptidyl-Prolyl Isomerase F , Cyclophilins/metabolism , Female , Heart Failure/metabolism , Humans , Immunoprecipitation , In Vitro Techniques , Male , Metabolic Syndrome/metabolism , Mice , Mice, Knockout , Middle Aged , Mitochondrial ADP, ATP Translocases/metabolism , Mitochondrial Permeability Transition Pore , Oxygen Consumption/physiology , Rats , Rats, Wistar
18.
Mol Biol Cell ; 30(18): 2358-2366, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31318312

ABSTRACT

Experimentally relocating mitochondrial genes to the nucleus for functional expression (allotopic expression) is a challenging process. The high hydrophobicity of mitochondria-encoded proteins seems to be one of the main factors preventing this allotopic expression. We focused on subunit II of cytochrome c oxidase (Cox2) to study which modifications may enable or improve its allotopic expression in yeast. Cox2 can be imported from the cytosol into mitochondria in the presence of the W56R substitution, which decreases the protein hydrophobicity and allows partial respiratory rescue of a cox2-null strain. We show that the inclusion of a positive charge is more favorable than substitutions that only decrease the hydrophobicity. We also searched for other determinants enabling allotopic expression in yeast by examining the COX2 gene in organisms where it was transferred to the nucleus during evolution. We found that naturally occurring variations at within-membrane residues in the legume Glycine max Cox2 could enable yeast COX2 allotopic expression. We also evidence that directing high doses of allotopically synthesized Cox2 to mitochondria seems to be counterproductive because the subunit aggregates at the mitochondrial surface. Our findings are relevant to the design of allotopic expression strategies and contribute to the understanding of gene retention in organellar genomes.


Subject(s)
Electron Transport Complex IV/genetics , Mitochondrial Membrane Transport Proteins/genetics , Cell Nucleus/metabolism , Cytosol/metabolism , Electron Transport Complex IV/metabolism , Gene Expression Regulation, Fungal/genetics , Genes, Mitochondrial , Membrane Proteins/genetics , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Protein Transport , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
19.
Cancer Res ; 79(13): 3294-3305, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31101765

ABSTRACT

Dysregulation of miRNA expression is associated with multiple diseases, including cancers, in which small RNAs can have either oncogenic or tumor suppressive functions. Here we investigated the potential tumor suppressive function of miR-450a, one of the most significantly downregulated miRNAs in ovarian cancer. RNA-seq analysis of the ovarian cancer cell line A2780 revealed that overexpression of miR-450a suppressed multiple genes involved in the epithelial-to-mesenchymal transition (EMT). Overexpression of miR-450a reduced tumor migration and invasion and increased anoikis in A2780 and SKOV-3 cell lines and reduced tumor growth in an ovarian tumor xenographic model. Combined AGO-PAR-CLIP and RNA-seq analysis identified a panel of potential miR-450a targets, of which many, including TIMMDC1, MT-ND2, ACO2, and ATP5B, regulate energetic metabolism. Following glutamine withdrawal, miR-450a overexpression decreased mitochondrial membrane potential but increased glucose uptake and viability, characteristics of less invasive ovarian cancer cell lines. In summary, we propose that miR-450a acts as a tumor suppressor in ovarian cancer cells by modulating targets associated with glutaminolysis, which leads to decreased production of lipids, amino acids, and nucleic acids, as well as inhibition of signaling pathways associated with EMT. SIGNIFICANCE: miR-450a limits the metastatic potential of ovarian cancer cells by targeting a set of mitochondrial mRNAs to reduce glycolysis and glutaminolysis.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/13/3294/F1.large.jpg.


Subject(s)
Biomarkers, Tumor/metabolism , Energy Metabolism , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Aconitate Hydratase/genetics , Aconitate Hydratase/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Cycle , Cell Movement , Cell Proliferation , Female , Humans , Membrane Potential, Mitochondrial , Mice , Mice, Inbred NOD , Mice, SCID , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , Ovarian Neoplasms/genetics , Prognosis , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
20.
mBio ; 10(3)2019 05 07.
Article in English | MEDLINE | ID: mdl-31064825

ABSTRACT

The mitochondrial Ca2+ uptake in trypanosomatids, which belong to the eukaryotic supergroup Excavata, shares biochemical characteristics with that of animals, which, together with fungi, belong to the supergroup Opisthokonta. However, the composition of the mitochondrial calcium uniporter (MCU) complex in trypanosomatids is quite peculiar, suggesting lineage-specific adaptations. In this work, we used Trypanosoma cruzi to study the role of orthologs for mitochondrial calcium uptake 1 (MICU1) and MICU2 in mitochondrial Ca2+ uptake. T. cruzi MICU1 (TcMICU1) and TcMICU2 have mitochondrial targeting signals, two canonical EF-hand calcium-binding domains, and localize to the mitochondria. Using the CRISPR/Cas9 system (i.e., clustered regularly interspaced short palindromic repeats with Cas9), we generated TcMICU1 and TcMICU2 knockout (-KO) cell lines. Ablation of either TcMICU1 or TcMICU2 showed a significantly reduced mitochondrial Ca2+ uptake in permeabilized epimastigotes without dissipation of the mitochondrial membrane potential or effects on the AMP/ATP ratio or citrate synthase activity. However, none of these proteins had a gatekeeper function at low cytosolic Ca2+ concentrations ([Ca2+]cyt), as occurs with their mammalian orthologs. TcMICU1-KO and TcMICU2-KO epimastigotes had a lower growth rate and impaired oxidative metabolism, while infective trypomastigotes have a reduced capacity to invade host cells and to replicate within them as amastigotes. The findings of this work, which is the first to study the role of MICU1 and MICU2 in organisms evolutionarily distant from animals, suggest that, although these components were probably present in the last eukaryotic common ancestor (LECA), they developed different roles during evolution of different eukaryotic supergroups. The work also provides new insights into the adaptations of trypanosomatids to their particular life styles.IMPORTANCETrypanosoma cruzi is the etiologic agent of Chagas disease and belongs to the early-branching eukaryotic supergroup Excavata. Its mitochondrial calcium uniporter (MCU) subunit shares similarity with the animal ortholog that was important to discover its encoding gene. In animal cells, the MICU1 and MICU2 proteins act as Ca2+ sensors and gatekeepers of the MCU, preventing Ca2+ uptake under resting conditions and favoring it at high cytosolic Ca2+ concentrations ([Ca2+]cyt). Using the CRISPR/Cas9 technique, we generated TcMICU1 and TcMICU2 knockout cell lines and showed that MICU1 and -2 do not act as gatekeepers at low [Ca2+]cyt but are essential for normal growth, host cell invasion, and intracellular replication, revealing lineage-specific adaptations.


Subject(s)
Calcium-Binding Proteins/metabolism , Calcium/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Protozoan Proteins/metabolism , Trypanosoma cruzi/genetics , Adaptation, Physiological , Biological Transport , CRISPR-Cas Systems , Calcium-Binding Proteins/genetics , Cation Transport Proteins , Cytosol/chemistry , Cytosol/metabolism , Gene Knockout Techniques , Humans , Mitochondrial Membrane Transport Proteins/genetics , Protozoan Proteins/genetics , Trypanosoma cruzi/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL