Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.173
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731874

ABSTRACT

The mitochondrial protein IF1 is upregulated in many tumors and acts as a pro-oncogenic protein through its interaction with the ATP synthase and the inhibition of apoptosis. We have recently characterized the molecular nature of the IF1-Oligomycin Sensitivity Conferring Protein (OSCP) subunit interaction; however, it remains to be determined whether this interaction could be targeted for novel anti-cancer therapeutic intervention. We generated mitochondria-targeting peptides to displace IF1 from the OSCP interaction. The use of one selective peptide led to displacement of the inhibitor IF1 from ATP synthase, as shown by immunoprecipitation. NMR spectroscopy analysis, aimed at clarifying whether these peptides were able to directly bind to the OSCP protein, identified a second peptide which showed affinity for the N-terminal region of this subunit overlapping the IF1 binding region. In situ treatment with the membrane-permeable derivatives of these peptides in HeLa cells, that are silenced for the IF1 inhibitor protein, showed significant inhibition in mitochondrial permeability transition and no effects on mitochondrial respiration. These peptides mimic the effects of the IF1 inhibitor protein in cancer HeLa cells and confirm that the IF1-OSCP interaction inhibits apoptosis. A third peptide was identified which counteracts the anti-apoptotic role of IF1, showing that OSCP is a promising target for anti-cancer therapies.


Subject(s)
Mitochondrial Proton-Translocating ATPases , Peptides , Humans , HeLa Cells , Mitochondrial Proton-Translocating ATPases/metabolism , Mitochondrial Proton-Translocating ATPases/antagonists & inhibitors , Peptides/pharmacology , Peptides/chemistry , Peptides/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Apoptosis/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , ATPase Inhibitory Protein , Protein Binding , Mitochondrial Membrane Transport Proteins/metabolism
2.
Food Chem Toxicol ; 189: 114746, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768936

ABSTRACT

Diesel exhaust particle (DEP) exposure induces a variety of toxicological effects through oxidative stress and inflammation responses. This research investigated the mechanisms underlying DEP-induced GC-1spg cells oxidative stress by examining ROS accumulation, antioxidant defense systems activation, mitochondrial dysfunction, and the Nrf2/Keap1/HO-1 pathway response. Subsequently, we further evaluated the ATP levels, ATP5α synthase activity and ATP5α synthase S-sulfhydrated modification in DEP-exposed GC-1 spg cells. The results showed that DEP exposure significantly inhibited cell proliferation and viability, increased intracellular ROS production, decreased MMP, down-regulated antioxidant capacity, activated the Nrf2/Keap1/HO-1 pathway. However, DEP-induced oxidative stress was partially alleviated by GSH and exogenous H2S. In addition, DEP exposure induced ATP depletion and ATP5α synthase inactivity in GC-1 spg cells, accompanied by ATP5α synthase S-sulfhydrated modification. In conclusion, our research showed that DEP may incapacitate mitochondria through oxidative stress injury, leading to GC-1 spg cells oxidative stress. This process may be associated with the reduction of ATP5α1 S-sulfhydrated modification. It provides a new perspective for the research of the mechanism related to male reproductive toxicity due to air pollution.


Subject(s)
Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Oxidative Stress , Particulate Matter , Vehicle Emissions , Oxidative Stress/drug effects , Vehicle Emissions/toxicity , Animals , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Mice , Particulate Matter/toxicity , Mitochondrial Proton-Translocating ATPases/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Cell Line , Mitochondria/drug effects , Mitochondria/metabolism , Cell Survival/drug effects , Adenosine Triphosphate/metabolism , Cell Proliferation/drug effects
3.
Orphanet J Rare Dis ; 19(1): 200, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755691

ABSTRACT

BACKGROUND: MT-ATP6 is a mitochondrial gene which encodes for the intramembrane subunit 6 (or A) of the mitochondrial ATP synthase, also known asl complex V, which is involved in the last step of oxidative phosphorylation to produce cellular ATP through aerobic metabolism. Although classically associated with the NARP syndrome, recent evidence highlights an important role of MT-ATP6 pathogenic variants in complicated adult-onset ataxias. METHODS: We describe two unrelated patients with adult-onset cerebellar ataxia associated with severe optic atrophy and mild cognitive impairment. Whole mitochondrial DNA sequencing was performed in both patients. We employed patients' primary fibroblasts and cytoplasmic hybrids (cybrids), generated from patients-derived cells, to assess the activity of respiratory chain complexes, oxygen consumption rate (OCR), ATP production and mitochondrial membrane potential. RESULTS: In both patients, we identified the same novel m.8777 T > C variant in MT-ATP6 with variable heteroplasmy level in different tissues. We identifed an additional heteroplasmic novel variant in MT-ATP6, m.8879G > T, in the patients with the most severe phenotype. A significant reduction in complex V activity, OCR and ATP production was observed in cybrid clones homoplasmic for the m.8777 T > C variant, while no functional defect was detected in m.8879G > T homoplasmic clones. In addition, fibroblasts with high heteroplasmic levelsof m.8777 T > C variant showed hyperpolarization of mitochondrial membranes. CONCLUSIONS: We describe a novel pathogenic mtDNA variant in MT-ATP6 associated with adult-onset ataxia, reinforcing the value of mtDNA screening within the diagnostic workflow of selected patients with late onset ataxias.


Subject(s)
Mitochondrial Proton-Translocating ATPases , Humans , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Male , Female , Middle Aged , Ataxia/genetics , Ataxia/pathology , Italy , DNA, Mitochondrial/genetics , Adult , Fibroblasts/metabolism , Fibroblasts/pathology
4.
Ecotoxicol Environ Saf ; 276: 116318, 2024 May.
Article in English | MEDLINE | ID: mdl-38626609

ABSTRACT

Perfluorooctane sulfonate (PFOS), an officially listed persistent organic pollutant, is a widely distributed perfluoroalkyl substance. Epidemiological studies have shown that PFOS is intimately linked to the occurrence of insulin resistance (IR). However, the detailed mechanism remains obscure. In previous studies, we found that mitochondrial calcium overload was concerned with hepatic IR induced by PFOS. In this study, we found that PFOS exposure noticeably raised lysosomal calcium in L-02 hepatocytes from 0.5 h. In the PFOS-cultured L-02 cells, inhibiting autophagy alleviated lysosomal calcium overload. Inhibition of mitochondrial calcium uptake aggravated the accumulation of lysosomal calcium, while inhibition of lysosomal calcium outflowing reversed PFOS-induced mitochondrial calcium overload and IR. Transient receptor potential mucolipin 1 (TRPML1), the calcium output channel of lysosomes, interacted with voltage-dependent anion channel 1 (VDAC1), the calcium intake channel of mitochondria, in the PFOS-cultured cells. Moreover, we found that ATP synthase F1 subunit beta (ATP5B) interacted with TRPML1 and VDAC1 in the L-02 cells and the liver of mice under PFOS exposure. Inhibiting ATP5B expression or restraining the ATP5B on the plasma membrane reduced the interplay between TRPML1 and VDAC1, reversed the mitochondrial calcium overload and deteriorated the lysosomal calcium accumulation in the PFOS-cultured cells. Our research unveils the molecular regulation of the calcium crosstalk between lysosomes and mitochondria, and explains PFOS-induced IR in the context of activated autophagy.


Subject(s)
Alkanesulfonic Acids , Autophagy , Calcium , Fluorocarbons , Insulin Resistance , Liver , Lysosomes , Mitochondria , Mitochondrial Proton-Translocating ATPases , Alkanesulfonic Acids/toxicity , Fluorocarbons/toxicity , Animals , Lysosomes/drug effects , Lysosomes/metabolism , Autophagy/drug effects , Calcium/metabolism , Mice , Mitochondrial Proton-Translocating ATPases/metabolism , Liver/drug effects , Liver/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Male , Voltage-Dependent Anion Channel 1/metabolism , Cell Line , Hepatocytes/drug effects , Hepatocytes/metabolism , Environmental Pollutants/toxicity , TRPM Cation Channels/metabolism , Mice, Inbred C57BL
5.
Chem Biodivers ; 21(5): e202301916, 2024 May.
Article in English | MEDLINE | ID: mdl-38511277

ABSTRACT

BACKGROUND: Emodin has been shown to exert anti-inflammatory and cytoprotective effects. Our study aimed to identify a novel anti-inflammatory mechanism of emodin. METHODS: An LPS-induced model of microvascular endothelial cell (HMEC-1) injury was constructed. Cell proliferation was examined using a CCK-8 assay. The effects of emodin on reactive oxygen species (ROS), cell migration, the mitochondrial membrane potential (MMP), and the opening of the mitochondrial permeability transition pore (mPTP) were evaluated. Actin-Tracker Green was used to examine the relationship between cell microfilament reconstruction and ATP5A1 expression. The effects of emodin on the expression of ATP5A1, NALP3, and TNF-α were determined. After treatment with emodin, ATP5A1 and inflammatory factors (TNF-α, IL-1, IL-6, IL-13 and IL-18) were examined by Western blotting. RESULTS: Emodin significantly increased HMEC-1 cell proliferation and migration, inhibited the production of ROS, increased the mitochondrial membrane potential, and blocked the opening of the mPTP. Moreover, emodin could increase ATP5A1 expression, ameliorate cell microfilament remodeling, and decrease the expression of inflammatory factors. In addition, when ATP5A1 was overexpressed, the regulatory effect of emodin on inflammatory factors was not significant. CONCLUSION: Our findings suggest that emodin can protect HMEC-1 cells against inflammatory injury. This process is modulated by the expression of ATP5A1.


Subject(s)
Cell Proliferation , Emodin , Lipopolysaccharides , Up-Regulation , Emodin/pharmacology , Emodin/chemistry , Lipopolysaccharides/pharmacology , Humans , Cell Proliferation/drug effects , Up-Regulation/drug effects , Membrane Potential, Mitochondrial/drug effects , Cell Movement/drug effects , Reactive Oxygen Species/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Cell Line , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
6.
Dev Cell ; 59(8): 1043-1057.e8, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38508182

ABSTRACT

Control of protein stoichiometry is essential for cell function. Mitochondrial oxidative phosphorylation (OXPHOS) presents a complex stoichiometric challenge as the ratio of the electron transport chain (ETC) and ATP synthase must be tightly controlled, and assembly requires coordinated integration of proteins encoded in the nuclear and mitochondrial genome. How correct OXPHOS stoichiometry is achieved is unknown. We identify the Mitochondrial Regulatory hub for respiratory Assembly (MiRA) platform, which synchronizes ETC and ATP synthase biogenesis in yeast. Molecularly, this is achieved by a stop-and-go mechanism: the uncharacterized protein Mra1 stalls complex IV assembly. Two "Go" signals are required for assembly progression: binding of the complex IV assembly factor Rcf2 and Mra1 interaction with an Atp9-translating mitoribosome induce Mra1 degradation, allowing synchronized maturation of complex IV and the ATP synthase. Failure of the stop-and-go mechanism results in cell death. MiRA controls OXPHOS assembly, ensuring correct stoichiometry of protein machineries encoded by two different genomes.


Subject(s)
Mitochondria , Oxidative Phosphorylation , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Mitochondria/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Mitochondrial Proton-Translocating ATPases/genetics , Electron Transport Complex IV/metabolism , Electron Transport Complex IV/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics
7.
Proc Natl Acad Sci U S A ; 121(11): e2314199121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38451940

ABSTRACT

Proton-powered c-ring rotation in mitochondrial ATP synthase is crucial to convert the transmembrane protonmotive force into torque to drive the synthesis of adenosine triphosphate (ATP). Capitalizing on recent cryo-EM structures, we aim at a structural and energetic understanding of how functional directional rotation is achieved. We performed multi-microsecond atomistic simulations to determine the free energy profiles along the c-ring rotation angle before and after the arrival of a new proton. Our results reveal that rotation proceeds by dynamic sliding of the ring over the a-subunit surface, during which interactions with conserved polar residues stabilize distinct intermediates. Ordered water chains line up for a Grotthuss-type proton transfer in one of these intermediates. After proton transfer, a high barrier prevents backward rotation and an overall drop in free energy favors forward rotation, ensuring the directionality of c-ring rotation required for the thermodynamically disfavored ATP synthesis. The essential arginine of the a-subunit stabilizes the rotated configuration through a salt bridge with the c-ring. Overall, we describe a complete mechanism for the rotation step of the ATP synthase rotor, thereby illuminating a process critical to all life at atomic resolution.


Subject(s)
Mitochondrial Proton-Translocating ATPases , Protons , Mitochondrial Proton-Translocating ATPases/metabolism , Protein Conformation , Adenosine Triphosphate , Rotation , Proton-Translocating ATPases/metabolism
8.
Int J Mol Sci ; 25(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38396915

ABSTRACT

Mitochondrial ATP synthase (Complex V) catalyzes the last step of oxidative phosphorylation and provides most of the energy (ATP) required by human cells. The mitochondrial genes MT-ATP6 and MT-ATP8 encode two subunits of the multi-subunit Complex V. Since the discovery of the first MT-ATP6 variant in the year 1990 as the cause of Neuropathy, Ataxia, and Retinitis Pigmentosa (NARP) syndrome, a large and continuously increasing number of inborn variants in the MT-ATP6 and MT-ATP8 genes have been identified as pathogenic. Variants in these genes correlate with various clinical phenotypes, which include several neurodegenerative and multisystemic disorders. In the present review, we report the pathogenic variants in mitochondrial ATP synthase genes and highlight the molecular mechanisms underlying ATP synthase deficiency that promote biochemical dysfunctions. We discuss the possible structural changes induced by the most common variants found in patients by considering the recent cryo-electron microscopy structure of human ATP synthase. Finally, we provide the state-of-the-art of all therapeutic proposals reported in the literature, including drug interventions targeting mitochondrial dysfunctions, allotopic gene expression- and nuclease-based strategies, and discuss their potential translation into clinical trials.


Subject(s)
Mitochondrial Diseases , Mitochondrial Proton-Translocating ATPases , Humans , Adenosine Triphosphate , Cryoelectron Microscopy , DNA, Mitochondrial/genetics , Genes, Mitochondrial , Mitochondrial Diseases/genetics , Mitochondrial Diseases/therapy , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Mutation
9.
J Biol Chem ; 300(3): 105690, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280428

ABSTRACT

The hydrolytic activity of the ATP synthase in bovine mitochondria is inhibited by a protein called IF1, but bovine IF1 has no effect on the synthetic activity of the bovine enzyme in mitochondrial vesicles in the presence of a proton motive force. In contrast, it has been suggested based on indirect observations that human IFI inhibits both the hydrolytic and synthetic activities of the human ATP synthase and that the activity of human IF1 is regulated by the phosphorylation of Ser-14 of mature IF1. Here, we have made both human and bovine IF1 which are 81 and 84 amino acids long, respectively, and identical in 71.4% of their amino acids and have investigated their inhibitory effects on the hydrolytic and synthetic activities of ATP synthase in bovine submitochondrial particles. Over a wide range of conditions, including physiological conditions, both human and bovine IF1 are potent inhibitors of ATP hydrolysis, with no effect on ATP synthesis. Also, substitution of Ser-14 with phosphomimetic aspartic and glutamic acids had no effect on inhibitory properties, and Ser-14 is not conserved throughout mammals. Therefore, it is unlikely that the inhibitory activity of mammalian IF1 is regulated by phosphorylation of this residue.


Subject(s)
Adenosine Triphosphate , Mitochondria , Mitochondrial Proteins , Mitochondrial Proton-Translocating ATPases , Animals , Cattle , Humans , Adenosine Triphosphate/biosynthesis , Adenosine Triphosphate/metabolism , Amino Acids/metabolism , Hydrolysis , Mitochondria/enzymology , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Serine/metabolism , Phosphorylation
10.
Apoptosis ; 29(5-6): 620-634, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38281282

ABSTRACT

Maleic acid (MA) induces renal tubular cell dysfunction directed to acute kidney injury (AKI). AKI is an increasing global health burden due to its association with mortality and morbidity. However, targeted therapy for AKI is lacking. Previously, we determined mitochondrial-associated proteins are MA-induced AKI affinity proteins. We hypothesized that mitochondrial dysfunction in tubular epithelial cells plays a critical role in AKI. In vivo and in vitro systems have been used to test this hypothesis. For the in vivo model, C57BL/6 mice were intraperitoneally injected with 400 mg/kg body weight MA. For the in vitro model, HK-2 human proximal tubular epithelial cells were treated with 2 mM or 5 mM MA for 24 h. AKI can be induced by administration of MA. In the mice injected with MA, the levels of blood urea nitrogen (BUN) and creatinine in the sera were significantly increased (p < 0.005). From the pathological analysis, MA-induced AKI aggravated renal tubular injuries, increased kidney injury molecule-1 (KIM-1) expression and caused renal tubular cell apoptosis. At the cellular level, mitochondrial dysfunction was found with increasing mitochondrial reactive oxygen species (ROS) (p < 0.001), uncoupled mitochondrial respiration with decreasing electron transfer system activity (p < 0.001), and decreasing ATP production (p < 0.05). Under transmission electron microscope (TEM) examination, the cristae formation of mitochondria was defective in MA-induced AKI. To unveil the potential target in mitochondria, gene expression analysis revealed a significantly lower level of ATPase6 (p < 0.001). Renal mitochondrial protein levels of ATP subunits 5A1 and 5C1 (p < 0.05) were significantly decreased, as confirmed by protein analysis. Our study demonstrated that dysfunction of mitochondria resulting from altered expression of ATP synthase in renal tubular cells is associated with MA-induced AKI. This finding provides a potential novel target to develop new strategies for better prevention and treatment of MA-induced AKI.


Subject(s)
Acute Kidney Injury , Apoptosis , Maleates , Mice, Inbred C57BL , Mitochondria , Mitochondrial Proton-Translocating ATPases , Animals , Humans , Male , Mice , Acute Kidney Injury/chemically induced , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Apoptosis/drug effects , Cell Line , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/pathology , Mitochondrial Proton-Translocating ATPases/metabolism , Mitochondrial Proton-Translocating ATPases/genetics , Reactive Oxygen Species/metabolism
11.
Med Res Rev ; 44(3): 1183-1188, 2024 May.
Article in English | MEDLINE | ID: mdl-38167815

ABSTRACT

Inborn errors of metabolism are related to mitochondrial disorders caused by dysfunction of the oxidative phosphorylation (OXPHOS) system. Congenital hypermetabolism in the infant is a rare disease belonging to Luft syndrome, nonthyroidal hypermetabolism, arising from a singular example of a defect in OXPHOS. The mitochondria lose coupling of mitochondrial substrates oxidation from the ADP phosphorylation. Since Luft syndrome is due to uncoupled cell respiration responsible for deficient in ATP production that originates in the respiratory complexes, a de novo heterozygous variant in the catalytic subunit of mitochondrial F1FO-ATPase arises as the main cause of an autosomal dominant syndrome of hypermetabolism associated with dysfunction in ATP production, which does not involve the respiratory complexes. The F1FO-ATPase works as an embedded molecular machine with a rotary action using two different motor engines. The FO, which is an integral domain in the membrane, dissipates the chemical potential difference for H+, a proton motive force (Δp), across the inner membrane to generate a torsion. The F1 domain-the hydrophilic portion responsible for ATP turnover-is powered by the molecular rotary action to synthesize ATP. The structural and functional coupling of F1 and FO domains support the energy transduction for ATP synthesis. The dissipation of Δp by means of an H+ slip correlated to rotor free-wheeling of the F1FO-ATPase has been discovered to cause enzyme dysfunction in primary mitochondrial disorders. In this insight, we try to offer commentary and analysis of the molecular mechanism in these impaired mitochondria.


Subject(s)
Adenosine Triphosphatases , Mitochondrial Diseases , Humans , Adenosine Triphosphatases/metabolism , Mitochondrial Proton-Translocating ATPases/chemistry , Mitochondrial Proton-Translocating ATPases/metabolism , Mitochondria/metabolism , Adenosine Triphosphate/metabolism
12.
Biol Trace Elem Res ; 202(4): 1335-1344, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37580526

ABSTRACT

A recent report has shown the active site of the beta subunit of mitochondrial ATP synthase is probably the site of action of Cr(III) action, independent of the insulin signaling pathway. This works appears to answer an important question about the mode of action of Cr(III) at a molecular level when supplied in supra-nutritional levels to rodents. However, as with any good research, the research also raises several questions. The relationship between this study and the results of rodent studies of chromium supplementation and between this study and the current understanding the chromium(III) transport and detoxification system are put into perspective.


Subject(s)
Insulin , Mitochondrial Proton-Translocating ATPases , Mitochondrial Proton-Translocating ATPases/metabolism , Insulin/metabolism , Chromium/chemistry , Signal Transduction
13.
Adv Sci (Weinh) ; 11(9): e2307880, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38093654

ABSTRACT

To rescue ischemic myocardium from progressing to myocardial infarction, timely identification of the infarct size and reperfusion is crucial. However, fast and accurate identification, as well as the targeted protection of injured cardiomyocytes following ischemia/reperfusion (I/R) injury, remain significantly challenging. Here, a near infrared heptamethine dye IR-780 is shown that has the potential to quickly monitor the area at risk following I/R injury by selectively entering the cardiomyocytes of the at-risk heart tissues. Preconditioning with IR-780 or timely IR-780 administration before reperfusion significantly protects the heart from ischemia and oxidative stress-induced cell death, myocardial remodeling, and heart failure in both rat and pig models. Furthermore, IR-780 can directly bind to F0F1-ATP synthase of cardiomyocytes, rapidly decrease the mitochondrial membrane potential, and subsequently slow down the mitochondrial energy metabolism, which induces the mitochondria into a "quiescent state" and results in mitochondrial permeability transition pore inhibition by preventing mitochondrial calcium overload. Collectively, the findings show the feasibility of IR-780-based imaging and protection strategy for I/R injury in a preclinical context and indicate that moderate mitochondrial function depression is a mode of action that can be targeted in the development of cardioprotective reagents.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Rats , Animals , Swine , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Pharmaceutical Preparations , Myocytes, Cardiac/metabolism , Myocardial Infarction/metabolism , Adenosine Triphosphate/metabolism
14.
Plant Physiol Biochem ; 206: 108231, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056039

ABSTRACT

Drought is thought to be one of the major global hazards to crop production. Understanding the role of melatonin (Mel) during plant adaptive responses to drought stress (DS) was the aim of the current investigation. Involvement of hydrogen sulfide (H2S) was also explored in Mel-regulated mechanisms of plants' tolerance to DS. A perusal of the data shows that exposure of tomato plants to DS elevated the activity of mitochondrial enzymes viz. pyruvate dehydrogenase, malate dehydrogenase, and citrate synthase. Whereas the activity of ATP synthase and ATPase was downregulated under stress conditions. Under DS, an increase in the expression level of heat shock proteins (HSPs) and activation level of antioxidant defense system was observed as well. On the other hand, an increase in the activity of NADPH oxidase and glycolate oxidase was observed along with the commencement of oxidative stress and accompanying damage. Application of 30 µM Mel to drought-stressed plants enhanced H2S accumulation and further elevated the activity of mitochondrial enzymes, activation level of the defense system, and expression of HSP17.6 and HSP70. Positive effect of Mel on these attributes was reflected by reduced level of ROS and related damage. However, application of H2S biosynthesis inhibitor DL-propargylglycine reversed the effect of Mel on the said attributes and again the damaging effects of drought were observed even in presence of Mel. This observation led us to conclude that Mel-regulated defense mechanisms operate through endogenous H2S under DS conditions.


Subject(s)
Hydrogen Sulfide , Melatonin , Melatonin/pharmacology , Reactive Oxygen Species/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Drought Resistance , Heat-Shock Proteins/metabolism , Antioxidants/metabolism , Homeostasis , Hydrogen Sulfide/metabolism
15.
Biol Trace Elem Res ; 202(4): 1325-1334, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38105318

ABSTRACT

Chromium supplementation has been notably recognized for its potential health benefits, especially in enhancing insulin sensitivity and managing glucose metabolism. However, recent studies have begun to shed light on additional mechanisms of action for chromium, expanding our understanding beyond its classical effects on the insulin-signaling pathway. The beta subunit of mitochondrial ATP synthase is considered a novel site for Cr(III) action, influencing physiological effects apart from insulin signaling. The physiological effects of chromium supplementation have been extensively studied, particularly in its role in anti-oxidative efficacy and glucose metabolism. However, recent advancements have prompted a re-evaluation of chromium's mechanisms of action beyond the insulin signaling pathway. The discovery of the beta subunit of mitochondrial ATP synthase as a potential target for chromium action is discussed, emphasizing its crucial role in cellular energy production and metabolic regulation. A meticulous analysis of relevant studies that were earlier carried out could shed light on the relationship between chromium supplementation and mitochondrial ATP synthase. This review categorizes studies based on their primary investigations, encompassing areas such as muscle protein synthesis, glucose and lipid metabolism, and antioxidant properties. Findings from these studies are scrutinized to distinguish patterns aligning with the new hypothesis. Central to this exploration is the presentation of studies highlighting the physiological effects of chromium that extend beyond the insulin signaling pathway. Evaluating the various independent mechanisms of action that chromium impacts cellular energy metabolism and overall metabolic balance has become more important. In conclusion, this review is a paradigm shift in understanding chromium supplementation, paving the way for future investigations that leverage the intricate interplay between chromium and mitochondrial ATP synthase.


Subject(s)
AMP-Activated Protein Kinases , Mitochondrial Proton-Translocating ATPases , Mitochondrial Proton-Translocating ATPases/metabolism , Insulin/metabolism , Glucose/metabolism , Chromium/pharmacology , Chromium/metabolism
16.
Biol Trace Elem Res ; 202(4): 1318-1324, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38133723

ABSTRACT

The micronutrient trivalent chromium, 3 + (Cr(III)), is postulated to play a role in carbohydrate, lipid, and protein metabolism. Although the mechanisms by which chromium mediates its actions are largely unknown, previous studies have suggested that pharmacological doses of chromium improve cardiometabolic symptoms by augmenting carbohydrate and lipid metabolism. Activation of AMP-activated protein kinase (AMPK) was among the many mechanisms proposed to explain the salutary actions of chromium on carbohydrate metabolism. However, the molecular pathways leading to the activation of AMPK by chromium remained elusive. In an elegant series of studies, Sun and coworkers recently demonstrated that chromium augments AMPK activation by binding to the beta-subunit of ATP synthase and inhibiting its enzymatic activity. This mini-review attempts to trace the evolving understanding of the molecular mechanisms of chromium leading to the hitherto novel pathway unraveled by Sun and coworkers and its potential implication to our understanding of the biological actions of chromium.


Subject(s)
AMP-Activated Protein Kinases , Chromium , Chromium/chemistry , Mitochondrial Proton-Translocating ATPases/metabolism , Lipid Metabolism , Carbohydrates , Adenosine Triphosphate , Carbohydrate Metabolism
17.
Proc Natl Acad Sci U S A ; 120(51): e2303713120, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38091291

ABSTRACT

The mitochondrial permeability transition pore (mPTP) is a channel in the inner mitochondrial membrane whose sustained opening in response to elevated mitochondrial matrix Ca2+ concentrations triggers necrotic cell death. The molecular identity of mPTP is unknown. One proposed candidate is the mitochondrial ATP synthase, whose canonical function is to generate most ATP in multicellular organisms. Here, we present mitochondrial, cellular, and in vivo evidence that, rather than serving as mPTP, the mitochondrial ATP synthase inhibits this pore. Our studies confirm previous work showing persistence of mPTP in HAP1 cell lines lacking an assembled mitochondrial ATP synthase. Unexpectedly, however, we observe that Ca2+-induced pore opening is markedly sensitized by loss of the mitochondrial ATP synthase. Further, mPTP opening in cells lacking the mitochondrial ATP synthase is desensitized by pharmacological inhibition and genetic depletion of the mitochondrial cis-trans prolyl isomerase cyclophilin D as in wild-type cells, indicating that cyclophilin D can modulate mPTP through substrates other than subunits in the assembled mitochondrial ATP synthase. Mitoplast patch clamping studies showed that mPTP channel conductance was unaffected by loss of the mitochondrial ATP synthase but still blocked by cyclophilin D inhibition. Cardiac mitochondria from mice whose heart muscle cells we engineered deficient in the mitochondrial ATP synthase also demonstrate sensitization of Ca2+-induced mPTP opening and desensitization by cyclophilin D inhibition. Further, these mice exhibit strikingly larger myocardial infarctions when challenged with ischemia/reperfusion in vivo. We conclude that the mitochondrial ATP synthase does not function as mPTP and instead negatively regulates this pore.


Subject(s)
Mitochondrial Permeability Transition Pore , Mitochondrial Proton-Translocating ATPases , Mice , Animals , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Cyclophilins/genetics , Cyclophilins/metabolism , Peptidyl-Prolyl Isomerase F , Mitochondria, Heart/genetics , Mitochondria, Heart/metabolism , Calcium/metabolism
18.
Bioorg Med Chem ; 95: 117504, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37871508

ABSTRACT

Mycobacterial ATP synthase is a validated therapeutic target for combating drug-resistant tuberculosis. Inhibition of this enzyme has been featured as an efficient strategy for the development of new antimycobacterial agents against drug-resistant pathogens. In this study, we synthesised and explored two distinct series of squaric acid analogues designed to inhibit mycobacterial ATP synthase. Among the extensive array of compounds investigated, members of the phenyl-substituted sub-library emerged as primary hits. To gain deeper insights into their mechanisms of action, we conducted advanced biological studies, focusing on the compounds displaying a direct binding of a nitrogen heteroatom to the phenyl ring, resulting in the highest potency. Our investigations into spontaneous mutants led to the validation of a single point mutation within the atpB gene (Rv1304), responsible for encoding the ATP synthase subunit a. This genetic alteration sheds light on the molecular basis of resistance to squaramides. Furthermore, we explored the possibility of synergy between squaramides and the reference drug clofazimine using a checkerboard assay, highlighting the promising avenue for enhancing the effectiveness of existing treatments through combined therapeutic approaches. This study contributes to the expansion of investigating squaramides as promising drug candidates in the ongoing battle against drug-resistant tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Adenosine Triphosphate/metabolism , Antitubercular Agents/chemistry , Mitochondrial Proton-Translocating ATPases/chemistry , Mitochondrial Proton-Translocating ATPases/metabolism
19.
Cells ; 12(19)2023 10 07.
Article in English | MEDLINE | ID: mdl-37830628

ABSTRACT

Monomers, dimers, and individual FOF1-ATP synthase subunits are, presumably, involved in the formation of the mitochondrial permeability transition pore (PTP), whose molecular structure, however, is still unknown. We hypothesized that, during the Ca2+-dependent assembly of a PTP complex, the F-ATP synthase (subunits) recruits mitochondrial proteins that do not interact or weakly interact with the F-ATP synthase under normal conditions. Therefore, we examined whether the PTP opening in mitochondria before the separation of supercomplexes via BN-PAGE will increase the channel stability and channel-forming capacity of isolated F-ATP synthase dimers and monomers in planar lipid membranes. Additionally, we studied the specific activity and the protein composition of F-ATP synthase dimers and monomers from rat liver and heart mitochondria before and after PTP opening. Against our expectations, preliminary PTP opening dramatically suppressed the high-conductance channel activity of F-ATP synthase dimers and monomers and decreased their specific "in-gel" activity. The decline in the channel-forming activity correlated with the reduced levels of as few as two proteins in the bands: methylmalonate-semialdehyde dehydrogenase and prohibitin 2. These results indicate that proteins co-migrating with the F-ATP synthase may be important players in PTP formation and stabilization.


Subject(s)
Mitochondrial Membrane Transport Proteins , Mitochondrial Proton-Translocating ATPases , Mitochondrial Proton-Translocating ATPases/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Protein Subunits/metabolism , Mitochondria, Heart/metabolism , Adenosine Triphosphate
20.
Life Sci Alliance ; 6(11)2023 11.
Article in English | MEDLINE | ID: mdl-37604582

ABSTRACT

The Cox6 subunit of Saccharomyces cerevisiae cytochrome oxidase (COX) and the Atp9 subunit of the ATP synthase are encoded in nuclear and mitochondrial DNA, respectively. The two proteins interact to form Atco complexes that serve as the source of Atp9 for ATP synthase assembly. To determine if Atco is also a precursor of COX, we pulse-labeled Cox6 in isolated mitochondria of a cox6 nuclear mutant with COX6 in mitochondrial DNA. Only a small fraction of the newly translated Cox6 was found to be present in Atco, which can explain the low concentration of COX and poor complementation of the cox6 mutation by the allotopic gene. This and other pieces of evidence presented in this study indicate that Atco is an obligatory source of Cox6 for COX biogenesis. Together with our finding that atp9 mutants fail to assemble COX, we propose a regulatory model in which Atco unidirectionally couples the biogenesis of COX to that of the ATP synthase to maintain a proper ratio of these two complexes of oxidative phosphorylation.


Subject(s)
Mitochondrial Proton-Translocating ATPases , Saccharomyces cerevisiae Proteins , DNA, Mitochondrial , Electron Transport Complex IV/genetics , Mitochondria , Mutation , Saccharomyces cerevisiae/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...