Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.961
1.
Sci Adv ; 10(18): eadk4946, 2024 May 03.
Article En | MEDLINE | ID: mdl-38691597

This phase 2a trial investigated the efficacy of NFX-179 Topical Gel, a metabolically labile MEK inhibitor, in the treatment of cutaneous neurofibromas (cNFs) in neurofibromatosis type 1. Forty-eight participants were randomized to four treatment arms: NFX-179 Topical Gel 0.05%, 0.15%, and 0.5% or vehicle applied once daily to five target cNFs for 28 days. Treatment with NFX-179 Topical Gel resulted in a dose-dependent reduction in p-ERK levels in cNFs at day 28, with a 47% decrease in the 0.5% NFX-179 group compared to the vehicle (P = 0.0001). No local or systemic toxicities were observed during the treatment period, and systemic concentrations of NFX-179 remained below 1 ng/ml. In addition, 20% of cNFs treated with 0.5% NFX-179 Topical Gel showed a ≥50% reduction in volume compared to 6% in the vehicle group by ruler measurement with calculated volume (P = 0.021). Thus, NFX-179 Topical Gel demonstrated significant inhibition of MEK in cNF with excellent safety and potential therapeutic benefit.


Neurofibromatosis 1 , Protein Kinase Inhibitors , Skin Neoplasms , Humans , Neurofibromatosis 1/drug therapy , Female , Male , Adult , Middle Aged , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/adverse effects , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Neurofibroma/drug therapy , Neurofibroma/pathology , Neurofibroma/metabolism , Young Adult , Adolescent , Treatment Outcome , Administration, Topical , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism
2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731852

Lung cancer, despite recent advancements in survival rates, represents a significant global health burden. Non-small cell lung cancer (NSCLC), the most prevalent type, is driven largely by activating mutations in Kirsten rat sarcoma viral oncogene homologue (KRAS) and receptor tyrosine kinases (RTKs), and less in v-RAF murine sarcoma viral oncogene homolog B (BRAF) and mitogen-activated protein-kinase kinase (MEK), all key components of the RTK-RAS-mitogen-activated protein kinase (MAPK) pathway. Learning from melanoma, the identification of BRAFV600E substitution in NSCLC provided the rationale for the investigation of RAF and MEK inhibition as a therapeutic strategy. The regulatory approval of two RAF-MEK inhibitor combinations, dabrafenib-trametinib, in 2017, and encorafenib-binimetinib, in 2023, signifies a breakthrough for the management of BRAFV600E-mutant NSCLC patients. However, the almost universal emergence of acquired resistance limits their clinical benefit. New RAF and MEK inhibitors, with distinct biochemical characteristics, are in preclinical and clinical development. In this review, we aim to provide valuable insights into the current state of RAF and MEK inhibition in the management of NSCLC, fostering a deeper understanding of the potential impact on patient outcomes.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mitogen-Activated Protein Kinase Kinases , Protein Kinase Inhibitors , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Animals , raf Kinases/antagonists & inhibitors , raf Kinases/metabolism , raf Kinases/genetics , Mutation
3.
Biochem Pharmacol ; 224: 116252, 2024 Jun.
Article En | MEDLINE | ID: mdl-38701866

The mitogen-activated protein kinase (MAPK/ERK) pathway is pivotal in controlling the proliferation and survival of melanoma cells. Several mutations, including those in BRAF, exhibit an oncogenic effect leading to increased cellular proliferation. As a result, the combination therapy of a MEK inhibitor with a BRAF inhibitor demonstrated higher efficacy and lower toxicity than BRAF inhibitor alone. This combination has become the preferred standard of care for tumors driven by BRAF mutations. Aldehyde dehydrogenase 1A1 (ALDH1A1) is a known marker of stemness involved in drug resistance in several type of tumors, including melanoma. This study demonstrates that melanoma cells overexpressing ALDH1A1 displayed resistance to vemurafenib and trametinib through the activation of PI3K/AKT signaling instead of MAPK axis. Inhibition of PI3K/AKT signaling partially rescued sensitivity to the drugs. Consistently, pharmacological inhibition of ALDH1A1 activity downregulated the activation of AKT and partially recovered responsiveness to vemurafenib and trametinib. We propose ALDH1A1 as a new potential target for treating melanoma resistant to MAPK/ERK inhibitors.


Aldehyde Dehydrogenase 1 Family , Drug Resistance, Neoplasm , Melanoma , Neoplastic Stem Cells , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-akt , Retinal Dehydrogenase , Humans , Melanoma/drug therapy , Melanoma/pathology , Melanoma/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/physiology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Cell Line, Tumor , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Retinal Dehydrogenase/metabolism , Protein Kinase Inhibitors/pharmacology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Pyrimidinones/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Pyridones/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , Vemurafenib/pharmacology , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase/antagonists & inhibitors , Aldehyde Dehydrogenase/genetics , Antineoplastic Agents/pharmacology , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Phenotype
4.
Oncologist ; 29(5): e616-e621, 2024 May 03.
Article En | MEDLINE | ID: mdl-38527005

MEK signaling pathway targeting has emerged as a valuable addition to the options available for the treatment of advanced cancers including melanoma and non-small cell lung cancer. Ophthalmologic monitoring of patients taking part in clinical trials of MEK inhibitors has shown that while ocular effects are common, generally emerging during the first days to weeks of treatment, the majority are either asymptomatic or have minimal visual impact and are benign, resolving without intervention or the need to reduce or stop MEK inhibitor therapy. However rare cases of serious, potentially vision-threatening ocular toxicities have been reported during MEK inhibitor therapy. There is currently no recommendation for routine ophthalmologic screening or monitoring of patients with advanced cancer who are initiating MEK inhibitor therapy. However, baseline ophthalmologic examination may be useful for all patients initiating MEK inhibitor therapy to allow the differentiation of preexisting pathology versus the development of MEK inhibitor-associated retinopathy in the event of the emergence of symptomatic ocular events. Regular ophthalmologic examination may be appropriate for patients at increased risk for ocular events, such as patients with a history of ocular inflammation, infection, or underlying macular/retinal disease. All patients reporting visual disturbance should be referred for prompt ophthalmologic review to determine the potential seriousness of any underlying abnormalities and whether there is a need for treatment modification or specific intervention. Understanding the potential consequences of ocular toxicities is of particular importance in the context of decision-making for the continuation of potentially life-prolonging medications such as MEK inhibitors.


Protein Kinase Inhibitors , Humans , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Eye Diseases/chemically induced , Neoplasms/drug therapy , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors
5.
Genes Chromosomes Cancer ; 63(2): e23222, 2024 Feb.
Article En | MEDLINE | ID: mdl-38340027

INTRODUCTION: Pancreatic acinar cell carcinomas are rare malignant neoplasms. High-quality evidence about the best treatment strategy is lacking. We present the case of a 52-year-old male with a BRAFV600E -mutated PACC who experienced a complete remission after chemotherapy with BRAF-/MEK-inhibitors. CASE: The patient presented with upper abdomen pain, night sweat, and weight loss. CT scan showed a pancreatic tumor extending from the pancreas head to body. Histological workup identified an acinar cell carcinoma. As the tumor was inoperable, chemotherapy with FOFIRNIOX was initiated and initially showed a slight regression of disease. The regimen had to be discontinued due to severe side effects. Molecular analysis identified a BRAFV600E mutation, so the patient was started on BRAF- and MEK-inhibitors (dabrafenib/trametinib). After 16 months, CT scans showed a near complete remission with a markedly improved overall health. DISCUSSION: Studies suggest that up to one-fourth of PACCs carry a BRAF mutation and might therefore be susceptible to a BRAF-/MEK-inhibitor therapy. This offers a new therapeutic pathway to treat this rare but malignant neoplasm.


Carcinoma, Acinar Cell , Pancreatic Neoplasms , Humans , Male , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Acinar Cell/drug therapy , Carcinoma, Acinar Cell/genetics , Carcinoma, Acinar Cell/chemically induced , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mutation , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Pyridones/pharmacology , Pyrimidinones/pharmacology
6.
Cancer ; 130(9): 1673-1683, 2024 May 01.
Article En | MEDLINE | ID: mdl-38198485

BACKGROUND: Effectivity of BRAF(/MEK) inhibitor rechallenge has been described in prior studies. However, structured data are largely lacking. METHODS: Data from all advanced melanoma patients treated with BRAFi(/MEKi) rechallenge were retrieved from the Dutch Melanoma Treatment Registry. The authors analyzed objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) for both first treatment and rechallenge. They performed a multivariable logistic regression and a multivariable Cox proportional hazards model to assess factors associated with response and survival. RESULTS: The authors included 468 patients in the largest cohort to date who underwent at least two treatment episodes of BRAFi(/MEKi). Following rechallenge, ORR was 43%, median PFS was 4.6 months (95% confidence interval [CI], 4.1-5.2), and median OS was 8.2 months (95% CI, 7.2-9.4). Median PFS after rechallenge for patients who discontinued first BRAFi(/MEKi) treatment due to progression was 3.1 months (95% CI, 2.7-4.0) versus 5.2 months (95% CI, 4.5-5.9) for patients who discontinued treatment for other reasons. Discontinuing first treatment due to progression and lactate dehydrogenase (LDH) levels greater than two times the upper limit of normal were associated with lower odds of response and worse PFS and OS. Symptomatic brain metastases were associated with worse survival, whereas a longer treatment interval between first treatment and rechallenge was associated with better survival. Responding to the first BRAFi(/MEKi) treatment was not associated with response or survival. CONCLUSIONS: This study confirms that patients benefit from rechallenge. Elevated LDH levels, symptomatic brain metastases, and discontinuing first BRAFi(/MEKi) treatment due to progression are associated with less benefit from rechallenge. A prolonged treatment interval is associated with more benefit from rechallenge.


Brain Neoplasms , Melanoma , Humans , Brain Neoplasms/etiology , Brain Neoplasms/pathology , Melanoma/drug therapy , Melanoma/pathology , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mutation , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Retrospective Studies
8.
N Engl J Med ; 389(2): 118-126, 2023 Jul 13.
Article En | MEDLINE | ID: mdl-37437144

BACKGROUND: Craniopharyngiomas, primary brain tumors of the pituitary-hypothalamic axis, can cause clinically significant sequelae. Treatment with the use of surgery, radiation, or both is often associated with substantial morbidity related to vision loss, neuroendocrine dysfunction, and memory loss. Genotyping has shown that more than 90% of papillary craniopharyngiomas carry BRAF V600E mutations, but data are lacking with regard to the safety and efficacy of BRAF-MEK inhibition in patients with papillary craniopharyngiomas who have not undergone previous radiation therapy. METHODS: Eligible patients who had papillary craniopharyngiomas that tested positive for BRAF mutations, had not undergone radiation therapy previously, and had measurable disease received the BRAF-MEK inhibitor combination vemurafenib-cobimetinib in 28-day cycles. The primary end point of this single-group, phase 2 study was objective response at 4 months as determined with the use of centrally determined volumetric data. RESULTS: Of the 16 patients in the study, 15 (94%; 95% confidence interval [CI], 70 to 100) had a durable objective partial response or better to therapy. The median reduction in the volume of the tumor was 91% (range, 68 to 99). The median follow-up was 22 months (95% CI, 19 to 30) and the median number of treatment cycles was 8. Progression-free survival was 87% (95% CI, 57 to 98) at 12 months and 58% (95% CI, 10 to 89) at 24 months. Three patients had disease progression during follow-up after therapy had been discontinued; none have died. The sole patient who did not have a response stopped treatment after 8 days owing to toxic effects. Grade 3 adverse events that were at least possibly related to treatment occurred in 12 patients, including rash in 6 patients. In 2 patients, grade 4 adverse events (hyperglycemia in 1 patient and increased creatine kinase levels in 1 patient) were reported; 3 patients discontinued treatment owing to adverse events. CONCLUSIONS: In this small, single-group study involving patients with papillary craniopharyngiomas, 15 of 16 patients had a partial response or better to the BRAF-MEK inhibitor combination vemurafenib-cobimetinib. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT03224767.).


Antineoplastic Agents , Craniopharyngioma , Pituitary Neoplasms , Humans , Craniopharyngioma/drug therapy , Craniopharyngioma/genetics , Disease Progression , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/genetics , Pituitary Neoplasms/drug therapy , Pituitary Neoplasms/genetics , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Vemurafenib/adverse effects , Vemurafenib/therapeutic use , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Remission Induction
9.
Mol Cancer Ther ; 22(8): 962-975, 2023 08 01.
Article En | MEDLINE | ID: mdl-37310170

Mutations in KRAS are found in more than 50% of tumors from patients with metastatic colorectal cancer (mCRC). However, direct targeting of most KRAS mutations is difficult; even the recently developed KRASG12C inhibitors failed to show significant benefit in patients with mCRC. Single agents targeting mitogen-activated protein kinase kinase (MEK), a downstream mediator of RAS, have also been ineffective in colorectal cancer. To identify drugs that can enhance the efficacy of MEK inhibitors, we performed unbiased high-throughput screening using colorectal cancer spheroids. We used trametinib as the anchor drug and examined combinations of trametinib with the NCI-approved Oncology Library version 5. The initial screen, and following focused validation screens, identified vincristine as being strongly synergistic with trametinib. In vitro, the combination strongly inhibited cell growth, reduced clonogenic survival, and enhanced apoptosis compared with monotherapies in multiple KRAS-mutant colorectal cancer cell lines. Furthermore, this combination significantly inhibited tumor growth, reduced cell proliferation, and increased apoptosis in multiple KRAS-mutant patient-derived xenograft mouse models. In vivo studies using drug doses that reflect clinically achievable doses demonstrated that the combination was well tolerated by mice. We further determined that the mechanism underlying the synergistic effect of the combination was due to enhanced intracellular accumulation of vincristine associated with MEK inhibition. The combination also significantly decreased p-mTOR levels in vitro, indicating that it inhibits both RAS-RAF-MEK and PI3K-AKT-mTOR survival pathways. Our data thus provide strong evidence that the combination of trametinib and vincristine represents a novel therapeutic option to be studied in clinical trials for patients with KRAS-mutant mCRC. SIGNIFICANCE: Our unbiased preclinical studies have identified vincristine as an effective combination partner for the MEK inhibitor trametinib and provide a novel therapeutic option to be studied in patients with KRAS-mutant colorectal cancer.


Colonic Neoplasms , Colorectal Neoplasms , Mitogen-Activated Protein Kinase Kinases , Vincristine , Animals , Humans , Mice , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mutation , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , TOR Serine-Threonine Kinases/metabolism , Vincristine/pharmacology , Vincristine/therapeutic use
10.
Ophthalmologie ; 120(5): 559-573, 2023 May.
Article De | MEDLINE | ID: mdl-37160621

In recent years, checkpoint inhibitors have revolutionized the treatment of previously untreatable malignant tumors, significantly improving the life expectancy as well as quality of life in many cases. Checkpoint inhibitors comprise a group of drugs with different mechanisms of action. These include immunological checkpoint inhibitors (iCPI) and intracellular signal transduction inhibitors; however, both substance classes can cause inflammatory or toxic ocular side effects. The frequency of intraocular inflammation (uveitis) is reported to be ca. 1-2%, toxic side effects were observed in up to more than 50% of the patients treated with signal transduction inhibitors. In the following article the main mechanisms of these forms of treatment are characterized. Furthermore, this article presents the currently most frequently used therapeutic agents and their typical ophthalmological side effects to increase awareness and to draw attention to these still rare but increasingly more frequent findings.


Antineoplastic Agents , Immune Checkpoint Inhibitors , Neoplasms , Uveitis , Humans , Antineoplastic Agents/adverse effects , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Neoplasms/drug therapy , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Quality of Life , Uveitis/chemically induced , Immune Checkpoint Inhibitors/adverse effects
11.
Cell Rep ; 42(6): 112570, 2023 06 27.
Article En | MEDLINE | ID: mdl-37252843

The combination of BRAF and MEK inhibitors (BRAFi/MEKi) has shown promising response rates in treating BRAF-mutant melanoma by inhibiting ERK activation. However, treatment efficacy is limited by the emergence of drug-tolerant persister cells (persisters). Here, we show that the magnitude and duration of receptor tyrosine kinase (RTK) activation determine ERK reactivation and persister development. Our single-cell analysis reveals that only a small subset of melanoma cells exhibits effective RTK and ERK activation and develops persisters, despite uniform external stimuli. The kinetics of RTK activation directly influence ERK signaling dynamics and persister development. These initially rare persisters form major resistant clones through effective RTK-mediated ERK activation. Consequently, limiting RTK signaling suppresses ERK activation and cell proliferation in drug-resistant cells. Our findings provide non-genetic mechanistic insights into the role of heterogeneity in RTK activation kinetics in ERK reactivation and BRAFi/MEKi resistance, suggesting potential strategies for overcoming drug resistance in BRAF-mutant melanoma.


Melanoma , Mitogen-Activated Protein Kinase Kinases , Humans , Cell Line, Tumor , Drug Resistance, Neoplasm , Melanoma/drug therapy , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf , Receptor Protein-Tyrosine Kinases
12.
Hum Exp Toxicol ; 42: 9603271231158047, 2023.
Article En | MEDLINE | ID: mdl-36840478

The MAPK-interacting kinases 1 and 2 (MNK1/2) have generated increasing interest as therapeutic targets for many cancers with little known in osteosarcoma. This study evaluated the efficacy of eFT508, a highly selective inhibitor of MNK1/2, as single drug alone and in combination with paclitaxel in preclinical models of osteosarcoma. EFT508 is active against multiple osteosarcoma cell lines via inhibiting growth, survival and migration. It also demonstrates anti-osteosarcoma selectivity with much less toxicity on normal osteoblastic than osteosarcoma cells. Consistent with in vitro findings, eFT508 at non-toxic dose significantly arrested tumor growth in mice throughout the whole duration of treatment. Mechanistically, eEFT508 is highly effective in blocking eIF4E phosphorylation and eIF4E-mediated protein translation. Combination index shows that eFT508 and paclitaxel is synergistic in osteosarcoma cells. Our findings highlight the therapeutic value of MNK1/2 inhibition and suggest eFT508 as a promising candidate for the treatment of osteosarcoma.


Bone Neoplasms , Drug Resistance, Neoplasm , Osteosarcoma , Animals , Mice , Cell Line, Tumor , Eukaryotic Initiation Factor-4E/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Paclitaxel , Phosphorylation , Protein Serine-Threonine Kinases/metabolism
13.
BMC Med ; 21(1): 2, 2023 01 04.
Article En | MEDLINE | ID: mdl-36600247

BACKGROUND: HL-085 is a selective, orally administered MEK1/2 inhibitor. We aimed to evaluate the safety and efficacy of HL-085 in patients with advanced melanoma harboring NRAS mutations. METHODS: This was a multicenter phase 1 study. HL-085 was administered twice daily in a standard 3 + 3 dose-escalation design (10 dose cohorts; 0.5-18 mg twice daily), followed by dose expansion at the recommended phase II dose (RP2D). The primary endpoints included tolerability, dose-limiting toxicity (DLT), maximum tolerated dose (MTD) and RP2D. RESULTS: Between September 13, 2017, and January 18, 2021, 42 patients were enrolled (dose escalation phase: n = 30; dose expansion phase: n = 12). No DLT was reported during dose escalation and MTD was not reached with HL-085 doses up to 18 mg twice daily. The RP2D was 12 mg twice daily. The most common all-grade drug-related adverse events (AEs) across all dose levels were rash (61.9%), increased creatine phosphokinase (CK, 59.5%), face edema (50.0%), increased aspartate aminotransferase (47.6%), peripheral edema (40.5%), diarrhea (33.3%), alanine aminotransferase (33.3%), and paronychia (19.0%), most of which were grade 1 and 2. Most frequency of grade ≥ 3 AEs were CK (14.2%), asthenia (7.1%), peripheral edema (4.8%), and acneiform dermatitis (4.8%). In the cohort of 12 mg twice daily dose (15 patients), confirmed objective response rate was 26.7%; disease control rate was 86.7%; median duration of response was 2.9 months; median progression-free survival was 3.6 months. CONCLUSIONS: The HL-085 showed acceptable tolerability and substantial clinical activity in patients with advanced melanoma harboring NRAS mutations. TRIAL REGISTRATION: Trial registration ClinicalTrials.gov number: NCT03973151.


Melanoma , Mitogen-Activated Protein Kinase Kinases , Humans , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/therapeutic use , Melanoma/drug therapy , Melanoma/genetics , Membrane Proteins/genetics , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mutation , Progression-Free Survival , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use
14.
Adv Ther ; 40(3): 1074-1086, 2023 03.
Article En | MEDLINE | ID: mdl-36627544

INTRODUCTION: FCN-159 is a novel, oral, potent, selective MEK1/2 inhibitor in clinical development for the treatment of NRAS-mutant advanced melanoma and neurofibromatosis type 1. We investigated the effect of food on the pharmacokinetics (PK), safety, and tolerability of FCN-159. METHODS: In this single-center, open-label, phase 1 study with a three-period, three-sequence, crossover design, healthy Chinese male subjects (n = 24) were randomized (1:1:1) to receive a single, oral 8 mg dose of FCN-159 in the fasted state (overnight, > 10 h), and with a low-fat and a high-fat meal, separated by a 10-day washout. PK parameters including time to maximum plasma concentration (Cmax) and area under the concentration-time curve (AUC) were compared using geometric least-squares mean ratios (GLSMR), with the fasted state as the reference. A 90% CI for the GLSMR within 80-125% indicated no significant food effect. RESULTS: A low-fat meal (n = 23) did not affect the PK profile of FCN-159: G LSMR for AUC from time 0 to t (AUC0-t), 106.9% (90% CI 99.9-114.4%); AUC from time 0 to infinity (AUC0-∞), 106.8% (90% CI 100.0-114.0%); Cmax, 96.4% (90% CI 83.9-110.8%). A high-fat meal (n = 24) did not affect exposure to FCN-159 (GLSMR for AUC0-t, 99.4%; 90% CI 99.0-106.3%; AUC0-∞, 99.5 5%; 90% CI 93.2-106.1%), but modestly reduced Cmax by 15% (GLSMR 84.9%; 90% CI 74.0-97.3%). Both the low-fat and high-fat meals slightly prolonged the median time to Cmax by 0.5 h (90% CI 0.5-1.0 h). FCN-159 was generally well tolerated, with a lower incidence of treatment-emergent adverse events following administration in the fasted state than with a low-fat or high-fat meal (20.8%, 39.1%, and 37.5%, respectively). CONCLUSION: Food did not affect the PK profile of FCN-159 to a clinically meaningful extent compared with administration in the fasted state.


East Asian People , Fasting , Mitogen-Activated Protein Kinase Kinases , Protein Kinase Inhibitors , Humans , Male , Administration, Oral , Area Under Curve , Biological Availability , Cross-Over Studies , Food-Drug Interactions , Healthy Volunteers , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacokinetics
15.
Int J Mol Sci ; 23(19)2022 Oct 08.
Article En | MEDLINE | ID: mdl-36233247

The development of in vitro/in vivo translational methods for synergistically acting drug combinations is needed to identify the most effective therapeutic strategies. We performed PBPK/PD modelling for siremadlin, trametinib, and their combination at various dose levels and dosing schedules in an A375 xenografted mouse model (melanoma cells). In this study, we built models based on in vitro ADME and in vivo PK/PD data determined from the literature or estimated by the Simcyp Animal simulator (V21). The developed PBPK/PD models allowed us to account for the interactions between siremadlin and trametinib at PK and PD levels. The interaction at the PK level was described by an interplay between absorption and tumour disposition levels, whereas the PD interaction was based on the in vitro results. This approach allowed us to reasonably estimate the most synergistic and efficacious dosing schedules and dose levels for combinations of siremadlin and trametinib in mice. PBPK/PD modelling is a powerful tool that allows researchers to properly estimate the in vivo efficacy of the anticancer drug combination based on the results of in vitro studies. Such an approach based on in vitro and in vivo extrapolation may help researchers determine the most efficacious dosing strategies and will allow for the extrapolation of animal PBPK/PD models into clinical settings.


Melanoma , Mitogen-Activated Protein Kinase Kinases , Proto-Oncogene Proteins c-mdm2 , Animals , Melanoma/drug therapy , Mice , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Models, Biological , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors
16.
J Biol Chem ; 298(8): 102226, 2022 08.
Article En | MEDLINE | ID: mdl-35787369

Increased MAPK signaling is a hallmark of various cancers and is a central regulator of cell survival. Direct ERK1/2 inhibition is considered a promising approach to avoid ERK1/2 reactivation caused by upstream kinases BRAF, MEK1/2, and KRAS, as well as by receptor tyrosine kinase inhibitors, but the dynamics and selectivity of ERK1/2 inhibitors are much less studied compared with BRAF or MEK inhibitors. Using ERK1/2 and downstream kinase ELK1 reporter cell lines of lung cancer (H1299; NRASQ61K), colon cancer (HCT-116; KRASG13D), neuroblastoma (SH-SY5Y), and leukemia (U937), we examined the relationship between ERK inhibition and drug-induced toxicity for five ERK inhibitors: SCH772984, ravoxertinib, LY3214996, ulixertinib, and VX-11e, as well as one MEK inhibitor, PD0325901. Comparing cell viability and ERK inhibition revealed different ERK dependencies for these cell lines. We identify several drugs, such as SCH772984 and VX-11e, which induce excessive toxicity not directly related to ERK1/2 inhibition in specific cell lines. We also show that PD0325901, LY3214996, and ulixertinib are prone to ERK1/2 reactivation over time. We distinguished two types of ERK1/2 reactivation: the first could be reversed by adding a fresh dose of inhibitors, while the second persists even after additional treatments. We also showed that cells that became resistant to the MEK1/2 inhibitor PD0325901 due to ERK1/2 reactivation remained sensitive to ERK1/2 inhibitor ulixertinib. Our data indicate that correlation of ERK inhibition with drug-induced toxicity in multiple cell lines may help to find more selective and effective ERK1/2 inhibitors.


Antineoplastic Agents , Mitogen-Activated Protein Kinase Kinases , Neuroblastoma , Protein Kinase Inhibitors , Aminopyridines , Antineoplastic Agents/pharmacology , Benzamides , Cell Line, Tumor , Cell Survival , Diphenylamine/analogs & derivatives , Humans , Indazoles , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Neuroblastoma/drug therapy , Piperazines , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Pyrazoles , Pyridones , Pyrimidines , Pyrroles
17.
Neuro Oncol ; 24(11): 1845-1856, 2022 11 02.
Article En | MEDLINE | ID: mdl-35788692

The wide variety of clinical manifestations of the genetic syndrome neurofibromatosis type 1 (NF1) are driven by overactivation of the RAS pathway. Mitogen-activated protein kinase kinase inhibitors (MEKi) block downstream targets of RAS. The recent regulatory approvals of the MEKi selumetinib for inoperable symptomatic plexiform neurofibromas in children with NF1 have made it the first medical therapy approved for this indication in the United States, the European Union, and elsewhere. Several recently published and ongoing clinical trials have demonstrated that MEKi may have potential benefits for a variety of other NF1 manifestations, and there is broad interest in the field regarding the appropriate clinical use of these agents. In this review, we present the current evidence regarding the use of existing MEKi for a variety of NF1-related manifestations, including tumor (neurofibromas, malignant peripheral nerve sheath tumors, low-grade glioma, and juvenile myelomonocytic leukemia) and non-tumor (bone, pain, and neurocognitive) manifestations. We discuss the potential utility of MEKi in related genetic conditions characterized by overactivation of the RAS pathway (RASopathies). In addition, we review practical treatment considerations for the use of MEKi as well as provide consensus recommendations regarding their clinical use from a panel of experts.


Mitogen-Activated Protein Kinase Kinases , Neurofibroma, Plexiform , Neurofibromatosis 1 , Protein Kinase Inhibitors , Child , Humans , Consensus , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Neurofibroma, Plexiform/drug therapy , Neurofibromatosis 1/drug therapy , Neurofibromatosis 1/pathology , Protein Kinase Inhibitors/pharmacology
18.
J Immunother Cancer ; 10(7)2022 07.
Article En | MEDLINE | ID: mdl-35798536

BACKGROUND: Patients with V600BRAF mutant metastatic melanoma have higher rates of progression-free survival (PFS) and overall survival (OS) with first-line anti-PD1 (PD1]+anti-CTLA-4 (IPI) versus PD1. Whether this is also true after BRAF/MEKi therapy is unknown. We aimed to determine the efficacy and safety of PD1 versus IPI +PD1 after BRAF/MEK inhibitors (BRAF/MEKi). METHODS: Patients with V600BRAF mutant metastatic melanoma treated with BRAF/MEKi who had subsequent PD1 versus IPI+PD1 at eight centers were included. The endpoints were objective response rate (ORR), PFS, OS and safety in each group. RESULTS: Of 200 patients with V600E (75%) or non-V600E (25%) mutant metastatic melanoma treated with BRAF/MEKi (median time of treatment 7.6 months; treatment cessation due to progressive disease in 77%), 115 (57.5%) had subsequent PD1 and 85 (42.5%) had IPI+PD1. Differences in patient characteristics between PD1 and IPI+PD1 groups included, age (med. 63 vs 54 years), time between BRAF/MEKi and PD1±IPI (16 vs 4 days), Eastern Cooperative Oncology Group Performance Status (ECOG PS) of ≥1 (62% vs 44%), AJCC M1C/M1D stage (72% vs 94%) and progressing brain metastases at the start of PD1±IPI (34% vs 57%). Median follow-up from PD1±IPI start was 37.8 months (95% CI, 33.9 to 52.9). ORR was 36%; 34% with PD1 vs 39% with IPI+PD1 (p=0.5713). Median PFS was 3.4 months; 3.4 with PD1 vs 3.6 months with IPI+PD1 (p=0.6951). Median OS was 15.4 months; 14.4 for PD1 vs 20.5 months with IPI+PD1 (p=0.2603). The rate of grade 3 or 4 toxicities was higher with IPI+PD1 (31%) vs PD1 (7%). ORR, PFS and OS were numerically higher with IPI+PD1 vs PD1 across most subgroups except for females, those with <10 days between BRAF/MEKi and PD1±IPI, and those with stage III/M1A/M1B melanoma. The combination of ECOG PS=0 and absence of liver metastases identified patients with >3 years OS (area under the curve, AUC=0.74), while ECOG PS ≥1, progressing brain metastases and presence of bone metastases predicted primary progression (AUC=0.67). CONCLUSIONS: IPI+PD1 and PD1 after BRAF/MEKi have similar outcomes despite worse baseline prognostic features in the IPI+PD1 group, however, IPI+PD1 is more toxic. A combination of clinical factors can identify long-term survivors, but less accurately those with primary resistance to immunotherapy after targeted therapy.


Brain Neoplasms , Melanoma , Neoplasms, Second Primary , Protein Kinase Inhibitors , Skin Neoplasms , Brain Neoplasms/drug therapy , Female , Humans , Ipilimumab/therapeutic use , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mutation , Neoplasms, Second Primary/drug therapy , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Melanoma, Cutaneous Malignant
19.
Pediatr Dermatol ; 39(4): 646-647, 2022 Jul.
Article En | MEDLINE | ID: mdl-35896172

Selumetinib is a mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor (MEKi) approved to treat inoperable plexiform neurofibromas and used off-label for low-grade gliomas. Acneiform eruptions are a known complication of MEKi use, and in some cases, may lead to paused, dose-reduced, or discontinued therapy. Isotretinoin has been reported as an effective treatment for acneiform eruptions secondary to targeted therapies, primarily in the adult population. Here we describe a pediatric patient with a severe acneiform eruption secondary to selumetinib who was successfully treated with low-dose isotretinoin when unresponsive to conventional therapies.


Acneiform Eruptions , Isotretinoin , Neurofibroma, Plexiform , Protein Kinase Inhibitors , Acneiform Eruptions/chemically induced , Acneiform Eruptions/drug therapy , Child , Humans , Isotretinoin/therapeutic use , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/adverse effects
20.
Nature ; 606(7915): 797-803, 2022 06.
Article En | MEDLINE | ID: mdl-35705814

Treatment with therapy targeting BRAF and MEK (BRAF/MEK) has revolutionized care in melanoma and other cancers; however, therapeutic resistance is common and innovative treatment strategies are needed1,2. Here we studied a group of patients with melanoma who were treated with neoadjuvant BRAF/MEK-targeted therapy ( NCT02231775 , n = 51) and observed significantly higher rates of major pathological response (MPR; ≤10% viable tumour at resection) and improved recurrence-free survival (RFS) in female versus male patients (MPR, 66% versus 14%, P = 0.001; RFS, 64% versus 32% at 2 years, P = 0.021). The findings were validated in several additional cohorts2-4 of patients with unresectable metastatic melanoma who were treated with BRAF- and/or MEK-targeted therapy (n = 664 patients in total), demonstrating improved progression-free survival and overall survival in female versus male patients in several of these studies. Studies in preclinical models demonstrated significantly impaired anti-tumour activity in male versus female mice after BRAF/MEK-targeted therapy (P = 0.006), with significantly higher expression of the androgen receptor in tumours of male and female BRAF/MEK-treated mice versus the control (P = 0.0006 and P = 0.0025). Pharmacological inhibition of androgen receptor signalling improved responses to BRAF/MEK-targeted therapy in male and female mice (P = 0.018 and P = 0.003), whereas induction of androgen receptor signalling (through testosterone administration) was associated with a significantly impaired response to BRAF/MEK-targeted therapy in male and female patients (P = 0.021 and P < 0.0001). Together, these results have important implications for therapy.


Androgen Receptor Antagonists , Melanoma , Mitogen-Activated Protein Kinase Kinases , Molecular Targeted Therapy , Proto-Oncogene Proteins B-raf , Receptors, Androgen , Animals , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Female , Humans , Male , Melanoma/drug therapy , Melanoma/pathology , Mice , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Receptors, Androgen/metabolism , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Survival Analysis
...