Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 14.658
1.
J Gen Virol ; 105(6)2024 Jun.
Article En | MEDLINE | ID: mdl-38836747

Historically, the Wa-like strains of human group A rotavirus (RVA) have been major causes of gastroenteritis. However, since the 2010s, the circulation of non-Wa-like strains has been increasingly reported, indicating a shift in the molecular epidemiology of RVA. Although understanding RVA evolution requires the analysis of both current and historical strains, comprehensive pre-1980's sequencing data are scarce globally. We determined the whole-genome sequences of representative strains from six RVA gastroenteritis outbreaks observed at an infant home in Sapporo, Japan, between 1981 and 1989. These outbreaks were mainly caused by G1 or G3 Wa-like strains, resembling strains from the United States in the 1970s-1980s and from Malawi in the 1990s. Phylogenetic analysis of these infant home strains, together with Wa-like strains collected worldwide from the 1970s to 2020, revealed a notable trend: pre-2010 strains diverged into multiple lineages in many genomic segments, whereas post-2010 strains tended to converge into a single lineage. However, Bayesian skyline plot indicated near-constant effective population sizes from the 1970s to 2020, and selection pressure analysis identified positive selection only at amino acid 75 of NSP2. These results suggest that evidence supporting the influence of rotavirus vaccines, introduced globally since 2006, on Wa-like RVA molecular evolution is lacking at present, and phylogenetic analysis may simply reflect natural fluctuations in RVA molecular evolution. Evaluating the long-term impact of RV vaccines on the molecular evolution of RVA requires sustained surveillance.


Evolution, Molecular , Gastroenteritis , Genome, Viral , Phylogeny , Rotavirus Infections , Rotavirus , Rotavirus/genetics , Rotavirus/classification , Rotavirus/isolation & purification , Humans , Rotavirus Infections/virology , Rotavirus Infections/epidemiology , Rotavirus Infections/history , Japan/epidemiology , Gastroenteritis/virology , Gastroenteritis/epidemiology , Gastroenteritis/history , Whole Genome Sequencing , Disease Outbreaks , Infant , Genotype , Molecular Epidemiology , History, 20th Century
2.
J Infect Dev Ctries ; 18(4): 571-578, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38728632

INTRODUCTION: Escherichia coli (E. coli) is the major cause of extraintestinal infections in the urinary tracts and bloodstream in humans in the community and health care institutions. Several studies on the genetic characterization of E. coli among clinical and environmental isolates were performed and revealed a wide diversity of sequence types (STs). In Jordan, phenotypic and genetic features of E. coli were extensively studied but there is still a need to identify the STs that inhabit the community. METHODOLOGY: In this study, multi-locus sequence typing (MLST) was performed on archived clinical E. coli isolates collected from different hospitals in Jordan and the identified STs were extensively analyzed. RESULTS: Genotyping of 92 E. coli isolates revealed 34 STs and 9 clonal complexes. The frequencies of STs ranged between 1 to 23 observations. The most frequent STs among E. coli isolates were ST131 (n = 23), ST69 (n = 19), ST998 (n = 7), ST2083 (n = 5), and ST540 (n = 4). These five ST accounted for up to 60% of the 92 E. coli isolates. Based on the MLST database, the STs reported in this work were world widely recognized in humans, animals, and in the environment. CONCLUSIONS: This study has elaborated more knowledge about the genotypes of E. coli in Jordan, with recommendations for future studies to correlate its genotypes with virulence and resistance genes.


Escherichia coli Infections , Escherichia coli , Genotype , Multilocus Sequence Typing , Jordan/epidemiology , Humans , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli/classification , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Genetic Variation , Molecular Epidemiology
3.
J Med Virol ; 96(5): e29654, 2024 May.
Article En | MEDLINE | ID: mdl-38727099

Human Herpesvirus 8 (HHV-8) has been classified by sequence analysis of open reading frame (ORF) K1, ORF K15, and variable sequence loci within the central constant region. The purpose of this study was to examine the molecular epidemiology of HHV-8 in an Irish population. This retrospective study included 30 patients who had HHV-8 DNA detected in plasma. Nested end-point PCR was used to characterise four regions of the HHV-8 genome, K1, T0.7 (K12), ORF 75, and K15. Sequencing data were obtained for 23 specimens from 19 patients. Phylogenetic analysis of ORF K1 demonstrated that subtypes A, B, C and F were present in 37%, 11%, 47% and 5%, respectively. For T0.7 and ORF 75, sequencing data were obtained for 12 patients. For T0.7, subtypes A/C, J, B, R and Q were present in 58%, 17%, 8%, 8%, and 8%, respectively. For ORF 75, subtypes A, B, C and D were present in 58%, 8%, 25%, and 8%, respectively. K15 sequences were determined for 13 patients. 69% had the P allele and 31% had the M allele. The data generated by this study demonstrate that a broad variety of HHV-8 subtypes are represented in patients exhibiting HHV-8-related disease in Ireland, a low prevalence country. The predominance of C and A K1 subtypes was as expected for a Western European population. The 31% prevalence for K15 subtype M was higher than expected for a Western European population. This may represent the changing and evolving epidemiology in Ireland due to altered migration patterns.


DNA, Viral , Herpesviridae Infections , Herpesvirus 8, Human , Molecular Epidemiology , Phylogeny , Sequence Analysis, DNA , Humans , Ireland/epidemiology , Herpesviridae Infections/epidemiology , Herpesviridae Infections/virology , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/classification , Herpesvirus 8, Human/isolation & purification , Male , Female , Retrospective Studies , Middle Aged , Adult , DNA, Viral/genetics , Aged , Young Adult , Polymerase Chain Reaction , Genotype , Adolescent , Open Reading Frames , Aged, 80 and over , Child , Molecular Sequence Data
4.
Ann Clin Microbiol Antimicrob ; 23(1): 41, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704577

BACKGROUND: Infections caused by linezolid-resistant enterococci (LRE) are clinically difficult to treat and threaten patient health. However, there is a lack of studies on long time-span LRE strains in China. For this reason, our study comprehensively revealed the resistance mechanisms of LRE strains collected in a Chinese tertiary care hospital from 2011 to 2022. METHODS: Enterococcal strains were screened and verified after retrospective analysis of microbial data. Subsequently, 65 LRE strains (61 Enterococcus faecalis and 4 Enterococcus faecium, MIC ≥ 8 µg/ml), 1 linezolid-intermediate Enterococcus faecium (MIC = 4 µg/ml) and 1 linezolid-susceptible Enterococcus faecium (MIC = 1.5 µg/ml) were submitted for whole-genome sequencing (WGS) analysis and bioinformatics analysis. RESULTS: The optrA gene was found to be the most common linezolid resistance mechanism in our study. We identified the wild-type OptrA and various OptrA variants in 98.5% of LRE strains (61 Enterococcus faecalis and 3 Enterococcus faecium). We also found one linezolid-resistant Enterococcus faecium strain carried both optrA and cfr(D) gene, while one linezolid-resistant Enterococcus faecium only harbored the poxtA gene. Most optrA genes (55/64) were located on plasmids, with impB-fexA-optrA, impB-fexA-optrA-erm(A), fexA-optrA-erm(A), and fexA-optrA segments. A minority of optrA genes (9/64) were found on chromosomes with the Tn6674-like platform. Besides, other possible linezolid resistance-associated mechanisms (mutations in the rplC and rplD genes) were also found in 26 enterococcal strains. CONCLUSIONS: Our study suggested that multiple mechanisms of linezolid resistance exist among clinical LRE strains in China.


Anti-Bacterial Agents , Drug Resistance, Bacterial , Enterococcus faecalis , Enterococcus faecium , Gram-Positive Bacterial Infections , Linezolid , Microbial Sensitivity Tests , Whole Genome Sequencing , Linezolid/pharmacology , China/epidemiology , Humans , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Drug Resistance, Bacterial/genetics , Enterococcus faecalis/drug effects , Enterococcus faecalis/genetics , Anti-Bacterial Agents/pharmacology , Retrospective Studies , Enterococcus/drug effects , Enterococcus/genetics , Bacterial Proteins/genetics , Genome, Bacterial , Molecular Epidemiology , Tertiary Care Centers , Genomics
5.
BMC Public Health ; 24(1): 1436, 2024 May 29.
Article En | MEDLINE | ID: mdl-38811963

BACKGROUND: HIV molecular epidemiology (HIV ME) can support the early detection of emerging clusters of new HIV infections by combining HIV sequence data routinely obtained during the clinical treatment of people living with HIV with behavioral, geographic, and sociodemographic information. While information about emerging clusters promises to facilitate HIV prevention and treatment efforts, the use of this data also raises several ethical concerns. We sought to assess how those working on the frontlines of HIV ME, specifically public health practitioners (PHPs) and researchers, prioritized these issues. METHODS: Ethical issues were identified through literature review, qualitative in-depth interviews, and stakeholder engagement. PHPs and researchers using HIV ME prioritized the issues using best-worst scaling (BWS). A balanced incomplete block design was used to generate 11 choice tasks each consisting of a sub-set of 5 ethical concerns. In each task, respondents were asked to assess the most and least concerning issue. Data were analyzed using conditional logit, with a Swait-Louviere test of poolability. Latent class analysis was then used to explore preference heterogeneity. RESULTS: In total, 57 respondents completed the BWS experiment May-June 2023 with the Swait-Louviere test indicating that researchers and PHPs could be pooled (p = 0.512). Latent class analysis identified two classes, those highlighting "Harms" (n = 29) (prioritizing concerns about potential risk of legal prosecution, individual harm, and group stigma) and those highlighting "Utility" (n = 28) (prioritizing concerns about limited evidence, resource allocation, non-disclosure of data use for HIV ME, and the potential to infer the directionality of HIV transmission). There were no differences in the characteristics of members across classes. CONCLUSIONS: The ethical issues of HIV ME vary in importance among stakeholders, reflecting different perspectives on the potential impact and usefulness of the data. Knowing these differences exist can directly inform the focus of future deliberations about the policies and practices of HIV ME in the United States.


HIV Infections , Molecular Epidemiology , Humans , HIV Infections/epidemiology , Male , Female , Research Personnel/psychology , Research Personnel/ethics , Adult , Public Health/ethics , Middle Aged , Qualitative Research
6.
Virol J ; 21(1): 115, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778352

BACKGROUND: Feline herpesvirus type 1 (FHV-1) is a life threatening highly contagious virus in cats and typically causes upper respiratory tract infections as well as conjunctival and corneal ulcers. Genetic variability could alter the severity of diseases and clinical signs. Despite regular vaccine practices against FHV-1 in China, new FHV-1 cases still commonly occur. The genetic and phylogenetic characteristics of FHV-1 in Kunshan city of China has not been studied yet. Therefore, this study was planned to investigate the prevalence, molecular characteristics of circulating strains, and phylogenetic analyses of FHV-1. This is the first report of molecular epidemiology and phylogenetic characteristics of FHV-1 from naturally infected cats in Kunshan, China. METHODS: The occulo-nasal swabs were collected from diseased cats showing respiratory distress, conjunctivitis, and corneal ulcers at different veterinary clinics in Kunshan from 2022 to 2023. Clinical data and general information were recorded. Swab samples were processed for preliminary detection of FHV-1. Thymidine kinase (TK), glycoprotein B (gB) and glycoprotein D (gD) genes were sequenced and analyzed to investigate genetic diversity and evolution of FHV-1. RESULTS: The FHV-1 genome was detected in 43 (43/200, 21.5%) samples using RT-PCR targeting the TK gene. Statistical analysis showed a significant correlation between age, vaccination status and living environment (p < 0.05) with FHV-1 positivity, while a non-significant correlation was observed for FHV-1 positivity and sex of cats (p > 0.05). Additionally, eight FHV-1 positive cats were co-infected with feline calicivirus (8/43,18.6%). FHV-1 identified in the present study was confirmed as FHV-1 based on phylogenetic analyses. The sequence analyses revealed that 43 FHV-1 strains identified in the present study did not differ much with reference strains within China and worldwide. A nucleotide homology of 99-100% was determined among gB, TK and gD genes nucleotide sequences when compared with standard strain C-27 and vaccine strains. Amino acid analysis showed some amino acid substitutions in TK, gB and gD protein sequences. A potential N-linked glycosylation site was observed in all TK protein sequences. Phylogenetic analyses revealed minor variations and short evolutionary distance among FHV-1 strains detected in this study. CONCLUSIONS: Our findings indicate that genomes of 43 FHV-1 strains are highly homogenous and antigenically similar, and the degree of variation in major envelope proteins between strains is low. This study demonstrated some useful data about prevalence, genetic characteristics, and evolution of FHV-1 in Kunshan, which may aid in future vaccine development.


Cat Diseases , Genetic Variation , Herpesviridae Infections , Molecular Epidemiology , Phylogeny , Varicellovirus , Animals , Cats , China/epidemiology , Cat Diseases/virology , Cat Diseases/epidemiology , Herpesviridae Infections/epidemiology , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Varicellovirus/genetics , Varicellovirus/classification , Female , Male , Prevalence
7.
J Clin Lab Anal ; 38(9): e25042, 2024 May.
Article En | MEDLINE | ID: mdl-38775102

BACKGROUND: The current study aimed to identify Iranian Nakaseomyces (Candida) glabrata complex species in the clinical isolates and determine their antifungal susceptibility profile. METHODS: In total, 320 N. glabrata clinical isolates were collected from patients hospitalized in different geographical regions of Iran. The initial screening was performed by morphological characteristics on CHROMagar Candida. Each isolate was identified by targeting the D1/D2 rDNA using a multiplex-PCR method. To validate the mPCR method and determine genetic diversity, the ITS-rDNA region was randomly sequenced in 40 isolates. Additionally, antifungal susceptibility was evaluated against nine antifungal agents following the CLSI M27-A4 guidelines. RESULTS: All clinical isolates from Iran were identified as N. glabrata. The analysis of ITS-rDNA sequence data revealed the presence of eight distinct ITS clades and 10 haplotypes among the 40 isolates of N. glabrata. The predominant clades identified were Clades VII, V, and IV, which respectively accounted for 22.5%, 17.5%, and 17.5% isolates. The widest MIC ranges were observed for voriconazole (0.016-8 µg/mL) and isavuconazole (0.016-2 µg/mL), whereas the narrowest ranges were seen with itraconazole and amphotericin B (0.25-2 µg/mL). CONCLUSION: Haplotype diversity can be a valuable approach for studying the genetic diversity, transmission patterns, and epidemiology of the N. glabrata complex.


Antifungal Agents , Candida glabrata , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Humans , Iran/epidemiology , Candida glabrata/drug effects , Candida glabrata/genetics , Molecular Epidemiology , Male , Female , Adult , Middle Aged , Candidiasis/microbiology , Candidiasis/epidemiology , Drug Resistance, Fungal/genetics
8.
Vet Rec ; 194(10): e4150, 2024 May 18.
Article En | MEDLINE | ID: mdl-38693629

BACKGROUND: Bovine viral diarrhoea (BVD) is caused by Pestivirus A and Pestivirus B. Northern Ireland (NI) embarked on a compulsory BVD eradication scheme in 2016, which continues to this day, so an understanding of the composition of the pestivirus genotypes in the cattle population of NI is required. METHODS: This molecular epidemiology study employed 5' untranslated region (5'UTR) genetic sequencing to examine the pestivirus genotypes circulating in samples taken from a hotspot of BVD outbreaks in the Enniskillen area in 2019. RESULTS: Bovine viral diarrhoea virus (BVDV)-1e (Pestivirus A) was detected for the first time in Northern Ireland, and at a high frequency, in an infection hotspot in Enniskillen in 2019. There was no evidence of infection with BVDV-2 (Pestivirus B), Border disease virus (pestivirus D) or HoBi-like virus/BVDV-3 (pestivirus H). LIMITATIONS: Only 5'UTR sequencing was used, so supplementary sequencing, along with phylogenetic trees that include all BVDV-1 genotype reference strains, would improve accuracy. Examination of farm locations and animal movement/trade is also required. CONCLUSIONS: Genotype BVDV-1e was found for the first time in Northern Ireland, indicating an increase in the genetic diversity of BVDV-1, which could have implications for vaccine design and highlights the need for continued pestivirus genotypic surveillance.


Bovine Virus Diarrhea-Mucosal Disease , Diarrhea Virus 1, Bovine Viral , Genotype , Animals , Northern Ireland/epidemiology , Cattle , Bovine Virus Diarrhea-Mucosal Disease/epidemiology , Bovine Virus Diarrhea-Mucosal Disease/virology , Diarrhea Virus 1, Bovine Viral/genetics , Diarrhea Virus 1, Bovine Viral/isolation & purification , 5' Untranslated Regions , Phylogeny , Molecular Epidemiology , Disease Outbreaks/veterinary
9.
BMJ Open ; 14(5): e085646, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816041

OBJECTIVE: To analyse the HIV-1 subtypes and molecular transmission characteristics of HIV-infected older individuals aged 50 and above in Huzhou City, and provide a scientific basis for prevention and treatment strategies for them. DESIGN: A cross-sectional study with clustered molecular transmission network cases was performed, and basic epidemiological information was retrieved from the Chinese Centres for Disease Prevention and Control (CDC) Information System. SETTING AND PARTICIPANTS: A molecular epidemiological study was conducted in 899 newly diagnosed HIV-infected individuals from January 2019 and March 2023 in Huzhou city, Zhejiang province, Eastern China. Out of these, HIV sequences were successfully obtained from 673 individuals, including 274 who were older individuals aged 50 and above. PRIMARY AND SECONDARY OUTCOMES: Reverse transcription-polymerase chain reaction (PCR) and nested PCR were used to amplify the polymerase gene of HIV-1, and gene sequencing was performed. We used univariate and multivariate logistic regression to describe the association of clustered molecular transmission network cases. RESULTS: In total, 274 valid HIV sequences of older individuals were obtained, which revealed 14 subtypes. Circulating recombinant forms (CRF) 07_BC accounted for 55.8% and CRF01_AE accounted for 20.1% of the subtypes. Data of 150 older individuals were included in the molecular transmission network, and the proportion of elderly individuals in clustered cases is 52.26% (150/287). The results of multivariable logistic regression analysis showed that the older age group (60-82 years) and CRF07_BC subtype were associated with case clustering (transmission risk). CONCLUSIONS: The key high-risk transmission network was mainly composed of the older age group (60-82 years) and CRF07_BC subtype. It is necessary to further strengthen AIDS health promotion and education for individuals aged 60 years and above, as well as for patients with the CRF07_BC subtype, to reduce HIV transmission and clustering risk.


HIV Infections , HIV-1 , Humans , China/epidemiology , Cross-Sectional Studies , HIV Infections/transmission , HIV Infections/epidemiology , Male , Female , Middle Aged , Aged , HIV-1/genetics , Aged, 80 and over , Molecular Epidemiology
10.
Front Cell Infect Microbiol ; 14: 1380678, 2024.
Article En | MEDLINE | ID: mdl-38817445

Introduction: The increasing incidence of Klebsiella pneumoniae and carbapenem-resistant Klebsiella pneumoniae (CRKP) has posed great challenges for the clinical anti-infective treatment. Here, we describe the molecular epidemiology and antimicrobial resistance profiles of K. pneumoniae and CRKP isolates from hospitalized patients in different regions of China. Methods: A total of 219 K. pneumoniae isolates from 26 hospitals in 19 provinces of China were collected during 2019-2020. Antimicrobial susceptibility tests, multilocus sequence typing were performed, antimicrobial resistance genes were detected by polymerase chain reaction (PCR). Antimicrobial resistance profiles were compared between different groups. Results: The resistance rates of K. pneumoniae isolates to imipenem, meropenem, and ertapenem were 20.1%, 20.1%, and 22.4%, respectively. A total of 45 CRKP isolates were identified. There was a significant difference in antimicrobial resistance between 45 CRKP and 174 carbapenem-sensitive Klebsiella pneumoniae (CSKP) strains, and the CRKP isolates were characterized by the multiple-drug resistance phenotype.There were regional differences among antimicrobial resistance rates of K. pneumoniae to cefazolin, chloramphenicol, and sulfamethoxazole,which were lower in the northwest than those in north and south of China.The mostcommon sequence type (ST) was ST11 (66.7% of the strains). In addition, we detected 13 other STs. There were differences between ST11 and non-ST11 isolates in the resistance rate to amikacin, gentamicin, latamoxef, ciprofloxacin, levofloxacin, aztreonam, nitrofurantoin, fosfomycin, and ceftazidime/avibactam. In terms of molecular resistance mechanisms, the majority of the CRKP strains (71.1%, 32/45) harbored blaKPC-2, followed by blaNDM (22.2%, 10/45). Strains harboring blaKPC or blaNDM genes showed different sensitivities to some antibiotics. Conclusion: Our analysis emphasizes the importance of surveilling carbapenem-resistant determinants and analyzing their molecular characteristics for better management of antimicrobial agents in clinical use.


Anti-Bacterial Agents , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Molecular Epidemiology , Multilocus Sequence Typing , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Humans , China/epidemiology , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Male , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Female , Middle Aged , Aged , Hospitalization , Adult , Carbapenems/pharmacology
11.
PLoS Negl Trop Dis ; 18(5): e0012184, 2024 May.
Article En | MEDLINE | ID: mdl-38768248

BACKGROUND: Dengue is a major public health concern in Reunion Island, marked by recurrent epidemics, including successive outbreaks of dengue virus serotypes 1 and 2 (DENV1 and DENV2) with over 70,000 cases confirmed since 2017. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we used Oxford Nanopore NGS technology for sequencing virologically-confirmed samples and clinical isolates collected between 2012 and 2022 to investigate the molecular epidemiology and evolution of DENV in Reunion Island. Here, we generated and analyzed a total of 499 DENV1, 360 DENV2, and 18 DENV3 sequences. By phylogenetic analysis, we show that different genotypes and variants of DENV have circulated in the past decade that likely originated from Seychelles, Mayotte and Southeast Asia and highly affected areas in Asia and Africa. CONCLUSIONS/SIGNIFICANCE: DENV sequences from Reunion Island exhibit a high genetic diversity which suggests regular introductions of new viral lineages from various Indian Ocean islands. The insights from our phylogenetic analysis may inform local health authorities about the endemicity of DENV variants circulating in Reunion Island and may improve dengue management and surveillance. This work emphasizes the importance of strong local coordination and collaboration to inform public health stakeholders in Reunion Island, neighboring areas, and mainland France.


Dengue Virus , Dengue , Genetic Variation , Genotype , Phylogeny , Dengue Virus/genetics , Dengue Virus/classification , Dengue Virus/isolation & purification , Humans , Dengue/epidemiology , Dengue/virology , Reunion/epidemiology , Molecular Epidemiology , Serogroup , Disease Outbreaks , High-Throughput Nucleotide Sequencing
12.
Virol J ; 21(1): 122, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816865

Hand, Foot and Mouth Disease (HFMD) is a highly contagious viral illness primarily affecting children globally. A significant epidemiological transition has been noted in mainland China, characterized by a substantial increase in HFMD cases caused by non-Enterovirus A71 (EV-A71) and non-Coxsackievirus A16 (CVA16) enteroviruses (EVs). Our study conducts a retrospective examination of 36,461 EV-positive specimens collected from Guangdong, China, from 2013 to 2021. Epidemiological trends suggest that, following 2013, Coxsackievirus A6 (CVA6) and Coxsackievirus A10 (CVA10) have emerged as the primary etiological agents for HFMD. In stark contrast, the incidence of EV-A71 has sharply declined, nearing extinction after 2018. Notably, cases of CVA10 infection were considerably younger, with a median age of 1.8 years, compared to 2.3 years for those with EV-A71 infections, possibly indicating accumulated EV-A71-specific herd immunity among young children. Through extensive genomic sequencing and analysis, we identified the N136D mutation in the 2 A protein, contributing to a predominant subcluster within genogroup C of CVA10 circulating in Guangdong since 2017. Additionally, a high frequency of recombination events was observed in genogroup F of CVA10, suggesting that the prevalence of this lineage might be underrecognized. The dynamic landscape of EV genotypes, along with their potential to cause outbreaks, underscores the need to broaden surveillance efforts to include a more diverse spectrum of EV genotypes. Moreover, given the shifting dominance of EV genotypes, it may be prudent to re-evaluate and optimize existing vaccination strategies, which are currently focused primarily target EV-A71.


Genome, Viral , Genotype , Hand, Foot and Mouth Disease , Phylogeny , China/epidemiology , Humans , Hand, Foot and Mouth Disease/epidemiology , Hand, Foot and Mouth Disease/virology , Child, Preschool , Infant , Retrospective Studies , Female , Male , Child , Molecular Epidemiology , Enterovirus/genetics , Enterovirus/classification , Enterovirus/isolation & purification , Enterovirus A, Human/genetics , Enterovirus A, Human/isolation & purification , Genomics , Incidence , Adolescent , Enterovirus Infections/epidemiology , Enterovirus Infections/virology
13.
Infect Genet Evol ; 121: 105603, 2024 Jul.
Article En | MEDLINE | ID: mdl-38723983

In the mountainous, rural regions of eastern China, tuberculosis (TB) remains a formidable challenge; however, the long-term molecular epidemiological surveillance in these regions is limited. This study aimed to investigate molecular and spatial epidemiology of TB in two mountainous, rural counties of Zhejiang Province, China, from 2015 to 2021, to elucidate the recent transmission and drug-resistance profiles. The predominant Lineage 2 (L2) Beijing family accounted for 80.1% of total 532 sequenced Mycobacterium tuberculosis (Mtb) strains, showing consistent prevalence over seven years. Gene mutations associated with drug resistance were identified in 19.4% (103/532) of strains, including 47 rifampicin or isoniazid-resistant strains, eight multi-drug-resistant (MDR) strains, and five pre-extensively drug-resistant (pre-XDR) strains. Genomic clustering revealed 53 distinct clusters with an overall transmission clustering rate of 23.9% (127/532). Patients with a history of retreatment and those infected with L2 strains had a higher risk of recent transmission. Spatial and epidemiological analysis unveiled significant transmission hotspots, especially in densely populated urban areas, involving various public places such as medical institutions, farmlands, markets, and cardrooms. The study emphasizes the pivotal role of Beijing strains and urban-based TB transmission in the western mountainous regions in Zhejiang, highlighting the urgent requirement for specific interventions to mitigate the impact of TB in these unique communities.


Mycobacterium tuberculosis , Tuberculosis , Humans , China/epidemiology , Mycobacterium tuberculosis/genetics , Female , Male , Adult , Middle Aged , Prospective Studies , Incidence , Tuberculosis/epidemiology , Tuberculosis/transmission , Tuberculosis/microbiology , Spatial Analysis , Young Adult , Adolescent , Aged , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/transmission , Tuberculosis, Multidrug-Resistant/microbiology , Molecular Epidemiology , Antitubercular Agents/pharmacology , Genomics/methods , Phylogeny
14.
Viruses ; 16(5)2024 05 16.
Article En | MEDLINE | ID: mdl-38793677

Avian reovirus (ARV) infection can cause significant losses to the poultry industry. Disease control has traditionally been attempted mainly through vaccination. However, the increase in clinical outbreaks in the last decades demonstrated the poor effectiveness of current vaccination approaches. The present study reconstructs the evolution and molecular epidemiology of different ARV genotypes using a phylodynamic approach, benefiting from a collection of more than one thousand sigma C (σC) sequences sampled over time at a worldwide level. ARVs' origin was estimated to occur several centuries ago, largely predating the first clinical reports. The origins of all genotypes were inferred at least one century ago, and their emergence and rise reflect the intensification of the poultry industry. The introduction of vaccinations had only limited and transitory effects on viral circulation and further expansion was observed, particularly after the 1990s, likely because of the limited immunity and the suboptimal and patchy vaccination application. In parallel, strong selective pressures acted with different strengths and directionalities among genotypes, leading to the emergence of new variants. While preventing the spread of new variants with different phenotypic features would be pivotal, a phylogeographic analysis revealed an intricate network of viral migrations occurring even over long distances and reflecting well-established socio-economic relationships.


Genotype , Orthoreovirus, Avian , Phylogeny , Phylogeography , Poultry Diseases , Reoviridae Infections , Orthoreovirus, Avian/genetics , Orthoreovirus, Avian/classification , Animals , Reoviridae Infections/veterinary , Reoviridae Infections/virology , Reoviridae Infections/epidemiology , Poultry Diseases/virology , Poultry Diseases/epidemiology , Evolution, Molecular , Molecular Epidemiology , Poultry/virology , Genetic Variation
15.
Braz J Microbiol ; 55(2): 2025-2033, 2024 Jun.
Article En | MEDLINE | ID: mdl-38710991

Papillomaviruses (PVs) have been identified in several animal species, including dogs (canine papillomaviruses, CPVs) and cattle (bovine papillomaviruses, BPVs). Although some BPVs may occasionally infect species other than cattle, to the best of our knowledge, BPVs have not been reported in dogs to date. Herein, we carried out a retrospective phylogenetic study of PVs circulating in dogs from southern Brazil between 2017 and 2022, also investigating possible mixed infections and spillover events. For this, we screened 32 canine papilloma samples by PCR using the degenerate primers FAP59/64 and/or MY09/11, which amplify different regions of the L1 gene; the genomic target often used for PV classification/typing. Out these, 23 PV DNA samples were successfully amplified and sequenced. All PVs amplified by FAP59/64 (n = 22) were classified as CPV-1. On the other hand, PVs amplified by MY09/11 (n = 4) were classified as putative BPV-1. Among these, three samples showed mixed infection by CPV-1 and putative BPV-1. One of the putative BPV-1 detected in co-infected samples had the L1 gene full-sequenced, confirming the gene identity. Furthermore, the phylogenetic classifications from the FAP59/64 and/or MY09/11 amplicons were supported by a careful in silico analysis, which demonstrated that the analysis based on them matches to the classification from the complete L1 gene. Overall, we described CPV-1 circulation in southern Brazil over the years and the potencial BPV infection in dogs (potential spillover event), as well as possible CPV/1/BPV-1 co-infections. Finally, we suggest the analysis of the complete genome of the putative BPVs detected in dogs in order to deepen the knowledge about the PV-host interactions.


Coinfection , Dog Diseases , Molecular Epidemiology , Papillomaviridae , Papillomavirus Infections , Phylogeny , Animals , Dogs , Brazil/epidemiology , Dog Diseases/virology , Dog Diseases/epidemiology , Papillomavirus Infections/veterinary , Papillomavirus Infections/virology , Papillomavirus Infections/epidemiology , Papillomaviridae/genetics , Papillomaviridae/classification , Papillomaviridae/isolation & purification , Retrospective Studies , Coinfection/virology , Coinfection/veterinary , Coinfection/epidemiology , DNA, Viral/genetics
16.
Microbiol Spectr ; 12(6): e0295023, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38709078

We conducted a molecular epidemiological study of Staphylococcus aureus using whole-genome sequence data and clinical data of isolates from nasal swabs of patients admitted to the intensive care unit (ICU) of Hiroshima University hospital. The relationship between isolate genotypes and virulence factors, particularly for isolates that caused infectious diseases during ICU admission was compared with those that did not. The nasal carriage rates of methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) in patients admitted to the ICU were 7.0% and 20.1%, respectively. The carriage rate of community-acquired (CA)-MRSA was 2.3%, accounting for 32.8% of all MRSA isolates. Whole-genome sequencing analysis of the MRSA isolates indicated that most, including CA-MRSA and healthcare-associated (HA)-MRSA, belonged to clonal complex (CC) 8 [sequence type (ST) 8] and SCCmec type IV. Furthermore, results for three disease foci (pneumonia, skin and soft tissue infection, and deep abscess) and the assessment of virulence factor genes associated with disease conditions [bacteremia, acute respiratory distress syndrome (ARDS), disseminated intravascular coagulopathy (DIC), and septic shock] suggested that nasal colonization of S. aureus clones could represent a risk for patients within the ICU. Particularly, MRSA/J and MSSA/J may be more likely to cause deep abscess infection; ST764 may cause ventilation-associated pneumonia, hospital-acquired pneumonia and subsequent bacteremia, and ARDS, and tst-1-positive isolates may cause DIC onset.IMPORTANCENasal colonization of MRSA in patients admitted to the intensive care unit (ICU) may predict the development of MRSA infections. However, no bacteriological data are available to perform risk assessments for Staphylococcus aureus infection onset. In this single-center 2-year genomic surveillance study, we analyzed all S. aureus isolates from nasal swabs of patients admitted to the ICU and those from the blood or lesions of in-patients who developed infectious diseases in the ICU. Furthermore, we identified the virulent clones responsible for causing infectious diseases in the ICU. Herein, we report several virulent clones present in the nares that are predictive of invasive infections. This information may facilitate the design of preemptive strategies to identify and eradicate virulent MRSA strains, reducing nosocomial infections within the ICU.


Carrier State , Intensive Care Units , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Staphylococcus aureus , Tertiary Care Centers , Virulence Factors , Humans , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Virulence Factors/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Carrier State/microbiology , Carrier State/epidemiology , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/pathogenicity , Cross Infection/microbiology , Cross Infection/epidemiology , Whole Genome Sequencing , Male , Molecular Epidemiology , Nose/microbiology , Female , Virulence/genetics , Community-Acquired Infections/microbiology , Community-Acquired Infections/epidemiology , Aged , Middle Aged , Genome, Bacterial , Genotype
17.
Saudi Med J ; 45(5): 458-467, 2024 May.
Article En | MEDLINE | ID: mdl-38734425

The aim of this study was to go through the molecular methods used for typing of carbapenem-resistant Acientobacter baumannii (CRAB) isolates for investigating the molecular epidemiology all over the world. Multiple typing techniques are required to understand the source and nature of outbreaks caused by Acientobacter baumannii (A. baumannii) and acquired resistance to antimicrobials. Nowadays, there is gradual shift from traditional typing methods to modern molecular methods to study molecular epidemiology and infection control. Molecular typing of A. baumannii strains has been revolutionized significantly in the last 2 decades. A few sequencing-based techniques have been proven as a breakthrough and opened new prospects, which have not been achieved by the traditional methods. In this review, discussed different pre-existing and recently used typing methods to explore the molecular epidemiology of A. baumannii pertaining in context with human infections.


Acinetobacter Infections , Acinetobacter baumannii , Molecular Epidemiology , Molecular Typing , Acinetobacter baumannii/genetics , Acinetobacter baumannii/isolation & purification , Humans , Molecular Epidemiology/methods , Acinetobacter Infections/epidemiology , Acinetobacter Infections/microbiology , Molecular Typing/methods , Bacterial Typing Techniques/methods
18.
BMC Infect Dis ; 24(1): 378, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38582858

INTRODUCTION: Carbapenem-resistant gram-negative bacilli are a worldwide concern because of high morbidity and mortality rates. Additionally, the increasing prevalence of these bacteria is dangerous. To investigate the extent of antimicrobial resistance and prioritize the utility of novel drugs, we evaluated the molecular characteristics and antimicrobial susceptibility profiles of carbapenem-resistant Enterobacterales, Pseudomonas aeruginosa and Acinetobacter baumannii in Ecuador in 2022. METHODS: Ninety-five clinical isolates of carbapenem non-susceptible gram-negative bacilli were collected from six hospitals in Ecuador. Carbapenem resistance was confirmed with meropenem disk diffusion assays following Clinical Laboratory Standard Institute guidelines. Carbapenemase production was tested using a modified carbapenemase inactivation method. Antimicrobial susceptibility was tested with a disk diffusion assay, the Vitek 2 System, and gradient diffusion strips. Broth microdilution assays were used to assess colistin susceptibility. All the isolates were screened for the blaKPC, blaNDM, blaOXA-48, blaVIM and blaIMP genes. In addition, A. baumannii isolates were screened for the blaOXA-23, blaOXA-58 and blaOXA-24/40 genes. RESULTS: Carbapenemase production was observed in 96.84% of the isolates. The blaKPC, blaNDM and blaOXA-48 genes were detected in Enterobacterales, with blaKPC being predominant. The blaVIM gene was detected in P. aeruginosa, and blaOXA-24/40 predominated in A. baumannii. Most of the isolates showed co-resistance to aminoglycosides, fluoroquinolones, and trimethoprim/sulfamethoxazole. Both ceftazidime/avibactam and meropenem/vaborbactam were active against carbapenem-resistant gram-negative bacilli that produce serin-carbapenemases. CONCLUSION: The epidemiology of carbapenem resistance in Ecuador is dominated by carbapenemase-producing K. pneumoniae harbouring blaKPC. Extensively drug resistant (XDR) P. aeruginosa and A. baumannii were identified, and their identification revealed the urgent need to implement strategies to reduce the dissemination of these strains.


Carbapenems , beta-Lactamases , Humans , Carbapenems/pharmacology , Meropenem , Molecular Epidemiology , Ecuador/epidemiology , Microbial Sensitivity Tests , beta-Lactamases/genetics , Bacterial Proteins/genetics , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/genetics , Klebsiella pneumoniae/genetics , Pseudomonas aeruginosa/genetics
19.
PLoS One ; 19(4): e0289190, 2024.
Article En | MEDLINE | ID: mdl-38603727

The emergence and spread of ß-lactamase-producing Enterobacteriaceae poses a significant threat to public health, necessitating the rapid detection and investigation of the molecular epidemiology of these pathogens. We modified a multiplex real-time (RT)-PCR to concurrently detect ß-lactamase genes (blaCTX-M, blaTEM, and blaSHV) and Enterobacteriaceae 16S ribosomal RNA. qPCR probes and primers were validated using control isolates, and the sensitivity and specificity assessed. The optimised multiplex qPCR was used to screen 220 non-clinical Enterobacteriaceae from food animals and in-contact humans in Southeast Nigeria selected on cefotaxime-supplemented agar plates. Binary logistic regression was used to explore factors associated with the presence of the blaTEM and blaSHV genes in these isolates, and a subset of isolates from matched sampling sites and host species were whole genome sequenced, and their antimicrobial resistance (AMR) and plasmid profiles determined. The sensitivity and specificity of the qPCR assay was 100%. All isolates (220/220) were positive for Enterobacteriaceae ribosomal 16S rRNA and blaCTX-M, while 66.4% (146/220) and 9% (20/220) were positive for blaTEM and blaSHV, respectively. The prevalence of blaTEM and blaSHV varied across different sampling sites (farm, animal market and abattoirs). Isolates from Abia state were more likely to harbour blaTEM (OR = 2.3, p = 0.04) and blaSHV (OR = 5.12,p = 0.01) than isolates from Ebonyi state; blaTEM was more likely to be detected in isolates from food animals than humans (OR = 2.34, p = 0.03), whereas the reverse was seen for blaSHV (OR = 7.23, p = 0.02). Furthermore, Klebsiella and Enterobacter isolates harboured more AMR genes than Escherichia coli, even though they were isolated from the same sample. We also identified pan resistant Klebsiella harbouring resistance to ten classes of antimicrobials and disinfectant. Therefore, we recommend ESKAPE pathogens are included in AMR surveillance in future and suggest qPCRs be utilised for rapid screening of Enterobacteriaceae from human and animal sources.


Enterobacteriaceae , beta-Lactamases , Animals , Humans , beta-Lactamases/genetics , Nigeria/epidemiology , Molecular Epidemiology , RNA, Ribosomal, 16S/genetics , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
20.
BMC Vet Res ; 20(1): 155, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664764

BACKGROUND: Contagious caprine pleuropneumonia (CCPP) is a fatal WOAH-listed, respiratory disease in small ruminants with goats as primary hosts that is caused by Mycoplasma capricolum subspecies capripneumoniae (Mccp). Twelve CCPP outbreaks were investigated in 11 goat herds and a herd of captive Arabian sand gazelle (Gazella marica) in four Omani governorates by clinical pathological and molecular analysis to compare disease manifestation and Mccp genetic profiles in goats and wild ungulates. RESULTS: The CCPP forms in diseased and necropsied goats varied from peracute (5.8%), acute (79.2%) and chronic (4.5%) while all of the five necropsied gazelles showed the acute form based on the clinical picture, gross and histopathological evaluation. Colonies of Mccp were recovered from cultured pleural fluid, but not from lung tissue samples of one gazelle and nine goats and all the isolates were confirmed by Mccp-specific real time PCR. Whole genome-single nucleotide polymorphism (SNP) analysis was performed on the ten isolates sequenced in this study and twenty sequences retrieved from the Genbank database. The Mccp strains from Oman clustered all in phylogroup A together with strains from East Africa and one strain from Qatar. A low variability of around 125 SNPs was seen in the investigated Omani isolates from both goats and gazelles indicating mutual transmission of the pathogen between wildlife and goats. CONCLUSION: Recent outbreaks of CCPP in Northern Oman are caused by Mccp strains of the East African Phylogroup A which can infect goats and captive gazelles likewise. Therefore, wild and captive ungulates should be considered as reservoirs and included in CCPP surveillance measures.


Antelopes , Disease Outbreaks , Goat Diseases , Goats , Mycoplasma capricolum , Pleuropneumonia, Contagious , Animals , Goat Diseases/epidemiology , Goat Diseases/microbiology , Pleuropneumonia, Contagious/epidemiology , Pleuropneumonia, Contagious/microbiology , Oman/epidemiology , Mycoplasma capricolum/genetics , Disease Outbreaks/veterinary , Polymorphism, Single Nucleotide , Molecular Epidemiology , Phylogeny
...