Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35.533
1.
J Hematol Oncol ; 17(1): 37, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822399

Histone deacetylase (HDAC) serves as a critical molecular regulator in the pathobiology of various malignancies and have garnered attention as a viable target for therapeutic intervention. A variety of HDAC inhibitors (HDACis) have been developed to target HDACs. Many preclinical studies have conclusively demonstrated the antitumor effects of HDACis, whether used as monotherapy or in combination treatments. On this basis, researchers have conducted various clinical studies to evaluate the potential of selective and pan-HDACis in clinical settings. In our work, we extensively summarized and organized current clinical trials, providing a comprehensive overview of the current clinical advancements in targeting HDAC therapy. Furthermore, we engaged in discussions about several clinical trials that did not yield positive outcomes, analyzing the factors that led to their lack of anticipated therapeutic effectiveness. Apart from the experimental design factors, issues such as toxicological side effects, tumor heterogeneity, and unexpected off-target effects also contributed to these less-than-expected results. These challenges have naturally become significant barriers to the application of HDACis. Despite these challenges, we believe that advancements in HDACi research and improvements in combination therapies will pave the way or lead to a broad and hopeful future in the treatment of solid tumors.


Histone Deacetylase Inhibitors , Histone Deacetylases , Neoplasms , Humans , Neoplasms/drug therapy , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/metabolism , Animals , Clinical Trials as Topic , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Molecular Targeted Therapy/methods
2.
J Hematol Oncol ; 17(1): 38, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824603

Peripheral T cell lymphoma (PTCL) represents a group of heterogeneous hematological malignancies, which are notoriously challenging to treat and outcomes are typically poor. Over the past two decades, clinical prognostic indices for patient risk stratification have evolved, while several targeted agents are now available to complement combination chemotherapy in the frontline setting or as a salvage strategy. With further understanding of the molecular pathobiology of PTCL, several innovative approaches incorporating immunomodulatory agents, epigenetic therapies, oncogenic kinase inhibitors and immunotherapeutics have come to the forefront. In this review, we provide a comprehensive overview of the progress in developing clinical prognostic indices for PTCL and describe the broad therapeutic landscape, emphasizing novel targetable pathways that have entered early phase clinical studies.


Lymphoma, T-Cell, Peripheral , Humans , Lymphoma, T-Cell, Peripheral/drug therapy , Lymphoma, T-Cell, Peripheral/therapy , Risk Assessment , Prognosis , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Immunotherapy/methods , Neoplasm Recurrence, Local , Molecular Targeted Therapy/methods
3.
Mol Biomed ; 5(1): 20, 2024 May 31.
Article En | MEDLINE | ID: mdl-38816668

Liver cancer remains one of the most prevalent malignancies worldwide with high incidence and mortality rates. Due to its subtle onset, liver cancer is commonly diagnosed at a late stage when surgical interventions are no longer feasible. This situation highlights the critical role of systemic treatments, including targeted therapies, in bettering patient outcomes. Despite numerous studies on the mechanisms underlying liver cancer, tyrosine kinase inhibitors (TKIs) are the only widely used clinical inhibitors, represented by sorafenib, whose clinical application is greatly limited by the phenomenon of drug resistance. Here we show an in-depth discussion of the signaling pathways frequently implicated in liver cancer pathogenesis and the inhibitors targeting these pathways under investigation or already in use in the management of advanced liver cancer. We elucidate the oncogenic roles of these pathways in liver cancer especially hepatocellular carcinoma (HCC), as well as the current state of research on inhibitors respectively. Given that TKIs represent the sole class of targeted therapeutics for liver cancer employed in clinical practice, we have particularly focused on TKIs and the mechanisms of the commonly encountered phenomena of its resistance during HCC treatment. This necessitates the imperative development of innovative targeted strategies and the urgency of overcoming the existing limitations. This review endeavors to shed light on the utilization of targeted therapy in advanced liver cancer, with a vision to improve the unsatisfactory prognostic outlook for those patients.


Carcinoma, Hepatocellular , Liver Neoplasms , Molecular Targeted Therapy , Protein Kinase Inhibitors , Signal Transduction , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Signal Transduction/drug effects , Molecular Targeted Therapy/methods , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Animals
4.
BMC Cancer ; 24(1): 661, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816821

BACKGROUND: In the era of targeted therapies, the influence of aging on cancer management varies from one patient to another. Assessing individual frailty using geriatric tools has its limitations, and is not appropriate for all patients especially the youngest one. Thus, assessing the complementary value of a potential biomarker of individual aging is a promising field of investigation. The chronic myeloid leukemia model allows us to address this question with obvious advantages: longest experience in the use of tyrosine kinase inhibitors, standardization of therapeutic management and response with minimal residual disease and no effect on age-related diseases. Therefore, the aim of the BIO-TIMER study is to assess the biological age of chronic myeloid leukemia or non-malignant cells in patients treated with tyrosine kinase inhibitors and to determine its relevance, in association or not with individual frailty to optimize the personalised management of each patient. METHODS: The BIO-TIMER study is a multi-center, prospective, longitudinal study aiming to evaluate the value of combining biological age determination by DNA methylation profile with individual frailty assessment to personalize the management of chronic myeloid leukemia patients treated with tyrosine kinase inhibitors. Blood samples will be collected at diagnosis, 3 months and 12 months after treatment initiation. Individual frailty and quality of life will be assess at diagnosis, 6 months after treatment initiation, and then annually for 3 years. Tolerance to tyrosine kinase inhibitors will also be assessed during the 3-year follow-up. The study plans to recruit 321 patients and recruitment started in November 2023. DISCUSSION: The assessment of individual frailty should make it possible to personalize the treatment and care of patients. The BIO-TIMER study will provide new data on the role of aging in the management of chronic myeloid leukemia patients treated with tyrosine kinase inhibitors, which could influence clinical decision-making. TRIAL REGISTRATION: ClinicalTrials.gov , ID NCT06130787; registered on November 14, 2023.


Frailty , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Protein Kinase Inhibitors , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Protein Kinase Inhibitors/therapeutic use , Aged , Prospective Studies , Molecular Targeted Therapy , Longitudinal Studies , DNA Methylation , Male , Female , Quality of Life , Adult , Precision Medicine/methods , Middle Aged , Aged, 80 and over , Aging
7.
Int Immunopharmacol ; 134: 112189, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38759375

Severe asthma is a complex and heterogeneous chronic airway inflammatory disease. Current treatment strategies are increasingly focused on disease classification, facilitating the transition towards personalized medicine by integrating biomarkers and monoclonal antibodies for tailored therapeutic approaches. Several approved biological agents, including anti-immunoglobulin E (IgE), anti-interleukin (IL)-4, anti-IL-5, and anti-thymic stromal lymphopoietin (TSLP) monoclonal antibodies, have demonstrated significant efficacy in reducing asthma exacerbations, eosinophil counts, improving lung function, minimizing oral corticosteroid usage, and enhancing patients' quality of life. The utilization of these biological agents has brought about profound transformations in the management of severe asthma. This article provides a comprehensive review on biomarkers and biological agents for severe asthma while emphasizing the increasing importance of further research into its pathogenesis and novel treatment modalities.


Asthma , Precision Medicine , Humans , Asthma/drug therapy , Asthma/immunology , Anti-Asthmatic Agents/therapeutic use , Biomarkers , Animals , Molecular Targeted Therapy , Antibodies, Monoclonal/therapeutic use , Cytokines/metabolism , Biological Therapy/methods
8.
Front Immunol ; 15: 1399975, 2024.
Article En | MEDLINE | ID: mdl-38774882

Recently, targeted therapy and immunotherapy have emerged as effective treatment options for non-small cell lung cancer (NSCLC). This progress has been facilitated by the rapid development of diagnostic and therapeutic technologies and the continuous research and development of new drugs, leading to a new era in precision medicine for NSCLC. This is a breakthrough for patients with common mutations in the human epidermal growth factor receptor (EGFR) gene in NSCLC. Consequently, the use of targeted drugs has significantly improved survival. Nevertheless, certain rare genetic mutations are referred to as EGFR exon 20 insertion (ex20ins) mutations, which differ in structure from conventional EGFR gene mutations, namely, exon 19 deletion mutations (19-Del) and exon 21 point mutations. Owing to their distinct structural characteristics, patients harboring these EGFR ex20ins mutations are unresponsive to traditional tyrosine kinase inhibitor (TKI) therapy. This particular group of patients did not fall within the scope of their applicability. However, the activating A763_Y764insFQEA mutation elicits a more pronounced response than mutations in the near and far regions of the C-helix immediately following it and should, therefore, be treated differently. Currently, there is a lack of effective treatments for EGFR ex20ins mutations NSCLC. The efficacy of chemotherapy has been relatively favorable, whereas the effectiveness of immunotherapy remains ambiguous owing to inadequate clinical data. In addition, the efficacy of the first- and second-generation targeted drugs remains limited. However, third-generation and novel targeted drugs have proven to be effective. Although novel EGFR-TKIs are expected to treat EGFR ex20ins mutations in patients with NSCLC, they face many challenges. The main focus of this review is on emerging therapies that target NSCLC with EGFR ex20ins and highlight major ongoing clinical trials while also providing an overview of the associated challenges and research advancements in this area.


Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Exons , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/therapy , ErbB Receptors/genetics , ErbB Receptors/antagonists & inhibitors , Exons/genetics , Protein Kinase Inhibitors/therapeutic use , Immunotherapy/methods , Mutagenesis, Insertional , Molecular Targeted Therapy , Mutation , Animals
9.
Am Soc Clin Oncol Educ Book ; 44(3): e438642, 2024 Jun.
Article En | MEDLINE | ID: mdl-38776514

Renal cell carcinoma (RCC) is one of the 10 most commonly diagnosed solid tumors. Most RCCs are histologically defined as clear cell, comprising approximately 75% of diagnoses. However, the remaining RCC cases are composed of a heterogeneous combination of diverse histopathologic subtypes, each with unique pathogeneses and clinical features. Although the therapeutic approach to both localized and metastatic RCCs has dramatically changed, first with the advent of antiangiogenic targeted therapies and more recently with the approval of immune checkpoint inhibitor (ICI)-based combinations, these advances have primarily benefited the clear cell RCC patient population. As such, there remains critical gaps in the optimization of treatment regimens for patients with non-clear cell, or variant, RCC histologies. Herein, we detail recent advances in understanding the biology of RCC with variant histology and how such findings have guided novel clinical studies investigating precision oncology approaches for these rare subtypes. Among the most common variant histology RCCs are papillary RCC, comprising approximately 15%-20% of all diagnoses. Although a histopathologically diverse subset of tumors, papillary RCC is canonically associated with amplification of the MET protooncogene; recently completed and ongoing trials have investigated MET-directed therapies for this patient population. Finally, we discuss the unique biology of RCC with sarcomatoid dedifferentiation and the recent clinical findings detailing its paradoxical sensitivity to ICIs.


Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/drug therapy , Kidney Neoplasms/pathology , Kidney Neoplasms/drug therapy , Molecular Targeted Therapy , Biomarkers, Tumor , Immune Checkpoint Inhibitors/therapeutic use
10.
Acta Oncol ; 63: 368-372, 2024 May 23.
Article En | MEDLINE | ID: mdl-38779868

BACKGROUND AND PURPOSE: The Drug Rediscovery Protocol (DRUP) is a Dutch, pan-cancer, nonrandomized clinical trial that aims to investigate the efficacy and safety of targeted and immunotherapies outside their registered indication in patients with advanced or metastatic cancer. PATIENTS: Patients with advanced or metastatic cancer are eligible when there are no standard of care treatment options left and the tumor possesses a molecular genomic variant for which commercially available anticancer treatment is accessible off-label in DRUP. Clinical benefit is the study's primary endpoint, characterized by a confirmed objective response or stable disease after at least 16 weeks of treatment. RESULTS: More than 2,500 patients have undergone evaluation, of which over 1,500 have started treatment in DRUP. The overall clinical benefit rate (CBR) remains 33%. The nivolumab cohort for patients with microsatellite instable metastatic tumors proved highly successful with a CBR of 63%, while palbociclib or ribociclib in patients with tumors harboring CDK4/6 pathway alterations showed limited efficacy, with a CBR of 15%. The formation of two European initiatives (PCM4EU and PRIME-ROSE) strives to accelerate implementation and enhance data collection to broaden equitable access to anticancer treatments and gather more evidence. CONCLUSION: DRUP persists in improving patients access to off-label targeted or immunotherapy in the Netherlands and beyond. The expansion of DRUP-like clinical trials across Europe provides countless opportunities for broadening the horizon of precision oncology.


Neoplasms , Precision Medicine , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Precision Medicine/methods , Netherlands , Immunotherapy/methods , Medical Oncology/methods , Medical Oncology/trends , Piperazines/therapeutic use , Pyridines/therapeutic use , Nivolumab/therapeutic use , Antineoplastic Agents/therapeutic use , Molecular Targeted Therapy/methods
11.
Am Soc Clin Oncol Educ Book ; 44(3): e431450, 2024 Jun.
Article En | MEDLINE | ID: mdl-38723228

Low-grade gliomas present a formidable challenge in neuro-oncology because of the challenges imposed by the blood-brain barrier, predilection for the young adult population, and propensity for recurrence. In the past two decades, the systematic examination of genomic alterations in adults and children with primary brain tumors has uncovered profound new insights into the pathogenesis of these tumors, resulting in more accurate tumor classification and prognostication. It also identified several common recurrent genomic alterations that now define specific brain tumor subtypes and have provided a new opportunity for molecularly targeted therapeutic intervention. Adult-type diffuse low-grade gliomas are frequently associated with mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2), resulting in production of 2-hydroxyglutarate, an oncometabolite important for tumorigenesis. Recent studies of IDH inhibitors have yielded promising results in patients at early stages of disease with prolonged progression-free survival (PFS) and delayed time to radiation and chemotherapy. Pediatric-type gliomas have high rates of alterations in BRAF, including BRAF V600E point mutations or BRAF-KIAA1549 rearrangements. BRAF inhibitors, often combined with MEK inhibitors, have resulted in radiographic response and improved PFS in these patients. This article reviews emerging approaches to the treatment of low-grade gliomas, including a discussion of targeted therapies and how they integrate with the current treatment modalities of surgical resection, chemotherapy, and radiation.


Brain Neoplasms , Glioma , Isocitrate Dehydrogenase , Neoplasm Grading , Humans , Glioma/genetics , Glioma/therapy , Glioma/drug therapy , Glioma/pathology , Isocitrate Dehydrogenase/genetics , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Brain Neoplasms/drug therapy , Disease Management , Mutation , Molecular Targeted Therapy
12.
Adv Exp Med Biol ; 1447: 227-244, 2024.
Article En | MEDLINE | ID: mdl-38724797

This chapter thoroughly examines recent breakthroughs in atopic dermatitis (AD) treatment, with a primary focus on the medications in the development pipeline. Biologics agents targeting new interleukin receptors like interleukin-31, interleukin-22, and interleukin-2 are discussed along with the novel pathway looking at the OX40-OX40L interaction. Oral agents and small molecule therapies like Janus kinase inhibitors, sphingosine-1-phosphate modulators, and Bruton's tyrosine kinase inhibitors are also discussed along with the various new topical medications. Newly approved topicals like phosphodiesterase-4 and JAK inhibitors are highlighted while also discussing the potential of tapinarof and emerging microbiome-targeted therapies. Beyond conventional approaches, the chapter touches upon unconventional therapies currently being studied. The goal of this chapter is to discuss new advances in AD treatment from medications in the initial stages of development to those nearing FDA approval.


Dermatitis, Atopic , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/therapy , Dermatitis, Atopic/microbiology , Dermatitis, Atopic/immunology , Humans , Biological Products/therapeutic use , Phosphodiesterase 4 Inhibitors/therapeutic use , Janus Kinase Inhibitors/therapeutic use , Animals , Molecular Targeted Therapy/methods , Dermatologic Agents/therapeutic use
13.
Front Immunol ; 15: 1342912, 2024.
Article En | MEDLINE | ID: mdl-38707900

Background: The currently available medications for treating membranous nephropathy (MN) still have unsatisfactory efficacy in inhibiting disease recurrence, slowing down its progression, and even halting the development of end-stage renal disease. There is still a need to develop novel drugs targeting MN. Methods: We utilized summary statistics of MN from the Kiryluk Lab and obtained plasma protein data from Zheng et al. We performed a Bidirectional Mendelian randomization analysis, HEIDI test, mediation analysis, Bayesian colocalization, phenotype scanning, drug bank analysis, and protein-protein interaction network. Results: The Mendelian randomization analysis uncovered 8 distinct proteins associated with MN after multiple false discovery rate corrections. Proteins related to an increased risk of MN in plasma include ABO [(Histo-Blood Group Abo System Transferase) (WR OR = 1.12, 95%CI:1.05-1.19, FDR=0.09, PPH4 = 0.79)], VWF [(Von Willebrand Factor) (WR OR = 1.41, 95%CI:1.16-1.72, FDR=0.02, PPH4 = 0.81)] and CD209 [(Cd209 Antigen) (WR OR = 1.19, 95%CI:1.07-1.31, FDR=0.09, PPH4 = 0.78)], and proteins that have a protective effect on MN: HRG [(Histidine-Rich Glycoprotein) (WR OR = 0.84, 95%CI:0.76-0.93, FDR=0.02, PPH4 = 0.80)], CD27 [(Cd27 Antigen) (WR OR = 0.78, 95%CI:0.68-0.90, FDR=0.02, PPH4 = 0.80)], LRPPRC [(Leucine-Rich Ppr Motif-Containing Protein, Mitochondrial) (WR OR = 0.79, 95%CI:0.69-0.91, FDR=0.09, PPH4 = 0.80)], TIMP4 [(Metalloproteinase Inhibitor 4) (WR OR = 0.67, 95%CI:0.53-0.84, FDR=0.09, PPH4 = 0.79)] and MAP2K4 [(Dual Specificity Mitogen-Activated Protein Kinase Kinase 4) (WR OR = 0.82, 95%CI:0.72-0.92, FDR=0.09, PPH4 = 0.80)]. ABO, HRG, and TIMP4 successfully passed the HEIDI test. None of these proteins exhibited a reverse causal relationship. Bayesian colocalization analysis provided evidence that all of them share variants with MN. We identified type 1 diabetes, trunk fat, and asthma as having intermediate effects in these pathways. Conclusions: Our comprehensive analysis indicates a causal effect of ABO, CD27, VWF, HRG, CD209, LRPPRC, MAP2K4, and TIMP4 at the genetically determined circulating levels on the risk of MN. These proteins can potentially be a promising therapeutic target for the treatment of MN.


Glomerulonephritis, Membranous , Mendelian Randomization Analysis , Proteome , Humans , Glomerulonephritis, Membranous/drug therapy , Glomerulonephritis, Membranous/metabolism , Glomerulonephritis, Membranous/blood , Glomerulonephritis, Membranous/genetics , Bayes Theorem , Protein Interaction Maps , Molecular Targeted Therapy , ABO Blood-Group System/genetics
14.
Front Immunol ; 15: 1352712, 2024.
Article En | MEDLINE | ID: mdl-38707907

Background: Inflammatory bowel disease is an incurable group of recurrent inflammatory diseases of the intestine. Mendelian randomization has been utilized in the development of drugs for disease treatment, including the therapeutic targets for IBD that are identified through drug-targeted MR. Methods: Two-sample MR was employed to explore the cause-and-effect relationship between multiple genes and IBD and its subtypes ulcerative colitis and Crohn's disease, and replication MR was utilized to validate this causality. Summary data-based Mendelian randomization analysis was performed to enhance the robustness of the outcomes, while Bayesian co-localization provided strong evidential support. Finally, the value of potential therapeutic target applications was determined by using the estimation of druggability. Result: With our investigation, we identified target genes associated with the risk of IBD and its subtypes UC and CD. These include the genes GPBAR1, IL1RL1, PRKCB, and PNMT, which are associated with IBD risk, IL1RL1, with a protective effect against CD risk, and GPX1, GPBAR1, and PNMT, which are involved in UC risk. Conclusion: In a word, this study identified several potential therapeutic targets associated with the risk of IBD and its subtypes, offering new insights into the development of therapeutic agents for IBD.


Genetic Predisposition to Disease , Inflammatory Bowel Diseases , Mendelian Randomization Analysis , Humans , Inflammatory Bowel Diseases/genetics , Polymorphism, Single Nucleotide , Crohn Disease/genetics , Crohn Disease/drug therapy , Bayes Theorem , Colitis, Ulcerative/genetics , Molecular Targeted Therapy
15.
Am Soc Clin Oncol Educ Book ; 44(3): e431060, 2024 Jun.
Article En | MEDLINE | ID: mdl-38771996

Gastroesophageal cancers (GECs) represent a significant clinical challenge. For early resectable GEC, the integration of immune checkpoint inhibitors into the perioperative chemotherapy and chemoradiation treatment paradigms are being explored and showing promising results. Frontline management of metastatic GEC is exploring the role of targeted therapies beyond PD-1 inhibitors, including anti-human epidermal growth factor receptor 2 agents, Claudin 18.2 inhibitors, and FGFR2 inhibitors, which have shown considerable efficacy in recent trials. Looking ahead, ongoing trials and emerging technologies such as bispecific antibodies, antibody-drug conjugates, and adoptive cell therapies like chimeric antigen receptor T cells are expected to define the future of GEC management. These advancements signify a paradigm shift toward personalized and immunotherapy-based approaches, offering the potential for improved outcomes and reduced toxicity for patients with GEC.


Biomarkers, Tumor , Esophageal Neoplasms , Precision Medicine , Stomach Neoplasms , Humans , Esophageal Neoplasms/therapy , Stomach Neoplasms/therapy , Precision Medicine/methods , Molecular Targeted Therapy , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Combined Modality Therapy
16.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731853

Claudins are a family of 27 proteins that have an important role in the formation of tight junctions. They also have an important function in ion exchange, cell mobility, and the epithelial-to-mesenchymal transition, the latter being very important in cancer invasion and metastasis. Therapeutic targeting of claudins has been investigated to improve cancer outcomes. Recent evidence shows improved outcomes when combining monoclonal antibodies against claudin 18.2 with chemotherapy for patients with gastroesophageal junction cancer. Currently, chimeric antigen receptor T-cells targeting claudin 18 are under investigation. In this review, we will discuss the major functions of claudins, their distribution in the normal as well as cancerous tissues, and their effect in cancer metastasis, with a special focus on the therapeutic targeting of claudins to improve cancer outcomes.


Claudins , Neoplasms , Humans , Claudins/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Animals , Epithelial-Mesenchymal Transition , Molecular Targeted Therapy/methods , Tight Junctions/metabolism
17.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731883

The serine-threonine kinase protein kinase A (PKA) is a cyclic AMP (cAMP)-dependent intracellular protein with multiple roles in cellular biology including metabolic and transcription regulation functions. The cAMP-dependent protein kinase inhibitor ß (PKIB) is one of three known endogenous protein kinase inhibitors of PKA. The role of PKIB is not yet fully understood. Hormonal signaling is correlated with increased PKIB expression through genetic regulation, and increasing PKIB expression is associated with decreased cancer patient prognosis. Additionally, PKIB impacts cancer cell behavior through two mechanisms; the first is the nuclear modulation of transcriptional activation and the second is the regulation of oncogenic AKT signaling. The limited research into PKIB indicates the oncogenic potential of PKIB in various cancers. However, some studies suggest a role of PKIB in non-cancerous disease states. This review aims to summarize the current literature and background of PKIB regarding cancer and related issues. In particular, we will focus on cancer development and therapeutic possibilities, which are of paramount interest in PKIB oncology research.


Neoplasms , Animals , Humans , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Molecular Targeted Therapy/methods , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/genetics , Protein Kinase Inhibitors/metabolism , Signal Transduction/drug effects , Intracellular Signaling Peptides and Proteins/metabolism
18.
Autoimmunity ; 57(1): 2351872, 2024 Dec.
Article En | MEDLINE | ID: mdl-38739691

Autophagy is a highly conserved biological process in eukaryotes, which degrades cellular misfolded proteins, damaged organelles and invasive pathogens in the lysosome-dependent manner. Autoimmune diseases caused by genetic elements, environments and aberrant immune responses severely impact patients' living quality and even threaten life. Recently, numerous studies have reported autophagy can regulate immune responses, and play an important role in autoimmune diseases. In this review, we summarised the features of autophagy and autophagy-related genes, enumerated some autophagy-related genes involved in autoimmune diseases, and further overviewed how to treat autoimmune diseases through targeting autophagy. Finally, we outlooked the prospect of relieving and curing autoimmune diseases by targeting autophagy pathway.


Autoimmune Diseases , Autophagy , Humans , Autophagy/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmune Diseases/therapy , Animals , Signal Transduction/immunology , Molecular Targeted Therapy
20.
Am Soc Clin Oncol Educ Book ; 44(3): e438466, 2024 Jun.
Article En | MEDLINE | ID: mdl-38768405

Colorectal cancer (CRC) remains a significant global health challenge, ranking among the leading causes of cancer-related morbidity and mortality worldwide. Recent advancements in molecular characterization have revolutionized our understanding of the heterogeneity within colorectal tumors, particularly in the context of tumor sidedness. Tumor sidedness, referring to the location of the primary tumor in either the right or left colon, has emerged as a critical factor influencing prognosis and treatment responses in metastatic CRC. Molecular underpinnings of CRC, the impact of tumor sidedness, and how this knowledge guides therapeutic decisions in the era of precision medicine have led to improved outcomes and better quality of life in patients. The emergence of circulating tumor DNA as a prognostic and predictive tool in CRC heralds promising advancements in the diagnosis and monitoring of the disease. This innovation facilitates better patient selection for exploration of additional treatment options. As the field progresses, with investigational agents demonstrating potential as future treatments for refractory metastatic CRC, new avenues for enhancing outcomes in this challenging disease are emerging.


Colorectal Neoplasms , Humans , Colorectal Neoplasms/therapy , Colorectal Neoplasms/pathology , Disease Management , Prognosis , Precision Medicine/methods , Biomarkers, Tumor , Molecular Targeted Therapy
...