Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27.417
1.
Proc Natl Acad Sci U S A ; 121(23): e2318481121, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38814869

Living tissues display fluctuations-random spatial and temporal variations of tissue properties around their reference values-at multiple scales. It is believed that such fluctuations may enable tissues to sense their state or their size. Recent theoretical studies developed specific models of fluctuations in growing tissues and predicted that fluctuations of growth show long-range correlations. Here, we elaborated upon these predictions and we tested them using experimental data. We first introduced a minimal model for the fluctuations of any quantity that has some level of temporal persistence or memory, such as concentration of a molecule, local growth rate, or mechanical property. We found that long-range correlations are generic, applying to any such quantity, and that growth couples temporal and spatial fluctuations, through a mechanism that we call "fluctuation stretching"-growth enlarges the length scale of variation of this quantity. We then analyzed growth data from sepals of the model plant Arabidopsis and we quantified spatial and temporal fluctuations of cell growth using the previously developed cellular Fourier transform. Growth appears to have long-range correlations. We compared different genotypes and growth conditions: mutants with lower or higher response to mechanical stress have lower temporal correlations and longer-range spatial correlations than wild-type plants. Finally, we used theoretical predictions to merge experimental data from all conditions and developmental stages into a unifying curve, validating the notion that temporal and spatial fluctuations are coupled by growth. Altogether, our work reveals kinematic constraints on spatiotemporal fluctuations that have an impact on the robustness of morphogenesis.


Arabidopsis , Models, Biological , Morphogenesis , Arabidopsis/growth & development , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Flowers/growth & development , Flowers/genetics
2.
PLoS One ; 19(5): e0304586, 2024.
Article En | MEDLINE | ID: mdl-38820507

The integration of nanoparticles (NPs) holds promising potential to bring substantial advancements to plant cryopreservation, a crucial technique in biodiversity conservation. To date, little attention has been focused on using nanoparticles in cryobiology research. This study aimed to assess the effectiveness of NPs in enhancing the efficiency of plant cryopreservation. In-vitro-derived shoot tips of bleeding heart (Lamprocapnos spectabilis (L.) Fukuhara) 'Gold Heart' and 'Valentine' were used as the plant material. The encapsulation-vitrification cryopreservation protocol included preculture, encapsulation, dehydration, storage in liquid nitrogen, rewarming, and recovery steps. Gold (AuNPs), silver (AgNPs), or zinc oxide (ZnONPs) nanoparticles were added at various concentrations either into the preculture medium or the protective bead matrix during encapsulation. The explant survival and further morphogenic and biochemical events were studied. Results showed that the impact of NPs on cryopreservation outcomes was cultivar-specific. In the 'Valentine' cultivar, incorporating 5 ppm AgNPs within the alginate bead matrix significantly improved cryopreservation efficiency by up to 12%. On the other hand, the 'Gold Heart' cultivar benefited from alginate supplementation with 5 ppm AgNPs and 5-15 ppm ZnONPs, leading to an over 28% increase in the survival rate of shoot tips. Interestingly, adding NPs to the preculture medium was less effective and sometimes counterproductive, despite promoting greater shoot proliferation and elongation in 'Valentine' explants compared to the control. Moreover, nanoparticles often induced oxidative stress (and enhanced the activity of APX, GPOX, and SOD enzymes), which in turn affected the biosynthesis of plant primary and secondary metabolites. It was found that supplementation of preculture medium with higher concentration (15 ppm) of gold, silver and zinc oxide nanoparticles stimulated the production of plant pigments, but in a cultivar-dependent matter. Our study confirmed the beneficial action of nanoparticles during cryopreservation of plant tissues.


Cryopreservation , Gold , Metal Nanoparticles , Cryopreservation/methods , Metal Nanoparticles/chemistry , Gold/chemistry , Gold/pharmacology , Silver/chemistry , Silver/pharmacology , Plant Shoots/drug effects , Plant Shoots/growth & development , Morphogenesis/drug effects , Vitrification
3.
Curr Top Dev Biol ; 159: 310-342, 2024.
Article En | MEDLINE | ID: mdl-38729680

External bilateral symmetry is a prevalent feature in vertebrates, which emerges during early embryonic development. To begin with, vertebrate embryos are largely radially symmetric before transitioning to bilaterally symmetry, after which, morphogenesis of various bilateral tissues (e.g somites, otic vesicle, limb bud), and structures (e.g palate, jaw) ensue. While a significant amount of work has probed the mechanisms behind symmetry breaking in the left-right axis leading to asymmetric positioning of internal organs, little is known about how bilateral tissues emerge at the same time with the same shape and size and at the same position on the two sides of the embryo. By discussing emergence of symmetry in many bilateral tissues and structures across vertebrate model systems, we highlight that understanding symmetry establishment is largely an open field, which will provide deep insights into fundamental problems in developmental biology for decades to come.


Body Patterning , Vertebrates , Animals , Vertebrates/embryology , Embryonic Development , Gene Expression Regulation, Developmental , Morphogenesis , Somites/embryology
4.
Curr Top Dev Biol ; 159: 30-58, 2024.
Article En | MEDLINE | ID: mdl-38729679

Morphogenesis from cells to tissue gives rise to the complex architectures that make our organs. How cells and their dynamic behavior are translated into functional spatial patterns is only starting to be understood. Recent advances in quantitative imaging revealed that, although highly heterogeneous, cellular behaviors make reproducible tissue patterns. Emerging evidence suggests that mechanisms of cellular coordination, intrinsic variability and plasticity are critical for robust pattern formation. While pattern development shows a high level of fidelity, tissue organization has undergone drastic changes throughout the course of evolution. In addition, alterations in cell behavior, if unregulated, can cause developmental malformations that disrupt function. Therefore, comparative studies of different species and of disease models offer a powerful approach for understanding how novel spatial configurations arise from variations in cell behavior and the fundamentals of successful pattern formation. In this chapter, I dive into the development of the vertebrate nervous system to explore efforts to dissect pattern formation beyond molecules, the emerging core principles and open questions.


Nervous System , Vertebrates , Animals , Vertebrates/physiology , Vertebrates/embryology , Nervous System/growth & development , Nervous System/embryology , Body Patterning , Humans , Morphogenesis
5.
Nat Commun ; 15(1): 3733, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740737

Organisms generate shapes across size scales. Whereas patterning and morphogenesis of macroscopic tissues has been extensively studied, the principles underlying the formation of micrometric and submicrometric structures remain largely enigmatic. Individual cells of polychaete annelids, so-called chaetoblasts, are associated with the generation of chitinous bristles of highly stereotypic geometry. Here we show that bristle formation requires a chitin-producing enzyme specifically expressed in the chaetoblasts. Chaetoblasts exhibit dynamic cell surfaces with stereotypical patterns of actin-rich microvilli. These microvilli can be matched with internal and external structures of bristles reconstructed from serial block-face electron micrographs. Individual chitin teeth are deposited by microvilli in an extension-disassembly cycle resembling a biological 3D printer. Consistently, pharmacological interference with actin dynamics leads to defects in tooth formation. Our study reveals that both material and shape of bristles are encoded by the same cell, and that microvilli play a role in micro- to submicrometric sculpting of biomaterials.


Chitin , Microvilli , Microvilli/ultrastructure , Animals , Chitin/metabolism , Chitin/chemistry , Polychaeta/ultrastructure , Actins/metabolism , Morphogenesis
6.
Nature ; 629(8012): 646-651, 2024 May.
Article En | MEDLINE | ID: mdl-38693259

The shaping of human embryos begins with compaction, during which cells come into close contact1,2. Assisted reproductive technology studies indicate that human embryos fail compaction primarily because of defective adhesion3,4. On the basis of our current understanding of animal morphogenesis5,6, other morphogenetic engines, such as cell contractility, could be involved in shaping human embryos. However, the molecular, cellular and physical mechanisms driving human embryo morphogenesis remain uncharacterized. Using micropipette aspiration on human embryos donated to research, we have mapped cell surface tensions during compaction. This shows a fourfold increase of tension at the cell-medium interface whereas cell-cell contacts keep a steady tension. Therefore, increased tension at the cell-medium interface drives human embryo compaction, which is qualitatively similar to compaction in mouse embryos7. Further comparison between human and mouse shows qualitatively similar but quantitively different mechanical strategies, with human embryos being mechanically least efficient. Inhibition of cell contractility and cell-cell adhesion in human embryos shows that, whereas both cellular processes are required for compaction, only contractility controls the surface tensions responsible for compaction. Cell contractility and cell-cell adhesion exhibit distinct mechanical signatures when faulty. Analysing the mechanical signature of naturally failing embryos, we find evidence that non-compacting or partially compacting embryos containing excluded cells have defective contractility. Together, our study shows that an evolutionarily conserved increase in cell contractility is required to generate the forces driving the first morphogenetic movement shaping the human body.


Cell Adhesion , Embryo, Mammalian , Humans , Animals , Mice , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Female , Surface Tension , Embryonic Development , Morphogenesis , Biomechanical Phenomena , Male
7.
Elife ; 122024 May 10.
Article En | MEDLINE | ID: mdl-38727576

Large-scale cell flow characterizes gastrulation in animal development. In amniote gastrulation, particularly in avian gastrula, a bilateral vortex-like counter-rotating cell flow, called 'polonaise movements', appears along the midline. Here, through experimental manipulations, we addressed relationships between the polonaise movements and morphogenesis of the primitive streak, the earliest midline structure in amniotes. Suppression of the Wnt/planar cell polarity (PCP) signaling pathway maintains the polonaise movements along a deformed primitive streak. Mitotic arrest leads to diminished extension and development of the primitive streak and maintains the early phase of the polonaise movements. Ectopically induced Vg1, an axis-inducing morphogen, generates the polonaise movements, aligned to the induced midline, but disturbs the stereotypical cell flow pattern at the authentic midline. Despite the altered cell flow, induction and extension of the primitive streak are preserved along both authentic and induced midlines. Finally, we show that ectopic axis-inducing morphogen, Vg1, is capable of initiating the polonaise movements without concomitant PS extension under mitotic arrest conditions. These results are consistent with a model wherein primitive streak morphogenesis is required for the maintenance of the polonaise movements, but the polonaise movements are not necessarily responsible for primitive streak morphogenesis. Our data describe a previously undefined relationship between the large-scale cell flow and midline morphogenesis in gastrulation.


Gastrulation , Morphogenesis , Animals , Cell Movement , Primitive Streak/embryology , Cell Polarity , Gastrula/embryology , Chick Embryo
8.
Elife ; 132024 May 03.
Article En | MEDLINE | ID: mdl-38700510

Geometric criteria can be used to assess whether cell intercalation is active or passive during the convergent extension of tissue.


Zebrafish , Animals , Morphogenesis
9.
Development ; 151(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38690760

Thibaut Brunet is a group leader at the Institut Pasteur in Paris, France, where he works on choanoflagellates (known as 'choanos' for short). These unicellular organisms are close relatives of animals that have the potential to form multicellular assemblies under certain conditions, and Thibaut's lab are leveraging them to gain insights into how animal morphogenesis evolved. We met with Thibaut over Zoom to discuss his career path so far, and learnt how an early interest in dinosaurs contributed to his life-long fascination with evolutionary biology.


Biological Evolution , Choanoflagellata , Developmental Biology , Animals , Developmental Biology/history , History, 21st Century , Morphogenesis , History, 20th Century
10.
Nat Commun ; 15(1): 4174, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755126

The transition from natal downs for heat conservation to juvenile feathers for simple flight is a remarkable environmental adaptation process in avian evolution. However, the underlying epigenetic mechanism for this primary feather transition is mostly unknown. Here we conducted time-ordered gene co-expression network construction, epigenetic analysis, and functional perturbations in developing feather follicles to elucidate four downy-juvenile feather transition events. We report that extracellular matrix reorganization leads to peripheral pulp formation, which mediates epithelial-mesenchymal interactions for branching morphogenesis. α-SMA (ACTA2) compartmentalizes dermal papilla stem cells for feather renewal cycling. LEF1 works as a key hub of Wnt signaling to build rachis and converts radial downy to bilateral symmetry. Novel usage of scale keratins strengthens feather sheath with SOX14 as the epigenetic regulator. We show that this primary feather transition is largely conserved in chicken (precocial) and zebra finch (altricial) and discuss the possibility that this evolutionary adaptation process started in feathered dinosaurs.


Chickens , Feathers , Finches , Animals , Feathers/growth & development , Feathers/metabolism , Chickens/genetics , Finches/genetics , Gene Expression Regulation, Developmental , Extracellular Matrix/metabolism , Epigenesis, Genetic , Gene Regulatory Networks , Wnt Signaling Pathway , Keratins/metabolism , Keratins/genetics , Biological Evolution , Morphogenesis/genetics
12.
Development ; 151(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38767601

Living organisms have the ability to self-shape into complex structures appropriate for their function. The genetic and molecular mechanisms that enable cells to do this have been extensively studied in several model and non-model organisms. In contrast, the physical mechanisms that shape cells and tissues have only recently started to emerge, in part thanks to new quantitative in vivo measurements of the physical quantities guiding morphogenesis. These data, combined with indirect inferences of physical characteristics, are starting to reveal similarities in the physical mechanisms underlying morphogenesis across different organisms. Here, we review how physics contributes to shape cells and tissues in a simple, yet ubiquitous, morphogenetic transformation: elongation. Drawing from observed similarities across species, we propose the existence of conserved physical mechanisms of morphogenesis.


Morphogenesis , Animals , Models, Biological , Humans , Cell Shape
13.
NPJ Syst Biol Appl ; 10(1): 49, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714708

Morphogenetic programs coordinate cell signaling and mechanical interactions to shape organs. In systems and synthetic biology, a key challenge is determining optimal cellular interactions for predicting organ shape, size, and function. Physics-based models defining the subcellular force distribution facilitate this, but it is challenging to calibrate parameters in these models from data. To solve this inverse problem, we created a Bayesian optimization framework to determine the optimal cellular force distribution such that the predicted organ shapes match the experimentally observed organ shapes. This integrative framework employs Gaussian Process Regression, a non-parametric kernel-based probabilistic machine learning modeling paradigm, to learn the mapping functions relating to the morphogenetic programs that maintain the final organ shape. We calibrated and tested the method on Drosophila wing imaginal discs to study mechanisms that regulate epithelial processes ranging from development to cancer. The parameter estimation framework successfully infers the underlying changes in core parameters needed to match simulation data with imaging data of wing discs perturbed with collagenase. The computational pipeline identifies distinct parameter sets mimicking wild-type shapes. It enables a global sensitivity analysis to support the regulation of actomyosin contractility and basal ECM stiffness to generate and maintain the curved shape of the wing imaginal disc. The optimization framework, combined with experimental imaging, identified that Piezo, a mechanosensitive ion channel, impacts fold formation by regulating the apical-basal balance of actomyosin contractility and elasticity of ECM. This workflow is extensible toward reverse-engineering morphogenesis across organ systems and for real-time control of complex multicellular systems.


Bayes Theorem , Morphogenesis , Wings, Animal , Animals , Models, Biological , Drosophila melanogaster , Imaginal Discs , Computer Simulation , Drosophila
14.
Biochem Biophys Res Commun ; 717: 150050, 2024 Jul 12.
Article En | MEDLINE | ID: mdl-38718571

Cryptochromes (CRYs) act as blue light photoreceptors to regulate various plant physiological processes including photomorphogenesis and repair of DNA double strand breaks (DSBs). ADA2b is a conserved transcription co-activator that is involved in multiple plant developmental processes. It is known that ADA2b interacts with CRYs to mediate blue light-promoted DSBs repair. Whether ADA2b may participate in CRYs-mediated photomorphogenesis is unknown. Here we show that ADA2b acts to inhibit hypocotyl elongation and hypocotyl cell elongation in blue light. We found that the SWIRM domain-containing C-terminus mediates the blue light-dependent interaction of ADA2b with CRYs in blue light. Moreover, ADA2b and CRYs act to co-regulate the expression of hypocotyl elongation-related genes in blue light. Based on previous studies and these results, we propose that ADA2b plays dual functions in blue light-mediated DNA damage repair and photomorphogenesis.


Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Hypocotyl , Light , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/radiation effects , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/radiation effects , Hypocotyl/growth & development , Hypocotyl/metabolism , Hypocotyl/radiation effects , Hypocotyl/genetics , Cryptochromes/metabolism , Cryptochromes/genetics , DNA Repair/radiation effects , Transcription Factors/metabolism , Transcription Factors/genetics , Morphogenesis/radiation effects , Blue Light
15.
Sci Adv ; 10(20): eadl0633, 2024 May 17.
Article En | MEDLINE | ID: mdl-38748804

Biomechanical forces, and their molecular transducers, including key mechanosensitive transcription factor genes, such as KLF2, are required for cardiac valve morphogenesis. However, klf2 mutants fail to completely recapitulate the valveless phenotype observed under no-flow conditions. Here, we identify the transcription factor EGR3 as a conserved biomechanical force transducer critical for cardiac valve formation. We first show that egr3 null zebrafish display a complete and highly penetrant loss of valve leaflets, leading to severe blood regurgitation. Using tissue-specific loss- and gain-of-function tools, we find that during cardiac valve formation, Egr3 functions cell-autonomously in endothelial cells, and identify one of its effectors, the nuclear receptor Nr4a2b. We further find that mechanical forces up-regulate egr3/EGR3 expression in the developing zebrafish heart and in porcine valvular endothelial cells, as well as during human aortic valve remodeling. Altogether, these findings reveal that EGR3 is necessary to transduce the biomechanical cues required for zebrafish cardiac valve morphogenesis, and potentially for pathological aortic valve remodeling in humans.


Early Growth Response Protein 3 , Heart Valves , Morphogenesis , Zebrafish Proteins , Zebrafish , Animals , Heart Valves/metabolism , Heart Valves/embryology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Morphogenesis/genetics , Humans , Early Growth Response Protein 3/metabolism , Early Growth Response Protein 3/genetics , Gene Expression Regulation, Developmental , Endothelial Cells/metabolism , Mechanotransduction, Cellular , Swine
16.
Dev Biol ; 512: 13-25, 2024 Aug.
Article En | MEDLINE | ID: mdl-38703942

Drosophila melanogaster is an ideal model organism for investigating spermatogenesis due to its powerful genetics, conserved genes and visible morphology of germ cells during sperm production. Our previous work revealed that ocnus (ocn) knockdown resulted in male sterility, and CG9920 was identified as a significantly downregulated protein in fly abdomen after ocn knockdown, suggesting a role of CG9920 in male reproduction. In this study, we found that CG9920 was highly expressed in fly testes. CG9920 knockdown in fly testes caused male infertility with no mature sperms in seminal vesicles. Immunofluorescence staining showed that depletion of CG9920 resulted in scattered spermatid nuclear bundles, fewer elongation cones that did not migrate to the anterior region of the testis, and almost no individualization complexes. Transmission electron microscopy revealed that CG9920 knockdown severely disrupted mitochondrial morphogenesis during spermatogenesis. Notably, we found that CG9920 might not directly interact with Ocn, but rather was inhibited by STAT92E, which itself was indirectly affected by Ocn. We propose a possible novel pathway essential for spermatogenesis in D. melanogaster, whereby Ocn indirectly induces CG9920 expression, potentially counteracting its inhibition by the JAK-STAT signaling pathway.


Drosophila Proteins , Drosophila melanogaster , Mitochondria , Spermatogenesis , Testis , Animals , Spermatogenesis/genetics , Spermatogenesis/physiology , Male , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Mitochondria/metabolism , Testis/metabolism , Morphogenesis/genetics , Signal Transduction , Infertility, Male/genetics , Infertility, Male/metabolism , Gene Knockdown Techniques , STAT Transcription Factors/metabolism , Spermatids/metabolism
17.
Int J Mol Sci ; 25(9)2024 May 06.
Article En | MEDLINE | ID: mdl-38732272

Lung branching morphogenesis relies on intricate epithelial-mesenchymal interactions and signaling networks. Still, the interplay between signaling and energy metabolism in shaping embryonic lung development remains unexplored. Retinoic acid (RA) signaling influences lung proximal-distal patterning and branching morphogenesis, but its role as a metabolic modulator is unknown. Hence, this study investigates how RA signaling affects the metabolic profile of lung branching. We performed ex vivo lung explant culture of embryonic chicken lungs treated with DMSO, 1 µM RA, or 10 µM BMS493. Extracellular metabolite consumption/production was evaluated by using 1H-NMR spectroscopy. Mitochondrial respiration and biogenesis were also analyzed. Proliferation was assessed using an EdU-based assay. The expression of crucial metabolic/signaling components was examined through Western blot, qPCR, and in situ hybridization. RA signaling stimulation redirects glucose towards pyruvate and succinate production rather than to alanine or lactate. Inhibition of RA signaling reduces lung branching, resulting in a cystic-like phenotype while promoting mitochondrial function. Here, RA signaling emerges as a regulator of tissue proliferation and lactate dehydrogenase expression. Furthermore, RA governs fatty acid metabolism through an AMPK-dependent mechanism. These findings underscore RA's pivotal role in shaping lung metabolism during branching morphogenesis, contributing to our understanding of lung development and cystic-related lung disorders.


Energy Metabolism , Lung , Morphogenesis , Signal Transduction , Tretinoin , Animals , Tretinoin/metabolism , Tretinoin/pharmacology , Lung/metabolism , Lung/drug effects , Lung/embryology , Energy Metabolism/drug effects , Morphogenesis/drug effects , Signal Transduction/drug effects , Chick Embryo , Cell Proliferation/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Chickens
18.
PLoS One ; 19(5): e0301082, 2024.
Article En | MEDLINE | ID: mdl-38722977

Branching morphogenesis is a complex process shared by many organs including the lungs, kidney, prostate, as well as several exocrine organs including the salivary, mammary and lacrimal glands. This critical developmental program ensures the expansion of an organ's surface area thereby maximizing processes of cellular secretion or absorption. It is guided by reciprocal signaling from the epithelial and mesenchymal cells. While signaling pathways driving salivary gland branching morphogenesis have been relatively well-studied, our understanding of the underlying transcriptional regulatory mechanisms directing this program, is limited. Here, we performed in vivo and ex vivo studies of the embryonic mouse submandibular gland to determine the function of the transcription factor ΔNp63, in directing branching morphogenesis. Our studies show that loss of ΔNp63 results in alterations in the differentiation program of the ductal cells which is accompanied by a dramatic reduction in branching morphogenesis that is mediated by dysregulation of WNT signaling. We show that ΔNp63 modulates WNT signaling to promote branching morphogenesis by directly regulating Sfrp1 expression. Collectively, our findings have revealed a novel role for ΔNp63 in the regulation of this critical process and offers a better understanding of the transcriptional networks involved in branching morphogenesis.


Gene Expression Regulation, Developmental , Membrane Proteins , Morphogenesis , Animals , Mice , Morphogenesis/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Salivary Glands/metabolism , Salivary Glands/embryology , Wnt Signaling Pathway , Submandibular Gland/metabolism , Submandibular Gland/embryology , Trans-Activators/metabolism , Trans-Activators/genetics , Cell Differentiation
19.
Sci Adv ; 10(18): eadn0172, 2024 May 03.
Article En | MEDLINE | ID: mdl-38691595

Collective cell dynamics is essential for tissue morphogenesis and various biological functions. However, it remains incompletely understood how mechanical forces and chemical signaling are integrated to direct collective cell behaviors underlying tissue morphogenesis. Here, we propose a three-dimensional (3D) mechanochemical theory accounting for biochemical reaction-diffusion and cellular mechanotransduction to investigate the dynamics of multicellular lumens. We show that the interplay between biochemical signaling and mechanics can trigger either pitchfork or Hopf bifurcation to induce diverse static mechanochemical patterns or generate oscillations with multiple modes both involving marked mechanical deformations in lumens. We uncover the crucial role of mechanochemical feedback in emerging morphodynamics and identify the evolution and morphogenetic functions of hierarchical topological defects including cell-level hexatic defects and tissue-level orientational defects. Our theory captures the common mechanochemical traits of collective dynamics observed in experiments and could provide a mechanistic context for understanding morphological symmetry breaking in 3D lumen-like tissues.


Mechanotransduction, Cellular , Models, Biological , Morphogenesis , Biomechanical Phenomena , Animals
20.
Proc Natl Acad Sci U S A ; 121(22): e2313216121, 2024 May 28.
Article En | MEDLINE | ID: mdl-38781209

Plant root systems play a pivotal role in plant physiology and exhibit diverse phenotypic traits. Understanding the genetic mechanisms governing root growth and development in model plants like maize is crucial for enhancing crop resilience to drought and nutrient limitations. This study focused on identifying and characterizing ZmPILS6, an annotated auxin efflux carrier, as a key regulator of various crown root traits in maize. ZmPILS6-modified roots displayed reduced network area and suppressed lateral root formation, which are desirable traits for the "steep, cheap, and deep" ideotype. The research revealed that ZmPILS6 localizes to the endoplasmic reticulum and plays a vital role in controlling the spatial distribution of indole-3-acetic acid (IAA or "auxin") in primary roots. The study also demonstrated that ZmPILS6 can actively efflux IAA when expressed in yeast. Furthermore, the loss of ZmPILS6 resulted in significant proteome remodeling in maize roots, particularly affecting hormone signaling pathways. To identify potential interacting partners of ZmPILS6, a weighted gene coexpression analysis was performed. Altogether, this research contributes to the growing knowledge of essential genetic determinants governing maize root morphogenesis, which is crucial for guiding agricultural improvement strategies.


Gene Expression Regulation, Plant , Indoleacetic Acids , Plant Proteins , Plant Roots , Zea mays , Zea mays/genetics , Zea mays/growth & development , Zea mays/metabolism , Indoleacetic Acids/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Morphogenesis/genetics , Biological Transport
...