Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.773
1.
BMC Pregnancy Childbirth ; 24(1): 338, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702634

OBJECTIVE: This study aims to perform a prenatal genetic diagnosis of a high-risk fetus with trisomy 7 identified by noninvasive prenatal testing (NIPT) and to evaluate the efficacy of different genetic testing techniques for prenatal diagnosis of trisomy mosaicism. METHODS: For prenatal diagnosis of a pregnant woman with a high risk of trisomy 7 suggested by NIPT, karyotyping and chromosomal microarray analysis (CMA) were performed on an amniotic fluid sample. Low-depth whole-genome copy number variation sequencing (CNV-seq) and fluorescence in situ hybridization (FISH) were used to clarify the results further. In addition, methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) was performed to analyze the possibility of uniparental disomy(UPD). RESULTS: Amniotic fluid karyotype analysis revealed a 46, XX result. Approximately 20% mosaic trisomy 7 was detected according to the CMA result. About 16% and 4% of mosaicism was detected by CNV-seq and FISH, respectively. MS-MLPA showed no methylation abnormalities. The fetal ultrasound did not show any detectable abnormalities except for mild intrauterine growth retardation seen at 39 weeks of gestation. After receiving genetic counseling, the expectant mother decided to continue the pregnancy, and follow-up within three months of delivery was normal. CONCLUSION: In high-risk NIPT diagnosis, a combination of cytogenetic and molecular genetic techniques proves fruitful in detecting low-level mosaicism. Furthermore, the exclusion of UPD on chromosome 7 remains crucial when NIPT indicates a positive prenatal diagnosis of trisomy 7.


Chromosomes, Human, Pair 7 , DNA Copy Number Variations , In Situ Hybridization, Fluorescence , Karyotyping , Mosaicism , Trisomy , Uniparental Disomy , Humans , Female , Mosaicism/embryology , Pregnancy , In Situ Hybridization, Fluorescence/methods , Chromosomes, Human, Pair 7/genetics , Trisomy/diagnosis , Trisomy/genetics , Karyotyping/methods , Adult , Uniparental Disomy/diagnosis , Uniparental Disomy/genetics , Prenatal Diagnosis/methods , Microarray Analysis/methods , Noninvasive Prenatal Testing/methods , Multiplex Polymerase Chain Reaction/methods , Amniotic Fluid
2.
Ital J Pediatr ; 50(1): 93, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715086

BACKGROUND: we aim to discuss the origin and the differences of the phenotypic features and the management care of rare form of disorder of sex development due to Mosaic monosomy X and Y chromosome materiel. METHODS: We report our experience with patients harboring mosaic monosomy X and Y chromosome material diagnosed by blood cells karyotypes and cared for in our department from 2005 to 2022. RESULTS: We have included five infants in our study. The current average age was 8 years. In four cases, the diagnosis was still after born and it was at the age of 15 years in one case. Physical examination revealed a variable degree of virilization, ranging from a normal male phallus with unilateral ectopic gonad to ambiguous with a genital tubercle and bilateral not palpable gonads in four cases and normal female external genitalia in patient 5. Karyotype found 45, X/46, XY mosaicism in patient 1 and 2 and 45, X/46, X, der (Y) mosaicism in patient 3, 4 and 5. Three cases were assigned to male gender and two cases were assigned to female. After radiologic and histologic exploration, four patients had been explored by laparoscopy to perform gonadectomy in two cases and Mullerian derivative resection in the other. Urethroplasty was done in two cases of posterior hypospadias. Gender identity was concordant with the sex of assignment at birth in only 3 cases. CONCLUSION: Because of the phenotypic heterogeneity of this sexual disorders and the variability of its management care, then the decision should rely on a multidisciplinary team approach.


Chromosomes, Human, Y , Mosaicism , Phenotype , Humans , Male , Female , Child , Adolescent , Chromosomes, Human, Y/genetics , Chromosomes, Human, X/genetics , Infant , Turner Syndrome/genetics , Turner Syndrome/therapy , Karyotyping , Monosomy/genetics , Child, Preschool , Disorders of Sex Development/genetics , Disorders of Sex Development/therapy , Disorders of Sex Development/diagnosis
3.
Orphanet J Rare Dis ; 19(1): 209, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773661

BACKGROUND: Marfan syndrome (MFS) is an autosomal dominant connective tissue disease with wide clinical heterogeneity, and mainly caused by pathogenic variants in fibrillin-1 (FBN1). METHODS: A Chinese 4-generation MFS pedigree with 16 family members was recruited and exome sequencing (ES) was performed in the proband. Transcript analysis (patient RNA and minigene assays) and in silico structural analysis were used to determine the pathogenicity of the variant. In addition, germline mosaicism in family member (Ι:1) was assessed using quantitative fluorescent polymerase chain reaction (QF-PCR) and short tandem repeat PCR (STR) analyses. RESULTS: Two cis-compound benign intronic variants of FBN1 (c.3464-4 A > G and c.3464-5G > A) were identified in the proband by ES. As a compound variant, c.3464-5_3464-4delGAinsAG was found to be pathogenic and co-segregated with MFS. RNA studies indicated that aberrant transcripts were found only in patients and mutant-type clones. The variant c.3464-5_3464-4delGAinsAG caused erroneous integration of a 3 bp sequence into intron 28 and resulted in the insertion of one amino acid in the protein sequence (p.Ile1154_Asp1155insAla). Structural analyses suggested that p.Ile1154_Asp1155insAla affected the protein's secondary structure by interfering with one disulfide bond between Cys1140 and Cys1153 and causing the extension of an anti-parallel ß sheet in the calcium-binding epidermal growth factor-like (cbEGF)13 domain. In addition, the asymptomatic family member Ι:1 was deduced to be a gonadal mosaic as assessed by inconsistent results of sequencing and STR analysis. CONCLUSIONS: To our knowledge, FBN1 c.3464-5_3464-4delGAinsAG is the first identified pathogenic intronic indel variant affecting non-canonical splice sites in this gene. Our study reinforces the importance of assessing the pathogenic role of intronic variants at the mRNA level, with structural analysis, and the occurrence of mosaicism.


Fibrillin-1 , Introns , Marfan Syndrome , Mosaicism , Pedigree , Humans , Fibrillin-1/genetics , Marfan Syndrome/genetics , Marfan Syndrome/pathology , Female , Male , Adult , Introns/genetics , INDEL Mutation/genetics , Middle Aged , Adipokines
4.
Curr Protoc ; 4(5): e1041, 2024 May.
Article En | MEDLINE | ID: mdl-38774978

The detection, validation, and subsequent interpretation of potentially mosaic single-nucleotide variants (SNV) within next-generation sequencing data remains a challenge in both research and clinical laboratory settings. The ability to identify mosaic variants in high genome coverage sequencing data at levels of ≤1% underscores the necessity for developing guidelines and best practices to verify these variants orthogonally. Droplet digital PCR (ddPCR) has proven to be a powerful and precise method that allows for the determination of low-level variant fractions within a given sample. Herein we describe two precise ddPCR methods using either a fluorescent TaqMan hydrolysis probe approach or an EvaGreen fluorescent dye protocol. The TaqMan approach relies on two different fluorescent probes (FAM and HEX/VIC), each designed to amplify selectively only in the presence of a single nucleotide change denoting the variant or reference position. The fractional abundance is then calculated to determine the relative quantities of both alleles in the final sample. The EvaGreen protocol relies on two independent reactions with oligonucleotide primers designed with the single nucleotide change denoting the variant at the penultimate position of the primer. The relative amplification efficiency of both primer sets (reference and variant) can be compared to determine the mosaic level of a given variant. As the cost of high-coverage sequencing continues to decrease, the identification of potentially mosaic variants will also increase. The approaches outlined will allow clinicians and researchers a more precise determination of the true mosaic level of a given variant allowing them to better assess not only its potential pathogenicity but also its possible recurrence risk when offering genetic counseling to families. © 2024 Wiley Periodicals LLC. Basic Protocol: Droplet digital PCR (ddPCR) with TaqMan hydrolysis probes Alternate Protocol: EvaGreen oligonucleotide-specific ddPCR.


Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Polymorphism, Single Nucleotide/genetics , Humans , Polymerase Chain Reaction/methods , Mosaicism , Fluorescent Dyes/chemistry , High-Throughput Nucleotide Sequencing/methods
6.
Nat Commun ; 15(1): 3800, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714703

Clonal hematopoiesis (CH) is characterized by the acquisition of a somatic mutation in a hematopoietic stem cell that results in a clonal expansion. These driver mutations can be single nucleotide variants in cancer driver genes or larger structural rearrangements called mosaic chromosomal alterations (mCAs). The factors that influence the variations in mCA fitness and ultimately result in different clonal expansion rates are not well understood. We used the Passenger-Approximated Clonal Expansion Rate (PACER) method to estimate clonal expansion rate as PACER scores for 6,381 individuals in the NHLBI TOPMed cohort with gain, loss, and copy-neutral loss of heterozygosity mCAs. Our mCA fitness estimates, derived by aggregating per-individual PACER scores, were correlated (R2 = 0.49) with an alternative approach that estimated fitness of mCAs in the UK Biobank using population-level distributions of clonal fraction. Among individuals with JAK2 V617F clonal hematopoiesis of indeterminate potential or mCAs affecting the JAK2 gene on chromosome 9, PACER score was strongly correlated with erythrocyte count. In a cross-sectional analysis, genome-wide association study of estimates of mCA expansion rate identified a TCL1A locus variant associated with mCA clonal expansion rate, with suggestive variants in NRIP1 and TERT.


Chromosome Aberrations , Clonal Hematopoiesis , Mosaicism , Humans , Clonal Hematopoiesis/genetics , Male , Female , Genome-Wide Association Study , Janus Kinase 2/genetics , Telomerase/genetics , Telomerase/metabolism , Loss of Heterozygosity , Cross-Sectional Studies , Mutation , Middle Aged , Hematopoietic Stem Cells/metabolism , Polymorphism, Single Nucleotide , Aged
7.
Proc Natl Acad Sci U S A ; 121(21): e2321388121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38748583

Protocadherin19 (PCDH19)-related epilepsy syndrome is a rare disorder characterized by early-onset epilepsy, intellectual disability, and autistic behaviors. PCDH19 is located on the X chromosome and encodes a calcium-dependent single-pass transmembrane protein, which regulates cell-to-cell adhesion through homophilic binding. In human, 90% of heterozygous females, containing PCDH19 wild-type and mutant cells due to random X inactivation, are affected, whereas mutant males, containing only mutant cells, are typically not. The current view, the cellular interference, is that the altered interactions between wild-type and mutant cells during development, rather than loss of function itself, are responsible. However, studies using Pcdh19 knockout mice showed that the complete loss of function also causes autism-like behaviors both in males and females, suggesting that other functions of PCDH19 may also contribute to pathogenesis. To address whether mosaicism is required for PCDH19-related epilepsy, we generated Xenopus tropicalis tadpoles with complete or mosaic loss of function by injecting antisense morpholino oligonucleotides into the blastomeres of neural lineage at different stages of development. We found that either mosaic or complete knockdown results in seizure-like behaviors, which could be rescued by antiseizure medication, and repetitive behaviors. Our results suggest that the loss of PCDH19 function itself, in addition to cellular interference, may also contribute to PCDH19-related epilepsy.


Cadherins , Epilepsy , Mosaicism , Protocadherins , Xenopus , Animals , Cadherins/genetics , Cadherins/metabolism , Female , Epilepsy/genetics , Epilepsy/metabolism , Male , Behavior, Animal , Humans
8.
Taiwan J Obstet Gynecol ; 63(3): 391-393, 2024 May.
Article En | MEDLINE | ID: mdl-38802204

OBJECTIVE: We present low-level mosaic trisomy 21 at amniocentesis and cordocentesis in a pregnancy associated with a favorable fetal outcome. CASE REPORT: A 26-year-old, primigravid woman underwent amniocentesis at 17 weeks of gestation because of positive non-invasive prenatal testing (NIPT) for trisomy 21 at 16 weeks of gestation. Amniocentesis revealed a karyotype of 47,XX,+21[3]/46,XX[17], and multiplex ligation-dependent probe amplification (MLPA) on uncultured amniocytes revealed rsa X(P095) × 2, (13, 18, 21) × 2. She underwent cordocentesis (cord blood sampling) at 21 weeks of gestation which revealed a karyotype of 47,XX,+21[2]/46,XX[48]. At 27 weeks of gestation, she was referred to our hospital for genetic counseling, and repeat amniocentesis revealed a karyotype of 46,XX in 20/20 colonies. Quantitative fluorescent polymerase chain reaction (QF-PCR) analysis on the DNA extracted from uncultured amniocytes and parental bloods excluded uniparental disomy (UPD) 21. Array comparative genomic hybridization (aCGH) analysis on the DNA extracted from uncultured amniocytes revealed arr (1-22,X) × 2, Y × 0 with no genomic imbalance. Interphase fluorescence in situ hybridization (FISH) analysis on 104 uncultured amniocytes detected one cell (1/104 = 0.9%) with trisomy 21, while the rest cells were disomy 21, compared with 0% (0/100) in the normal control. The woman was encouraged to continue the pregnancy. The pregnancy was carried to 38 weeks of gestation, and a 2771-g female baby was delivered no phenotypic abnormality. aCGH analysis on the cord blood showed arr (1-22,X) × 2, Y × 0 with no genomic imbalance. The umbilical cord had a karyotype of 47,XX,+21[3]/46,XX[37]. The placenta had a karyotype of 46,XX. When follow-up at age 3½ months, the neonate was phenotypically normal and had normal development. The peripheral blood had a karyotype of 46,XX in 40/40 cells. Interphase FISH analysis on buccal mucosal cells detected normal disomy 21 cells in 100/100 cells. CONCLUSION: Low-level mosaic trisomy 21 at amniocentesis and cordocentesis in the second trimester can be associated with perinatal progressive decrease of the trisomy 21 cell line and a favorable fetal outcome.


Amniocentesis , Cordocentesis , Down Syndrome , Mosaicism , Pregnancy Trimester, Second , Humans , Female , Pregnancy , Adult , Down Syndrome/diagnosis , Down Syndrome/genetics , Mosaicism/embryology , Infant, Newborn , Live Birth/genetics , Noninvasive Prenatal Testing/methods , Karyotyping , Pregnancy Outcome
9.
Taiwan J Obstet Gynecol ; 63(3): 394-397, 2024 May.
Article En | MEDLINE | ID: mdl-38802205

OBJECTIVE: We present low-level mosaic trisomy 21 at amniocentesis in a pregnancy with a favorable fetal outcome. CASE REPORT: A 38-year-old, gravida 2, para 1, woman underwent amniocentesis at 17 weeks of gestation because of advanced maternal age. Amniocentesis revealed a karyotype of 47,XY,+21[4]/46,XY[34]. Prenatal ultrasound findings were normal. At 27 weeks of gestation, she was referred for genetic counseling, and the cultured amniocytes had a karyotype of 47,XY,+21[2]/46,XY[26]. Quantitative fluorescent polymerase chain reaction (QF-PCR) analysis on the DNA extracted from uncultured amniocytes and parental bloods excluded uniparental disomy (UPD) 21. Interphase fluorescence in situ hybridization (FISH) analysis on uncultured amniocytes revealed 30% (30/100 cells) mosaicism for trisomy 21. Array comparative genomic hybridization (aCGH) analysis on the DNA extracted from uncultured amniocytes revealed the result of arr 21q11.2q22.3 × 2.25, consistent with 20%-30% mosaicism for trisomy 21. The parental karyotypes were normal. The woman was advised to continue the pregnancy, and a 3510-g phenotypically normal male baby was delivered at 39 weeks of gestation. Cytogenetic analysis of the cord blood, umbilical cord and placenta revealed the karyotypes of 47,XY,+21[1]/46,XY[39], 47,XY,+21[2]/46,XY[38] and 46,XY in 40/40 cells, respectively. When follow-up at age 1 year and 2 months, the neonate was normal in phenotype and development. The peripheral blood had a karyotype of 46,XY in 40/40 cells, and interphase FISH analysis on uncultured buccal mucosal cells showed 6.4% (7/109 cells) mosaicism for trisomy 21. CONCLUSION: Low-level mosaic trisomy 21 at amniocentesis can be associated with cytogenetic discrepancy between cultured amniocytes and uncultured amniocytes, perinatal progressive decrease of the trisomy 21 cell line and a favorable fetal outcome.


Amniocentesis , Comparative Genomic Hybridization , Down Syndrome , In Situ Hybridization, Fluorescence , Mosaicism , Humans , Pregnancy , Female , Mosaicism/embryology , Adult , Down Syndrome/genetics , Down Syndrome/diagnosis , Infant, Newborn , Cell Line , Cells, Cultured , Karyotyping/methods , Amnion/cytology , Male
10.
Taiwan J Obstet Gynecol ; 63(3): 398-401, 2024 May.
Article En | MEDLINE | ID: mdl-38802206

OBJECTIVE: We present mosaic distal 10q deletion at prenatal diagnosis in a pregnancy associated with a favorable fetal outcome. CASE REPORT: A 40-year-old, gravida 2, para 0, woman underwent amniocentesis at 16 weeks of gestation because of advanced maternal age. Amniocentesis revealed a karyotype of 46,XY, del(10) (q26.13)[6]/46,XY[17]. Simultaneous array comparative genomic hybridization (aCGH) analysis on the DNA extracted from uncultured amniocytes showed 35% mosaicism for the 10q26.13q26.3 deletion. At 22 weeks of gestation, she underwent cordocentesis which revealed a karyotype of 46,XY,del(10) (q26.13)[16]/46,XY[24]. Prenatal ultrasound findings were normal. At 24 weeks of gestation, she was referred for genetic counseling, and repeat amniocentesis revealed a karyotype of 46,XY,del(10) (q26.13)[4]/46,XY[22]. The parental karyotypes were normal. Molecular genetic analysis on uncultured amniocytes revealed no uniparental disomy (UPD) 10 by quantitative fluorescence polymerase chain reaction (QF-PCR), arr 10q26.13q26.3 × 1.6 (40% mosaicism) by aCGH, and 29.8% (31/104 cells) mosaicism for the distal 10q deletion by interphase fluorescence in situ hybridization (FISH). The woman was advised to continue the pregnancy, and a phenotypically normal 2,900-g male baby was delivered at 39 weeks of gestation. The cord blood had a karyotype of 46,XY,del(10) (q26.13)[6]/46,XY[34], and both the umbilical cord and the placenta had the karyotype of 46,XY. When follow-up at age four months, the neonate was normal in phenotype and development. The peripheral blood had a karyotype of 46,XY,del(10) (q26.13)[5]/46,XY[35], and interphase FISH analysis on buccal mucosal cells showed 8% (8/102 cells) mosaicism for distal 10q deletion. CONCLUSION: Mosaic distal 10q deletion with a normal cell line at prenatal diagnosis can be associated with a favorable fetal outcome and perinatal progressive decrease of the aneuploid cell line.


Amniocentesis , Comparative Genomic Hybridization , Cordocentesis , Mosaicism , Humans , Pregnancy , Female , Mosaicism/embryology , Adult , Chromosomes, Human, Pair 10/genetics , Chromosome Deletion , Infant, Newborn , Aneuploidy , Karyotyping
11.
Taiwan J Obstet Gynecol ; 63(3): 418-421, 2024 May.
Article En | MEDLINE | ID: mdl-38802211

OBJECTIVE: Herein, we present a case of mosaic trisomy 6 detected by amniocentesis. CASE REPORT: Amniocentesis (G-banding) was performed at 17 weeks of gestation; the results were 47,XY,+6[3]/46,XY[12]. Fetal screening ultrasonography showed no morphological abnormalities, and the parents desired to continue the pregnancy. The infant was delivered vaginally at 39 weeks' gestation. The male infant weighed 3002 g at birth with no morphological abnormalities. G-banding karyotype analysis performed on the infant's peripheral blood revealed 46,XY[20]. FISH analysis revealed trisomy signals on chromosome 6 in 1-4 out of 100 cells from the placenta. The single nucleotide polymorphism microarray of the umbilical cord blood revealed no abnormalities. Methylation analysis of umbilical cord blood revealed no abnormalities in PLAGL1. No disorders were observed at one year of age. CONCLUSION: When amniocentesis reveals chromosomal mosaicism, it is essential to provide a thorough fetal ultrasound examination and careful genetic counseling to support the couples' decision-making.


Amniocentesis , Chromosomes, Human, Pair 6 , Mosaicism , Trisomy , Humans , Mosaicism/embryology , Female , Pregnancy , Trisomy/genetics , Trisomy/diagnosis , Male , Adult , Chromosomes, Human, Pair 6/genetics , Infant, Newborn , Ultrasonography, Prenatal , Karyotyping , In Situ Hybridization, Fluorescence
12.
Nat Commun ; 15(1): 4220, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760338

When somatic cells acquire complex karyotypes, they often are removed by the immune system. Mutant somatic cells that evade immune surveillance can lead to cancer. Neurons with complex karyotypes arise during neurotypical brain development, but neurons are almost never the origin of brain cancers. Instead, somatic mutations in neurons can bring about neurodevelopmental disorders, and contribute to the polygenic landscape of neuropsychiatric and neurodegenerative disease. A subset of human neurons harbors idiosyncratic copy number variants (CNVs, "CNV neurons"), but previous analyses of CNV neurons are limited by relatively small sample sizes. Here, we develop an allele-based validation approach, SCOVAL, to corroborate or reject read-depth based CNV calls in single human neurons. We apply this approach to 2,125 frontal cortical neurons from a neurotypical human brain. SCOVAL identifies 226 CNV neurons, which include a subclass of 65 CNV neurons with highly aberrant karyotypes containing whole or substantial losses on multiple chromosomes. Moreover, we find that CNV location appears to be nonrandom. Recurrent regions of neuronal genome rearrangement contain fewer, but longer, genes.


DNA Copy Number Variations , Mosaicism , Neurons , Humans , Neurons/metabolism , Alleles
13.
Sci Prog ; 107(2): 368504241242278, 2024.
Article En | MEDLINE | ID: mdl-38629201

Treacher Collins syndrome (TCS) is a rare congenital craniofacial disorder, typically inherited as an autosomal dominant condition. Here, we report on a family in which germline mosaicism for TCS was likely present. The proband was diagnosed with TCS based on the typical clinical features and a pathogenic variant TCOF1 (c.4369_4373delAAGAA, p.K1457Efs*12). The mutation was not detected in his parents' peripheral blood DNA samples, suggesting a de novo mutation had occurred in the proband. However, a year later, the proband's mother became pregnant, and the amniotic fluid puncture revealed that the fetus carried the same mutation as the proband. Prenatal ultrasound also indicated a maxillofacial dysplasia with unilateral microtia. The mother then disclosed a previous birth history in which a baby had died of respiratory distress shortly after birth, displaying a TCS-like phenotype. Around the same time, the proband's father was diagnosed with mild bilateral conductive hearing loss. Based on array data, we concluded that the father may have had germline mosaicism for TCOF1 mutation. Our findings highlight the importance of considering germline mosaicism in sporadic de novo TCOF1 mutations when providing genetic consulting, and prenatal diagnosis is important when the proband's parents become pregnant again.


Mandibulofacial Dysostosis , Mosaicism , Humans , Pedigree , Mandibulofacial Dysostosis/diagnosis , Mandibulofacial Dysostosis/genetics , Mutation , Germ Cells
14.
Am J Hum Genet ; 111(5): 913-926, 2024 May 02.
Article En | MEDLINE | ID: mdl-38626762

Expanded CAG repeats in coding regions of different genes are the most common cause of dominantly inherited spinocerebellar ataxias (SCAs). These repeats are unstable through the germline, and larger repeats lead to earlier onset. We measured somatic expansion in blood samples collected from 30 SCA1, 50 SCA2, 74 SCA3, and 30 SCA7 individuals over a mean interval of 8.5 years, along with postmortem tissues and fetal tissues from SCA1, SCA3, and SCA7 individuals to examine somatic expansion at different stages of life. We showed that somatic mosaicism in the blood increases over time. Expansion levels are significantly different among SCAs and correlate with CAG repeat lengths. The level of expansion is greater in individuals with SCA7 who manifest disease compared to that of those who do not yet display symptoms. Brain tissues from SCA individuals have larger expansions compared to the blood. The cerebellum has the lowest mosaicism among the studied brain regions, along with a high expression of ATXNs and DNA repair genes. This was the opposite in cortices, with the highest mosaicism and lower expression of ATXNs and DNA repair genes. Fetal cortices did not show repeat instability. This study shows that CAG repeats are increasingly unstable during life in the blood and the brain of SCA individuals, with gene- and tissue-specific patterns.


Mosaicism , Spinocerebellar Ataxias , Trinucleotide Repeat Expansion , Humans , Spinocerebellar Ataxias/genetics , Trinucleotide Repeat Expansion/genetics , Female , Male , Adult , Middle Aged , Cerebellum/metabolism , Cerebellum/pathology , Aged , Brain/metabolism , Brain/pathology , Ataxin-1/genetics
15.
Genes (Basel) ; 15(4)2024 Apr 07.
Article En | MEDLINE | ID: mdl-38674397

The mosaic form of Edwards syndrome affects 5% of all children with Edwards syndrome. The clinical phenotype is highly variable, ranging from the full spectrum of trisomy 18 to the normal phenotype. The purpose of this publication was to present the therapeutic process in an 18-month-old girl with the mosaic form of Edwards syndrome and hepatoblastoma, against the background of other cases of simultaneous occurrence of this syndrome and hepatoblastoma described so far. It appears that this particular group of patients with hepatoblastoma and Edwards syndrome can have good outcomes, provided they do not have life-threatening cardiac or other severe defects. Due to the prematurity of our patient and the defects associated with Edwards syndrome, the child required constant multidisciplinary care, but Edwards syndrome itself was not a reason to discontinue therapy for a malignant neoplasm of the liver. Regular abdominal ultrasound examination, along with AFP testing, may be helpful in the early detection of liver tumors in children with Edwards syndrome.


Hepatoblastoma , Liver Neoplasms , Trisomy 18 Syndrome , Humans , Hepatoblastoma/genetics , Hepatoblastoma/therapy , Female , Infant , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Trisomy 18 Syndrome/genetics , Trisomy 18 Syndrome/complications , Mosaicism , Trisomy/genetics , Treatment Outcome , Chromosomes, Human, Pair 18/genetics
16.
Haemophilia ; 30(3): 774-779, 2024 May.
Article En | MEDLINE | ID: mdl-38632836

INTRODUCTION: Of newly diagnosed cases of haemophilia B, the proportion of sporadic cases is usually 50% of severe cases and 25% of moderate/mild cases. However, cases presumed to be sporadic due to family history may not always be sporadic. Few case reports have been published on mosaicism in haemophilia B. AIM: The present study aimed to trace the origin of the pathogenic variant in a well-defined cohort of sporadic cases of haemophilia B by haplotyping markers. It also aimed to determine the frequency of mosaicism in presumed non-carrier mothers. METHODS: The study group was 40 families, each with a sporadic case of haemophilia B analysed in two-to-three generations by Sanger sequencing, haplotyping and using the sensitive droplet digital polymerase chain reaction (ddPCR) technique. RESULTS: In 31/40 (78%) of the families, the mother carried the same pathogenic variant as her son, while Sanger sequencing showed that 9/40 (22%) of the mothers did not carry this variant. Of these variants, 2/9 (22%) were shown to be mosaics by using the ddPCR technique. 16/21 carrier mothers, with samples from three generations available, had a de novo pathogenic variant of which 14 derived from the healthy maternal grandfather. CONCLUSION: The origin of the pathogenic variant in sporadic cases of haemophilia B is most often found in the X-chromosome derived from the maternal grandfather or, less often, from the maternal grandmother. Mosaic females seem to be found at the same frequency as in haemophilia A but at a lower percentage of the pathogenic variant.


Hemophilia B , Mosaicism , Humans , Hemophilia B/genetics , Female , Male , Pedigree , Haplotypes
17.
Zhonghua Fu Chan Ke Za Zhi ; 59(4): 288-298, 2024 Apr 25.
Article Zh | MEDLINE | ID: mdl-38644275

Objective: To explore the related factors influencing the detection rate of mosaic embryo and the pregnancy outcomes of mosaic embryo transfer in preimplantation genetic testing for aneuploidy (PGT-A) based on next generation sequencing (NGS) technology. Methods: A retrospective study was performed to analyze the clinical data of patients in 745 PGT-A cycles from January 2019 to May 2023 at Chongqing Health Center for Women and Children, including 2 850 blastocysts. The biopsy cells were tested using NGS technology, and the embryos were divided into three groups based on the test results, namely euploid embryos, aneuploid embryos and mosaic embryos. The influence of population characteristics and laboratory-related parameters on the detection rate of mosaic embryo were analyzed, and the pregnancy outcomes of 98 mosaic embryo transfer cycles and 486 euploid embryo transfer cycles were compared during the same period, including clinical pregnancy rate and live birth rate. Results: Among the embryos tested (n=2 850), the number and proportion of euploid embryos, aneuploid embryos and mosaic embryos were 1 489 (52.2%, 1 489/2 850), 917 (32.2%, 917/2 850) and 444 (15.6%, 444/2 850), respectively. Among mosaic embryos, 245 (55.2%, 245/444) were segmental mosaic embryos, 118 (26.6%, 118/444) were whole-chromosome mosaic embryos, and 81 (18.2%, 81/444) were complex mosaic embryos. NGS technology was performed in 4 genetic testing institutions and the detection rate of mosaic embryo fluctuated from 13.5% to 27.0%. The distributions of female age, level of anti-Müllerian hormone, PGT-A indications, ovulation-inducing treatments, gonadotropin (Gn) dosage, Gn days, inner cell mass grade, trophectoderm cell grade, genetic testing institutions and developmental stage of blastocyst were significantly different among the three groups (all P<0.05). Multi-factor analysis showed that the trophectoderm cell grade and genetic testing institutions were significantly related to the detection rate of mosaic embryo; compared with the trophectoderm cell graded as A, the detection rate of mosaic embryo was significantly increased in the trophectoderm cell graded as B-(OR=1.59, 95%CI: 1.04-2.44, P=0.033); compared with genetic testing institution a, the detection rate of mosaic embryo was significantly higher (OR=2.89, 95%CI: 2.10-3.98, P<0.001) in the testing institution c. The clinical pregnancy rate and live birth rate with mosaic embryos transfer were significantly lower than those of euploid embryos transfer (clinical pregnancy rate: 51.0% vs 65.2%, P=0.008; live birth rate: 39.4% vs 53.2%, P=0.017). After adjustment for age, PGT-A indications, trophectoderm cell grade and days of embryo culture in vitro, the clinical pregnancy rate and live birth rate with mosaic embryos transfer were significantly lower than those of euploid embryos transfer (clinical pregnancy rate: OR=0.52, 95%CI: 0.32-0.83, P=0.007; live birth rate: OR=0.50, 95%CI: 0.31-0.83, P=0.007). Conclusions: The trophectoderm cell grade and genetic testing institutions are related to the detection rate of mosaic embryo. Compared with euploid embryos transfer, the clinical pregnancy rate and live birth rate with mosaic embryos transfer are significantly reduced. For infertile couple without euploid embryos, transplantable mosaic embryos could be recommended according to the mosaic ratio and mosaic type in genetic counseling to obtain the optimal pregnancy outcome.


Aneuploidy , Blastocyst , Embryo Transfer , Fertilization in Vitro , Genetic Testing , Mosaicism , Pregnancy Outcome , Pregnancy Rate , Preimplantation Diagnosis , Humans , Female , Pregnancy , Embryo Transfer/methods , Retrospective Studies , Preimplantation Diagnosis/methods , Genetic Testing/methods , Adult , Blastocyst/cytology , High-Throughput Nucleotide Sequencing , Live Birth
18.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38673816

Until a few years ago, it was believed that the gradual mosaic loss of the Y chromosome (mLOY) was a normal age-related process. However, it is now known that mLOY is associated with a wide variety of pathologies in men, such as cardiovascular diseases, neurodegenerative disorders, and many types of cancer. Nevertheless, the mechanisms that generate mLOY in men have not been studied so far. This task is of great importance because it will allow focusing on possible methods of prophylaxis or therapy for diseases associated with mLOY. On the other hand, it would allow better understanding of mLOY as a possible marker for inferring the age of male samples in cases of human identification. Due to the above, in this work, a comprehensive review of the literature was conducted, presenting the most relevant information on the possible molecular mechanisms by which mLOY is generated, as well as its implications for men's health and its possible use as a marker to infer age.


Chromosomes, Human, Y , Men's Health , Humans , Chromosomes, Human, Y/genetics , Male , Aging/genetics , Mosaicism , Chromosome Deletion
19.
J Hazard Mater ; 471: 134315, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38678703

Mosaic loss of chromosome Y (mLOY) is the most common somatic alteration as men aging and may reflect genome instability. PM exposure is a major health concern worldwide, but its effects with genetic factors on mLOY has never been investigated. Here we explored the associations of PM2.5 and PM10 exposure with mLOY of 10,158 males measured via signal intensity of 2186 probes in male-specific chromosome-Y region from Illumina array data. The interactive and joint effects of PM2.5 and PM10 with genetic factors and smoking on mLOY were further evaluated. Compared with the lowest tertiles of PM2.5 levels in each exposure window, the highest tertiles in the same day, 7-, 14-, 21-, and 28-day showed a 0.005, 0.006, 0.007, 0.007, and 0.006 decrease in mLRR-Y, respectively (all P < 0.05), with adjustment for age, BMI, smoking pack-years, alcohol drinking status, physical activity, education levels, season of blood draw, and experimental batch. Such adverse effects were also observed in PM10-mLOY associations. Moreover, the unweighted and weighted PRS presented significant negative associations with mLRR-Y (both P < 0.001). Participants with high PRS and high PM2.5 or PM10 exposure in the 28-day separately showed a 0.018 or 0.019 lower mLRR-Y level [ß (95 %CI) = -0.018 (-0.023, -0.012) and - 0.019 (-0.025, -0.014), respectively, both P < 0.001], when compared to those with low PRS and low PM2.5 or PM10 exposure. We also observed joint effects of PM with smoking on exacerbated mLOY. This large study is the first to elucidate the impacts of PM2.5 exposure on mLOY, and provides key evidence regarding the interactive and joint effects of PM with genetic factors on mLOY, which may promote understanding of mLOY development, further modifying and increasing healthy aging in males.


Chromosomes, Human, Y , Particulate Matter , Male , Humans , Particulate Matter/toxicity , Middle Aged , Aged , Cohort Studies , Mosaicism , Air Pollutants/toxicity , China , Environmental Exposure/adverse effects , Smoking , Multifactorial Inheritance , Air Pollution/adverse effects , Risk Factors , Genetic Risk Score
20.
Nature ; 629(8011): 384-392, 2024 May.
Article En | MEDLINE | ID: mdl-38600385

Debate remains around the anatomical origins of specific brain cell subtypes and lineage relationships within the human forebrain1-7. Thus, direct observation in the mature human brain is critical for a complete understanding of its structural organization and cellular origins. Here we utilize brain mosaic variation within specific cell types as distinct indicators for clonal dynamics, denoted as cell-type-specific mosaic variant barcode analysis. From four hemispheres and two different human neurotypical donors, we identified 287 and 780 mosaic variants, respectively, that were used to deconvolve clonal dynamics. Clonal spread and allele fractions within the brain reveal that local hippocampal excitatory neurons are more lineage-restricted than resident neocortical excitatory neurons or resident basal ganglia GABAergic inhibitory neurons. Furthermore, simultaneous genome transcriptome analysis at both a cell-type-specific and a single-cell level suggests a dorsal neocortical origin for a subgroup of DLX1+ inhibitory neurons that disperse radially from an origin shared with excitatory neurons. Finally, the distribution of mosaic variants across 17 locations within one parietal lobe reveals that restriction of clonal spread in the anterior-posterior axis precedes restriction in the dorsal-ventral axis for both excitatory and inhibitory neurons. Thus, cell-type-resolved somatic mosaicism can uncover lineage relationships governing the development of the human forebrain.


Cell Lineage , GABAergic Neurons , Homeodomain Proteins , Mosaicism , Prosencephalon , Transcription Factors , Humans , Prosencephalon/cytology , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Cell Lineage/genetics , Male , Transcription Factors/metabolism , Transcription Factors/genetics , Neurons/cytology , Neurons/metabolism , Female , Hippocampus/cytology , Clone Cells/cytology , Clone Cells/metabolism , Single-Cell Analysis , Parietal Lobe/cytology , Alleles , Neocortex/cytology , Transcriptome
...