Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 376
Filter
1.
Rev Peru Med Exp Salud Publica ; 41(1): 46-53, 2024 May 27.
Article in Spanish, English | MEDLINE | ID: mdl-38808844

ABSTRACT

OBJECTIVE.: Motivation for the study. Dengue prevention and control is based on the control of its vector. This study was conducted because of the need to know the costs associated with Aedes aegypti control in a region that carries out planned vector control activities. Main findings. The costs incurred in dengue vector control in the Loreto region in 2017 and 2018 amounted to PEN 4,066,380.25 and PEN 3,807,858.73, respectively. Implications. Knowing the cost of vector control activities will allow us to better plan these activities and have a basis for cost-effectiveness studies with other methods of prevention and control of dengue. To estimate the costs incurred in the control of Aedes aegypti in the Loreto region, during the years 2017 and 2018. MATERIALS AND METHODS.: We conducted a partial retrospective economic evaluation of the costs of Aedes aegypti control of the Regional Health Directorate Loreto, during the implementation of the Regional Plan for Surveillance and Control of Aedes aegypti. Documentation such as plans, intervention reports and payment slips were reviewed, and interviews were conducted with professional personnel involved in vector control, on the costs of control interventions. RESULTS.: We found that the costs incurred in dengue vector control in the Loreto Region in the two years were: PEN 3,807,858 and PEN 4,066,380 during 2017 and 2018, respectively (USD 1,175,264 and USD 1,1210,232 at the 2017 and 2018 exchange rate). However, the effect of control activities is short-lived. CONCLUSIONS.: The high cost involved in vector control with the methods currently used and the short duration of its effect make it unsustainable. Studies should be conducted in order to find other more efficient methods for dengue control.


OBJETIVO.: Motivación para realizar el estudio. La prevención y control del dengue se basa en el control de su vector. Este estudio se realizó por la necesidad de conocer los costos asociados al control Aedes aegypti en una región que realiza actividades planificadas de control vectorial. Principales hallazgos. Los costos incurridos en el control del vector del dengue en la región Loreto en los años 2017 y 2018, ascienden a 4,066,380.25 y 3,807,858.73 PEN, respectivamente. Implicancias. Conocer el costo de las actividades de control vectorial nos permitirá planificar mejor estas actividades y tener una base para estudios de costo efectividad con otros métodos de prevención y control del dengue. Estimar los costos incurridos en el control del Aedes aegypti en la región Loreto, en los años 2017 y 2018. MATERIALES Y MÉTODOS.: Se realizó una evaluación económica retrospectiva parcial de los costos del control del Aedes aegypti de la Dirección Regional de Salud Loreto, durante la ejecución del Plan Regional de Vigilancia y Control de Aedes aegypti. Se revisó documentación como planes, informes de intervenciones y planillas de pago y se realizaron entrevistas al personal profesional implicado en el control vectorial, sobre los costos de las intervenciones de control. RESULTADOS.: Se halló, que los costos incurridos en el control del vector del dengue en la Región Loreto en los dos años estudiados ascienden a: 3,807,858 PEN y 4,066,380 PEN durante el 2017 y 2018, respectivamente (1´175,264 USD y 1´1210,232 USD al tipo de cambio del 2017 y 2018). Sin embargo, el efecto de las actividades de control es de corta duración. CONCLUSIONES.: El alto costo que implica el control vectorial con los métodos usados actualmente y la corta duración de su efecto lo hace insostenible. Se deben realizar estudios para hallar otros métodos más eficientes para el control del dengue.


Subject(s)
Aedes , Dengue , Mosquito Control , Mosquito Vectors , Animals , Dengue/prevention & control , Dengue/economics , Dengue/transmission , Peru , Mosquito Control/economics , Mosquito Control/methods , Retrospective Studies , Humans , Costs and Cost Analysis
2.
Sci Total Environ ; 933: 173054, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38729373

ABSTRACT

Invasive Aedes aegypti and Aedes albopictus mosquitoes transmit viruses such as dengue, chikungunya and Zika, posing a huge public health burden as well as having a less well understood economic impact. We present a comprehensive, global-scale synthesis of studies reporting these economic costs, spanning 166 countries and territories over 45 years. The minimum cumulative reported cost estimate expressed in 2022 US$ was 94.7 billion, although this figure reflects considerable underreporting and underestimation. The analysis suggests a 14-fold increase in costs, with an average annual expenditure of US$ 3.1 billion, and a maximum of US$ 20.3 billion in 2013. Damage and losses were an order of magnitude higher than investment in management, with only a modest portion allocated to prevention. Effective control measures are urgently needed to safeguard global health and well-being, and to reduce the economic burden on human societies. This study fills a critical gap by addressing the increasing economic costs of Aedes and Aedes-borne diseases and offers insights to inform evidence-based policy.


Subject(s)
Aedes , Mosquito Vectors , Animals , Dengue , Humans , Chikungunya Fever/transmission , Global Health , Vector Borne Diseases/prevention & control , Introduced Species , Mosquito Control/economics , Mosquito Control/methods , Mosquito-Borne Diseases
3.
Ecohealth ; 21(1): 9-20, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38658454

ABSTRACT

Invasive mosquitoes are an emerging public health issue, as many species are competent vectors for pathogens. We assessed how multiple environmental and socio-economic factors affected the engagement of municipalities in Italy (n = 7679) in actions against Aedes albopictus, an invasive mosquito affecting human health and well-being, between 2000 and 2020. We collected information about mosquito control from official documents and municipal websites and modeled the role played by multiple environmental and socioeconomic factors characterizing each municipality through the random forest algorithm. Municipalities are more prone to manage A. albopictus if more urbanized, in lowlands and with long infestation periods. Moreover, these variables are more predictive of management in municipalities with a high median income and thus more economic resources. Only 25.5% of Italian municipalities approved regulations for managing A. albopictus, and very few of them were in Southern Italy, the most deprived area of the country. Our findings indicate that local economic conditions moderate the effect of other drivers of mosquito control and ultimately can lead to better management of A. albopictus. If the management of invasive mosquitoes, or other forms of global change, is subjected to local economic conditions, economic inequalities will jeopardize the success of large-scale policies, also raising issues of environmental and climate justice.


Subject(s)
Aedes , Mosquito Control , Mosquito Vectors , Animals , Italy , Mosquito Control/economics , Socioeconomic Factors , Humans , Introduced Species/economics , Cities
4.
Pest Manag Sci ; 80(8): 3829-3838, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38507220

ABSTRACT

BACKGROUND: Dengue virus, primarily transmitted by the Aedes aegypti mosquito, is a major public health concern affecting ≈3.83 billion people worldwide. Recent releases of Wolbachia-transinfected Ae. aegypti in several cities worldwide have shown that it can reduce dengue transmission. However, these releases are costly, and, to date, no framework has been proposed for determining economically optimal release strategies that account for both costs associated with disease risk and releases. RESULTS: We present a flexible stochastic dynamic programming framework for determining optimal release schedules for Wolbachia-transinfected mosquitoes that balances the cost of dengue infection with the costs of rearing and releasing transinfected mosquitoes. Using an ordinary differential equation model of Wolbachia and dengue in a hypothetical city loosely describing areas at risk of new dengue epidemics, we determined that an all-or-nothing release strategy that quickly brings Wolbachia to fixation is often the optimal solution. Based on this, we examined the optimal facility size, finding that it was inelastic with respect to the mosquito population size, with a 100% increase in population size resulting in a 50-67% increase in optimal facility size. Furthermore, we found that these results are robust to mosquito life-history parameters and are mostly determined by the mosquito population size and the fitness costs associated with Wolbachia. CONCLUSIONS: These results reinforce that Wolbachia-transinfected mosquitoes can reduce the cost of dengue epidemics. Furthermore, they emphasize the importance of determining the size of the target population and fitness costs associated with Wolbachia before releases occur. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Aedes , Dengue , Mosquito Control , Mosquito Vectors , Wolbachia , Aedes/microbiology , Aedes/virology , Wolbachia/physiology , Animals , Dengue/prevention & control , Dengue/transmission , Mosquito Control/methods , Mosquito Control/economics , Mosquito Vectors/microbiology
5.
Chaos ; 32(4): 041105, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35489839

ABSTRACT

Over the last decade, the release of Wolbachia-infected Aedes aegypti into the natural habitat of this mosquito species has become the most sustainable and long-lasting technique to prevent and control vector-borne diseases, such as dengue, zika, or chikungunya. However, the limited resources to generate such mosquitoes and their effective distribution in large areas dominated by the Aedes aegypti vector represent a challenge for policymakers. Here, we introduce a mathematical framework for the spread of dengue in which competition between wild and Wolbachia-infected mosquitoes, the cross-contagion patterns between humans and vectors, the heterogeneous distribution of the human population in different areas, and the mobility flows between them are combined. Our framework allows us to identify the most effective areas for the release of Wolbachia-infected mosquitoes to achieve a large decrease in the global dengue prevalence.


Subject(s)
Aedes/microbiology , Chikungunya Fever/prevention & control , Dengue/prevention & control , Mosquito Vectors/microbiology , Wolbachia/physiology , Zika Virus Infection/prevention & control , Animals , Chikungunya Fever/epidemiology , Chikungunya Fever/transmission , Dengue/epidemiology , Dengue/transmission , Humans , Mosquito Control/economics , Wolbachia/growth & development , Zika Virus Infection/epidemiology , Zika Virus Infection/transmission
6.
PLoS Negl Trop Dis ; 15(12): e0010086, 2021 12.
Article in English | MEDLINE | ID: mdl-34965277

ABSTRACT

BACKGROUND: Chikungunya and dengue are emerging diseases that have caused large outbreaks in various regions of the world. Both are both spread by Aedes aegypti and Aedes albopictus mosquitos. We developed a dynamic transmission model of chikungunya and dengue, calibrated to data from Colombia (June 2014 -December 2017). METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the health benefits and cost-effectiveness of residual insecticide treatment, long-lasting insecticide-treated nets, routine dengue vaccination for children aged 9, catchup vaccination for individuals aged 10-19 or 10-29, and portfolios of these interventions. Model calibration resulted in 300 realistic transmission parameters sets that produced close matches to disease-specific incidence and deaths. Insecticide was the preferred intervention and was cost-effective. Insecticide averted an estimated 95 chikungunya cases and 114 dengue cases per 100,000 people, 61 deaths, and 4,523 disability-adjusted life years (DALYs). In sensitivity analysis, strategies that included dengue vaccination were cost-effective only when the vaccine cost was 14% of the current price. CONCLUSIONS/SIGNIFICANCE: Insecticide to prevent chikungunya and dengue in Colombia could generate significant health benefits and be cost-effective. Because of limits on diagnostic accuracy and vaccine efficacy, the cost of dengue testing and vaccination must decrease dramatically for such vaccination to be cost-effective in Colombia. The vectors for chikungunya and dengue have recently spread to new regions, highlighting the importance of understanding the effectiveness and cost-effectiveness of policies aimed at preventing these diseases.


Subject(s)
Chikungunya Fever/economics , Chikungunya Fever/prevention & control , Dengue/economics , Dengue/prevention & control , Adolescent , Adult , Aedes/drug effects , Aedes/physiology , Aedes/virology , Animals , Chikungunya Fever/epidemiology , Chikungunya Fever/mortality , Chikungunya virus/physiology , Child , Colombia/epidemiology , Cost-Benefit Analysis , Dengue/epidemiology , Dengue/mortality , Dengue Virus/physiology , Disability-Adjusted Life Years , Female , Humans , Insecticides/economics , Insecticides/pharmacology , Male , Mosquito Control/economics , Mosquito Vectors/drug effects , Mosquito Vectors/physiology , Mosquito Vectors/virology , Young Adult
7.
Malar J ; 20(1): 268, 2021 Jun 13.
Article in English | MEDLINE | ID: mdl-34120608

ABSTRACT

BACKGROUND: House improvement (HI) to prevent mosquito house entry, and larval source management (LSM) targeting aquatic mosquito stages to prevent development into adult forms, are promising complementary interventions to current malaria vector control strategies. Lack of evidence on costs and cost-effectiveness of community-led implementation of HI and LSM has hindered wide-scale adoption. This study presents an incremental cost analysis of community-led implementation of HI and LSM, in a cluster-randomized, factorial design trial, in addition to standard national malaria control interventions in a rural area (25,000 people), in southern Malawi. METHODS: In the trial, LSM comprised draining, filling, and Bacillus thuringiensis israelensis-based larviciding, while house improvement (henceforth HI) involved closing of eaves and gaps on walls, screening windows/ventilation spaces with wire mesh, and doorway modifications. Communities implemented all interventions. Costs were estimated retrospectively using the 'ingredients approach', combining 'bottom-up' and 'top-down approaches', from the societal perspective. To estimate the cost of independently implementing each intervention arm, resources shared between trial arms (e.g. overheads) were allocated to each consuming arm using proxies developed based on share of resource input quantities consumed. Incremental implementation costs (in 2017 US$) are presented for HI-only, LSM-only and HI + LSM arms. In sensitivity analyses, the effect of varying costs of important inputs on estimated costs was explored. RESULTS: The total economic programme costs of community-led HI and LSM implementation was $626,152. Incremental economic implementation costs of HI, LSM and HI + LSM were estimated as $27.04, $25.06 and $33.44, per person per year, respectively. Project staff, transport and labour costs, but not larvicide or screening material, were the major cost drivers across all interventions. Costs were sensitive to changes in staff costs and population covered. CONCLUSIONS: In the trial, the incremental economic costs of community-led HI and LSM implementation were high compared to previous house improvement and LSM studies. Several factors, including intervention design, year-round LSM implementation and low human population density could explain the high costs. The factorial trial design necessitated use of proxies to allocate costs shared between trial arms, which limits generalizability where different designs are used. Nevertheless, costs may inform planners of similar intervention packages where cost-effectiveness is known. Trial registration Not applicable. The original trial was registered with The Pan African Clinical Trials Registry on 3 March 2016, trial number PACTR201604001501493.


Subject(s)
Anopheles , Community Participation/economics , Mosquito Control/economics , Mosquito Vectors , Animals , Anopheles/growth & development , Cluster Analysis , Community Participation/statistics & numerical data , Costs and Cost Analysis , Larva/growth & development , Malawi , Mosquito Vectors/growth & development , Retrospective Studies
8.
Malar J ; 20(1): 143, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33691706

ABSTRACT

BACKGROUND: As malaria cases increase in some of the highest burden countries, more strategic deployment of new and proven interventions must be evaluated to meet global malaria reduction goals. METHODS: The cost and cost-effectiveness of indoor residual spraying (IRS) with pirimiphos-methyl (Actellic®300 CS) were assessed in a high transmission district (Mopeia) with high access to pyrethroid insecticide-treated nets (ITNs), compared to ITNs alone. The major mosquito vectors in the area were susceptible to primiphos-methyl, but resistant to pyrethoids. A decision analysis approach was followed to conduct deterministic and probabilistic sensitivity analyses in a theoretical cohort of 10,000 children under five years of age (U5) and 10,000 individuals of all ages, separately. Model parameters and distributions were based on prospectively collected cost and epidemiological data from a cluster-randomized control trial and a literature review. The primary analysis used health facility-malaria incidence, while community cohort incidence and cross-sectional prevalence rates were used in sensitivity analyses. Lifetime costs, malaria cases, deaths and disability-adjusted life-years (DALYs) were calculated to determine the incremental costs per DALY averted through IRS. RESULTS: The average IRS cost per person protected was US$8.26 and 51% of the cost was insecticide. IRS averted 46,609 (95% CI 46,570-46,646) uncomplicated and 242 (95% CI 241-243) severe lifetime cases in a theoretical children U5 cohort, yielding an incremental cost-effectiveness ratio (ICER) of US$400 (95% CI 399-402) per DALY averted. In the all-age cohort, the ICER was higher: US$1,860 (95% CI 1,852-1,868) per DALY averted. Deterministic and probabilistic results were consistent. When adding the community protective effect of IRS, the cost per person protected decreased (US$7.06) and IRS was highly cost-effective in children U5 (ICER = US$312) and cost-effective in individuals of all ages (ICER = US$1,431), compared to ITNs alone. CONCLUSION: This study provides robust evidence that IRS with pirimiphos-methyl can be cost-effective in high transmission regions with high pyrethroid ITN coverage where the major vector is susceptible to pirimiphos-methyl but resistant to pyrethroids. The finding that insecticide cost is the main driver of IRS costs highlights the need to reduce the insecticide price without jeopardizing effectiveness. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT02910934 (Registered 22 September 2016). https://clinicaltrials.gov/ct2/show/NCT02910934?term=NCT02910934&draw=2&rank=1.


Subject(s)
Anopheles , Cost-Benefit Analysis , Insecticides , Mosquito Control/economics , Mosquito Vectors , Organothiophosphorus Compounds , Animals , Incidence , Insecticide-Treated Bednets/statistics & numerical data , Malaria/epidemiology , Malaria/transmission , Mozambique/epidemiology , Prevalence
9.
Lancet ; 397(10276): 816-827, 2021 02 27.
Article in English | MEDLINE | ID: mdl-33640068

ABSTRACT

BACKGROUND: Increasing insecticide costs and constrained malaria budgets could make universal vector control strategies, such as indoor residual spraying (IRS), unsustainable in low-transmission settings. We investigated the effectiveness and cost-effectiveness of a reactive, targeted IRS strategy. METHODS: This cluster-randomised, open-label, non-inferiority trial compared reactive, targeted IRS with standard IRS practice in northeastern South Africa over two malaria seasons (2015-17). In standard IRS clusters, programme managers conducted annual mass spray campaigns prioritising areas using historical data, expert opinion, and other factors. In targeted IRS clusters, only houses of index cases (identified through passive surveillance) and their immediate neighbours were sprayed. The non-inferiority margin was 1 case per 1000 person-years. Health service costs of real-world implementation were modelled from primary and secondary data. Incremental costs per disability-adjusted life-year (DALY) were estimated and deterministic and probabilistic sensitivity analyses conducted. This study is registered with ClinicalTrials.gov, NCT02556242. FINDINGS: Malaria incidence was 0·95 per 1000 person-years (95% CI 0·58 to 1·32) in the standard IRS group and 1·05 per 1000 person-years (0·72 to 1·38) in the targeted IRS group, corresponding to a rate difference of 0·10 per 1000 person-years (-0·38 to 0·59), demonstrating non-inferiority for targeted IRS (p<0·0001). Per additional DALY incurred, targeted IRS saved US$7845 (2902 to 64 907), giving a 94-98% probability that switching to targeted IRS would be cost-effective relative to plausible cost-effectiveness thresholds for South Africa ($2637 to $3557 per DALY averted). Depending on the threshold used, targeted IRS would remain cost-effective at incidences of less than 2·0-2·7 per 1000 person-years. Findings were robust to plausible variation in other parameters. INTERPRETATION: Targeted IRS was non-inferior, safe, less costly, and cost-effective compared with standard IRS in this very-low-transmission setting. Saved resources could be reallocated to other malaria control and elimination activities. FUNDING: Joint Global Health Trials.


Subject(s)
Cost-Benefit Analysis , Insecticides/economics , Malaria/epidemiology , Malaria/prevention & control , Mosquito Control/economics , Humans , Malaria/transmission , Mosquito Control/trends , South Africa/epidemiology
10.
Malar J ; 20(1): 8, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33402172

ABSTRACT

BACKGROUND: It is frequently said that funding is essential to ensure optimal results from a malaria intervention control. However, in recent years, the capacity of the government of Mozambique to sustain the operational cost of indoor residual spraying (IRS) is facing numerous challenges due to restrictions of the Official Development Assistance. The purpose of the study was to estimate the cost of IRS operationalization in two districts of Maputo Province (Matutuíne and Namaacha) in Mozambique. The evidence produced in this study intends to provide decision-makers with insight into where they need to pay close attention in future planning in order to operationalize IRS with the existent budget in the actual context of budget restrictions. METHODS: Cost information was collected retrospectively from the provider perspective, and both economic and financial costs were calculated. A "one-way" deterministic sensitivity analysis was performed. RESULTS: The average economic costs totaled US$117,351.34, with an average economic cost per household sprayed of US$16.35, and an average economic cost per person protected of US$4.09. The average financial cost totaled US$69,174.83, with an average financial cost per household sprayed and per person protected of US$9.84 and US$2.46, respectively. Vehicle, salary, and insecticide costs were the greatest contributors to overall cost in the economic and financial analysis, corresponding to 52%, 17%, and 13% in the economic analysis and 21%, 27%, and 22% in the financial analysis, respectively. The sensitivity analysis was adapted to a range of ± (above and under) 25% change. There was an approximate change of 14% in the average economic cost when vehicle costs were decreased by 25%. In the financial analysis, the average financial cost was lowered by 7% when salary costs were decreased by 25%. CONCLUSIONS: Altogether, the current cost analysis provides an impetus for the consideration of targeted IRS operationalization within the available governmental budget, by using locally-available human resources as spray operators to decrease costs and having IRS rounds be correctly timed to coincide with the build-up of vector populations.


Subject(s)
Anopheles , Insecticides , Malaria/prevention & control , Mosquito Control , Animals , Cost-Benefit Analysis , Insecticides/administration & dosage , Insecticides/economics , Mosquito Control/economics , Mozambique , Retrospective Studies
11.
Malar. j. (Online) ; 20(8): 1-12, jan. 6, 2021. graf, ilus
Article in English | AIM (Africa), RSDM | ID: biblio-1531802

ABSTRACT

Background: It is frequently said that funding is essential to ensure optimal results from a malaria intervention control. However, in recent years, the capacity of the government of Mozambique to sustain the operational cost of indoor residual spraying (IRS) is facing numerous challenges due to restrictions of the Official Development Assistance. The purpose of the study was to estimate the cost of IRS operationalization in two districts of Maputo Province (Matutuíne and Namaacha) in Mozambique. The evidence produced in this study intends to provide decision-makers with insight into where they need to pay close attention in future planning in order to operationalize IRS with the existent budget in the actual context of budget restrictions. Methods: Cost information was collected retrospectively from the provider perspective, and both economic and financial costs were calculated. A "one-way" deterministic sensitivity analysis was performed. Results: The average economic costs totaled US$117,351.34, with an average economic cost per household sprayed of US$16.35, and an average economic cost per person protected of US$4.09. The average financial cost totaled US$69,174.83, with an average financial cost per household sprayed and per person protected of US$9.84 and US$2.46, respectively. Vehicle, salary, and insecticide costs were the greatest contributors to overall cost in the economic and financial analysis, corresponding to 52%, 17%, and 13% in the economic analysis and 21%, 27%, and 22% in the financial analysis, respectively. The sensitivity analysis was adapted to a range of ± (above and under) 25% change. There was an approximate change of 14% in the average economic cost when vehicle costs were decreased by 25%. In the financial analysis, the average financial cost was lowered by 7% when salary costs were decreased by 25%. Conclusions: Altogether, the current cost analysis provides an impetus for the consideration of targeted IRS operationalization within the available governmental budget, by using locally-available human resources as spray operators to decrease costs and having IRS rounds be correctly timed to coincide with the build-up of vector populations.


Subject(s)
Humans , Animals , Male , Female , Mosquito Control/economics , Insecticides/administration & dosage , Insecticides/economics , Malaria/prevention & control , Anopheles , Solid Waste Grinding , Retrospective Studies , Cost-Benefit Analysis , Mozambique
12.
Malar J ; 19(1): 411, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33198747

ABSTRACT

The global COVID-19 pandemic has been affecting the maintenance of various disease control programmes, including malaria. In some malaria-endemic countries, funding and personnel reallocations were executed from malaria control programmes to support COVID-19 response efforts, resulting mainly in interruptions of disease control activities and reduced capabilities of health system. While it is principal to drive national budget rearrangements during the pandemic, the long-standing malaria control programmes should not be left behind in order to sustain the achievements from the previous years. With different levels of intensity, many countries have been struggling to improve the health system resilience and to mitigate the unavoidable stagnation of malaria control programmes. Current opinion emphasized the impacts of budget reprioritization on malaria-related resources during COVID-19 pandemic in malaria endemic countries in Africa and Southeast Asia, and feasible attempts that can be taken to lessen these impacts.


Subject(s)
Budgets/trends , Coronavirus Infections/economics , Endemic Diseases/economics , Health Resources/economics , Malaria/economics , Pandemics/economics , Pneumonia, Viral/economics , Africa , Asia, Southeastern , Budgets/statistics & numerical data , COVID-19 , Coronavirus Infections/prevention & control , Endemic Diseases/prevention & control , Health Resources/trends , Humans , Malaria/prevention & control , Mosquito Control/economics , Mosquito Control/trends , Pandemics/prevention & control , Pneumonia, Viral/prevention & control
13.
Malar J ; 19(1): 432, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33239015

ABSTRACT

BACKGROUND: Vector surveillance provides critical data for decision-making to ensure that malaria control programmes remain effective and responsive to any threats to a successful control and elimination programme. The quality and quantity of data collected is dependent on the sampling tools and laboratory techniques used which may lack the sensitivity required to collect relevant data for decision-making. Here, 40 vector control experts were interviewed to assess the benefits and limitations of the current vector surveillance tools and techniques. In addition, experts shared ideas on "blue sky" indicators which encompassed ideas for novel methods to monitor presently used indicators, or to measure novel vector behaviours not presently measured. Algorithms for deploying surveillance tools and priorities for understanding vector behaviours are also needed for collecting and interpreting vector data. RESULTS: The available tools for sampling and analysing vectors are often hampered by high labour and resource requirements (human and supplies) coupled with high outlay and operating costs and variable tool performance across species and geographic regions. The next generation of surveillance tools needs to address the limitations of present tools by being more sensitive, specific and less costly to deploy to enable the collection and use of epidemiologically relevant vector data to facilitate more proactive vector control guidance. Ideas and attributes for Target Product Profiles (TPPs) generated from this analysis provide targets for research and funding to develop next generation tools. CONCLUSIONS: More efficient surveillance tools and a more complete understanding of vector behaviours and populations will provide a basis for more cost effective and successful malaria control. Understanding the vectors' behaviours will allow interventions to be deployed that target vulnerabilities in vector behaviours and thus enable more effective control. Through defining the strengths and weaknesses of the current vector surveillance methods, a foundation and initial framework was provided to define the TPPs for the next generation of vector surveillance methods. The draft TTPs presented here aim to ensure that the next generation tools and technologies are not encumbered by the limitations of present surveillance methods and can be readily deployed in low resource settings.


Subject(s)
Anopheles , Epidemiological Monitoring , Malaria/transmission , Mosquito Control/economics , Mosquito Vectors , Animals , Cost-Benefit Analysis , Humans , Mosquito Control/instrumentation , Population Surveillance/methods , Sensitivity and Specificity
14.
Infect Dis Poverty ; 9(1): 162, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33243294

ABSTRACT

The issues of pyrethroid resistance and outdoor malaria parasite transmission have prompted the WHO to call for the development and adoption of viable alternative vector control methods. Larval source management is one of the core malaria vector interventions recommended by the Ministry of Health in many African countries, but it is rarely implemented due to concerns on its cost-effectiveness. New long-lasting microbial larvicide can be a promising cost-effective supplement to current vector control and elimination methods because microbial larvicide uses killing mechanisms different from pyrethroids and other chemical insecticides. It has been shown to be effective in reducing the overall vector abundance and thus both indoor and outdoor transmission. In our opinion, the long-lasting formulation can potentially reduce the cost of larvicide field application, and should be evaluated for its cost-effectiveness, resistance development, and impact on non-target organisms when integrating with other malaria vector control measures. In this opinion, we highlight that long-lasting microbial larvicide can be a potential cost-effective product that complements current front-line long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) programs for malaria control and elimination. Microbial larviciding targets immature mosquitoes, reduces both indoor and outdoor transmission and is not affected by vector resistance to synthetic insecticides. This control method is a shift from the conventional LLINs and IRS programs that mainly target indoor-biting and resting adult mosquitoes.


Subject(s)
Culicidae/parasitology , Insecticides/administration & dosage , Larva/drug effects , Malaria/prevention & control , Mosquito Control/methods , Animals , Bacillus thuringiensis , Bacterial Toxins/administration & dosage , Cost-Benefit Analysis , Culicidae/microbiology , Humans , Insecticide Resistance , Insecticide-Treated Bednets , Insecticides/economics , Larva/microbiology , Larva/parasitology , Malaria/transmission , Mosquito Control/economics , Mosquito Vectors/drug effects , Pyrethrins/administration & dosage
15.
PLoS Negl Trop Dis ; 14(10): e0008805, 2020 10.
Article in English | MEDLINE | ID: mdl-33095791

ABSTRACT

BACKGROUND AND AIMS: Dengue fever is a major public health problem in tropical/subtropical regions. Prior economic analyses have predominantly evaluated either vaccination or vector-control programmes in isolation and do not really consider the incremental benefits and cost-effectiveness of mixed strategies and combination control. We estimated the cost-effectiveness of single and combined approaches in Thailand. METHODS: The impacts of different control interventions were analysed using a previously published mathematical model of dengue epidemiology and control incorporating seasonality, age structure, consecutive infection, cross protection, immune enhancement and combined vector-host transmission. An economic model was applied to simulation results to estimate the cost-effectiveness of 4 interventions and their various combinations (6 strategies): i) routine vaccination of 1-year olds; ii) chemical vector control strategies targeting adult and larval stages separately; iii) environmental management/ public health education and awareness [EM/ PHEA]). Payer and societal perspectives were considered. The health burden of dengue fever was assessed using disability-adjusted life-years (DALYs) lost. Costs and effects were assessed for 10 years. Costs were discounted at 3% annually and updated to 2013 United States Dollars. Incremental cost-effectiveness analysis was carried out after strategies were rank-ordered by cost, with results presented in a table of incremental analysis. Sensitivity and scenario analyses were undertaken; and the impact and cost-effectiveness of Wolbachia was evaluated in exploratory scenario analyses. RESULTS: From the payer and societal perspectives, 2 combination strategies were considered optimal, as all other control strategies were dominated. Vaccination plus adulticide plus EM/ PHEA was deemed cost-effective according to multiple cost-effectiveness criteria. From the societal perspective, incremental differences vs. adulticide and EM/ PHEA resulted in costs of $157.6 million and DALYs lost of 12,599, giving an expected ICER of $12,508 per DALY averted. Exploratory scenario analyses showed Wolbachia to be highly cost-effective ($343 per DALY averted) vs. other single control measures. CONCLUSIONS: Our model shows that individual interventions can be cost-effective, but that important epidemiological reductions and economic impacts are demonstrated when interventions are combined as part of an integrated approach to combating dengue fever. Exploratory scenario analyses demonstrated the potential epidemiological and cost-effective impact of Wolbachia when deployed at scale on a nationwide basis. Our findings were robust in the face of sensitivity analyses.


Subject(s)
Dengue/economics , Mosquito Control/economics , Mosquito Control/legislation & jurisprudence , Vaccination/economics , Aedes/microbiology , Aedes/physiology , Aedes/virology , Animals , Cost-Benefit Analysis , Dengue/epidemiology , Dengue/prevention & control , Dengue/transmission , Humans , Mosquito Vectors/microbiology , Mosquito Vectors/physiology , Mosquito Vectors/virology , Thailand/epidemiology , Wolbachia/physiology
16.
Exp Parasitol ; 218: 107988, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32890471

ABSTRACT

In the present work, we synthesized silver nanoparticles supported by rice husk by hydrothermal treatment, as-synthesized silver nanoparticles rice husk (AgNPs-RH) bio-composite mixed with potter clay thoroughly, molded, dried into a disc-shaped before firing and applying as a point of use larvicidal agent. As designed, porous terracotta disc (PTD) infused with AgNPs-RH-biocomposite were characterized by UV spectrophotometer, Fourier-transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction analysis and energy-dispersive X-ray spectroscopy. The amount of silver ions released from the PTD was also found to be within the prescribed limit of 0.1 ppm-level. Later we dropped the PTD and tested its larvicidal activity against the IVth instar larva stage of Aedes, Anopheles and Culex species. We found 100% larvicidal mortality in 24 h of exposure to the designed PTD and the amount of silver released from the porous disc was found to be 0.0343 ppm. Further from the histopathological studies of dead larvae revealed that the silver ions from the PTD have substantially damaged the exoskeleton of larvae.


Subject(s)
Aedes , Anopheles , Culex , Metal Nanoparticles/standards , Mosquito Control/instrumentation , Animals , Ecosystem , Green Chemistry Technology , Larva , Metal Nanoparticles/economics , Metal Nanoparticles/supply & distribution , Microscopy, Electron, Transmission , Mosquito Control/economics , Oryza , Silver , Spectrometry, X-Ray Emission , Spectrophotometry, Atomic , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
18.
PLoS Med ; 17(9): e1003248, 2020 09.
Article in English | MEDLINE | ID: mdl-32946451

ABSTRACT

BACKGROUND: Two billion long-lasting insecticidal nets (LLINs) have been procured for malaria control. A functional LLIN is one that is present, is in good physical condition, and remains insecticidal, thereby providing protection against vector-borne diseases through preventing bites and killing disease vectors. The World Health Organization (WHO) prequalifies LLINs that remain adequately insecticidal 3 years after deployment. Therefore, institutional buyers often assume that prequalified LLINs are functionally identical with a 3-year lifespan. We measured the lifespans of 3 LLIN products, and calculated their cost per year of functional life, to demonstrate the economic and public health importance of procuring the most cost-effective LLIN product based on its lifespan. METHODS AND FINDINGS: A randomised double-blinded trial of 3 pyrethroid LLIN products (10,571 nets in total) was conducted at 3 follow-up points: 10 months (August-October 2014), 22 months (August-October 2015), and 36 months (October-December 2016) among 3,393 households in Tanzania using WHO-recommended methods. Primary outcome was LLIN functional survival (LLIN present and in serviceable condition). Secondary outcomes were (1) bioefficacy and chemical content (residual insecticidal activity) and (2) protective efficacy for volunteers sleeping under the LLINs (bite reduction and mosquitoes killed). Median LLIN functional survival was significantly different between the 3 net products (p = 0.001): 2.0 years (95% CI 1.7-2.3) for Olyset, 2.5 years (95% CI 2.2-2.8) for PermaNet 2.0 (hazard ratio [HR] 0.73 [95% CI 0.64-0.85], p = 0.001), and 2.6 years (95% CI 2.3-2.8) for NetProtect (HR = 0.70 [95% CI 0.62-0.77], p < 0.001). Functional survival was affected by accumulation of holes, leading to users discarding nets. Protective efficacy also significantly differed between products as they aged. Equivalent annual cost varied between US$1.2 (95% CI $1.1-$1.4) and US$1.5 (95% CI $1.3-$1.7), assuming that each net was priced identically at US$3. The 2 longer-lived nets (PermaNet and NetProtect) were 20% cheaper than the shorter-lived product (Olyset). The trial was limited to only the most widely sold LLINs in Tanzania. Functional survival varies by country, so the single country setting is a limitation. CONCLUSIONS: These results suggest that LLIN functional survival is less than 3 years and differs substantially between products, and these differences strongly influence LLIN value for money. LLIN tendering processes should consider local expectations of cost per year of functional life and not unit price. As new LLIN products come on the market, especially those with new insecticides, it will be imperative to monitor their comparative durability to ensure that the most cost-effective products are procured for malaria control.


Subject(s)
Insecticide-Treated Bednets/economics , Insecticides/economics , Mosquito Control/methods , Animals , Culicidae/drug effects , Disease Vectors , Family Characteristics , Follow-Up Studies , Humans , Insecticide Resistance/drug effects , Insecticide-Treated Bednets/trends , Insecticides/pharmacology , Malaria/prevention & control , Mosquito Control/economics , Mosquito Vectors/drug effects , Pyrethrins/pharmacology , Tanzania/epidemiology
19.
Biomedica ; 40(2): 270-282, 2020 06 15.
Article in English, Spanish | MEDLINE | ID: mdl-32673456

ABSTRACT

Introduction: Diseases transmitted by Aedes aegypti are considered a public health problem. VECTOS is a novel software for the integration of vector control strategies. Objective: To assess the cost-effectiveness of the use of VECTOS in the routine control programs of diseases transmitted by A. aegypti in the municipality of San Juan de Girón (Santander). Materials and methods: We conducted a cost-effectiveness analysis using a decision analysis model from the perspective of the local health authorities. We considered the use of the VECTOS software in the routine control activities in the municipality of San Juan de Girón during 2016 as the treatment group while the routine control in the municipality of Floridablanca, where VECTOS is not implemented, was considered as the comparator. We calculated the incremental cost-effectiveness ratio (ICER) taking as effectiveness measure the disability-adjusted life years (DALY). Results: VECTOS was cost-effective at a rate of USD$ 660,4 savings per each DALY avoided compared to the routine control in Floridablanca. The probabilistic model showed that the system was cost-effective in 70% of the 10.000 iterations for a threshold between 1 to 3 GDP per capita. Conclusions: VECTOS software as implemented in the municipality of San Juan de Girón is highly cost-effective and could be used in other municipalities in the country where diseases transmitted by A. aegypti are endemic.


Introducción. Las enfermedades transmitidas por Aedes aegypti son un problema de salud pública. VECTOS es un programa novedoso de integración de estrategias de control de vectores. Objetivo. Evaluar el costo-efectividad del uso del VECTOS en los programas de control rutinario de enfermedades transmitidas por el vector Aedes aegypti en el municipio de San Juan de Girón (Santander). Materiales y métodos. Se evaluó el costo-efectividad del programa empleando un modelo de análisis de decisiones desde la perspectiva de las autoridades locales de salud. Se estudió la integración de las estrategias de control de vectores mediante el programa VECTOS utilizado en el municipio de San Juan de Girón durante el 2016, con el control rutinario llevado a cabo sin VECTOS en el municipio de Floridablanca. Se calculó la razón incremental del costo-efectividad (RICE), usando como medida de efectividad los años de vida ajustados por discapacidad (AVAD). Resultados. El uso del programa VECTOS fue rentable a una tasa de ahorro de USD$660,4 por cada AVAD evitado en comparación con el control de rutina en Floridablanca. El modelo probabilístico indicó que el sistema fue costo-efectivo en el 70 % de las 10.000 iteraciones para un umbral entre 1 y 3 PIB per cápita. Conclusiones. El programa VECTOS fue muy costo-efectivo en el municipio de San Juan de Girón. Su uso puede adoptarse en otros municipios del país donde las enfermedades transmitidas por A. aegypti son endémicas.


Subject(s)
Aedes , Dengue/prevention & control , Mosquito Control/economics , Mosquito Vectors , Urban Health , Aedes/virology , Animals , Colombia/epidemiology , Cost-Benefit Analysis , Costs and Cost Analysis , Decision Support Techniques , Decision Trees , Dengue/economics , Dengue/epidemiology , Dengue/transmission , Humans , Incidence , Mosquito Control/methods , Mosquito Control/organization & administration , Mosquito Vectors/virology , Workforce/economics , Workforce/statistics & numerical data
20.
PLoS Negl Trop Dis ; 14(6): e0007870, 2020 06.
Article in English | MEDLINE | ID: mdl-32569323

ABSTRACT

Emerging mosquito-borne viruses like Zika, dengue, and chikungunya pose a major threat to public health, especially in low-income regions of Central and South America, southeast Asia, and the Caribbean. Outbreaks of these diseases are likely to have long-term social and economic consequences due to Zika-induced congenital microcephaly and other complications. Larval control of the container-inhabiting mosquitoes that transmit these infections is an important tool for mitigating outbreaks. However, metapopulation theory suggests that spatiotemporally uneven larvicide treatment can impede control effectiveness, as recolonization compensates for mortality within patches. Coordinating the timing of treatment among patches could therefore substantially improve epidemic control, but we must also consider economic constraints, since coordination may have costs that divert resources from treatment. To inform practical disease management strategies, we ask how coordination among neighbors in the timing of mosquito control efforts influences the size of a mosquito-borne infectious disease outbreak under the realistic assumption that coordination has costs. Using an SIR (Susceptible-Infectious-Recovered)/metapopulation model of mosquito and disease dynamics, we examine whether sharing surveillance information and coordinating larvicide treatment among neighboring patches reduces human infections when incorporating coordination costs. We examine how different types of coordination costs and different surveillance methods jointly influence the effectiveness of larval control. We find that the effect of coordination depends on both costs and the type of surveillance used to inform treatment. With epidemiological surveillance, coordination improves disease outcomes, even when costly. With demographic surveillance, coordination either improves or hampers disease control, depending on the type of costs and surveillance sensitivity. Our results suggest coordination among neighbors can improve management of mosquito-borne epidemics under many, but not all, assumptions about costs. Therefore, estimating coordination costs is an important step for most effectively applying metapopulation theory to strategies for managing outbreaks of mosquito-borne viral infections.


Subject(s)
Costs and Cost Analysis , Disease Transmission, Infectious/prevention & control , Mosquito Control/methods , Mosquito Control/organization & administration , Vector Borne Diseases/prevention & control , Zika Virus Infection/prevention & control , Humans , Models, Theoretical , Mosquito Control/economics , Vector Borne Diseases/transmission , Zika Virus Infection/transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...