Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.442
Filter
1.
RNA Biol ; 21(1): 42-51, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38958280

ABSTRACT

The TATA-box binding protein (TBP) is the sole transcription factor common in the initiation complexes of the three major eukaryotic RNA Polymerases (Pol I, II and III). Although TBP is central to transcription by the three RNA Pols in various species, the emergence of TBP paralogs throughout evolution has expanded the complexity in transcription initiation. Furthermore, recent studies have emerged that questioned the centrality of TBP in mammalian cells, particularly in Pol II transcription, but the role of TBP and its paralogs in Pol I transcription remains to be re-evaluated. In this report, we show that in murine embryonic stem cells TBP localizes onto Pol I promoters, whereas the TBP paralog TRF2 only weakly associates to the Spacer Promoter of rDNA, suggesting that it may not be able to replace TBP for Pol I transcription. Importantly, acute TBP depletion does not fully disrupt Pol I occupancy or activity on ribosomal RNA genes, but TBP binding in mitosis leads to efficient Pol I reactivation following cell division. These findings provide a more nuanced role for TBP in Pol I transcription in murine embryonic stem cells.


Subject(s)
Mitosis , Promoter Regions, Genetic , RNA Polymerase I , TATA-Box Binding Protein , Transcription, Genetic , Animals , RNA Polymerase I/metabolism , RNA Polymerase I/genetics , TATA-Box Binding Protein/metabolism , TATA-Box Binding Protein/genetics , Mice , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Protein Binding , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism
2.
Commun Biol ; 7(1): 809, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961268

ABSTRACT

During early embryonic development, the transition from totipotency to pluripotency is a fundamental and critical process for proper development. However, the regulatory mechanisms governing this transition remain elusive. Here, we conducted a comprehensive genome-wide CRISPR/Cas9 screen to investigate the 2-cell-like cells (2CLCs) phenotype in mouse embryonic stem cells (mESCs). This effort led to the identification of ten regulators that play a pivotal role in determining cell fate during this transition. Notably, our study revealed Mdm2 as a significant negative regulator of 2CLCs, as perturbation of Mdm2 resulted in a higher proportion of 2CLCs. Mdm2 appears to influence cell fate through its impact on cell cycle progression and H3K27me3 epigenetic modifications. In summary, the results of our CRISPR/Cas9 screen have uncovered several genes with distinct functions in regulating totipotency and pluripotency at various levels, offering a valuable resource for potential targets in future molecular studies.


Subject(s)
CRISPR-Cas Systems , Mouse Embryonic Stem Cells , Proto-Oncogene Proteins c-mdm2 , Animals , Mice , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Cell Differentiation/genetics , Epigenesis, Genetic , Gene Expression Regulation, Developmental
3.
J Gene Med ; 26(7): e3716, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961849

ABSTRACT

BACKGROUND: Differentiation of pluripotent stem cells into desired lineages is the key aspect of regenerative medicine and cell-based therapy. Although RNA interference (RNAi) technology is exploited extensively for this, methods for long term silencing of the target genes leading to differentiation remain a challenge. Sustained knockdown of the target gene by RNAi is often inefficient as a result of low delivery efficiencies, protocol induced toxicity and safety concerns related to viral vectors. Earlier, we established octa-arginine functionalized hydroxyapatite nano vehicles (R8HNPs) for delivery of small interfering RNA (siRNA) against a pluripotency marker gene in mouse embryonic stem cells. Although we demonstrated excellent knockdown efficiency of the target gene, sustained gene silencing leading to differentiation was yet to be achieved. METHODS: To establish a sustained non-viral gene silencing protocol using R8HNP, we investigated various methods of siRNA delivery: double delivery of adherent cells (Adh-D), suspension delivery followed by adherent delivery (Susp + Adh), single delivery in suspension (Susp-S) and multiple deliveries in suspension (Susp-R). Sustained knockdown of a pluripotent marker gene followed by differentiation was analysed by reverse transcriptase-PCR, fluoresence-activated cell sorting and immunofluorescence techniques. Impact on cell viability as a result of repeated exposure of the R8HNP was also tested. RESULTS: Amongst the protocols tested, the most efficient knockdown of the target gene for a prolonged period of time was obtained by repeated suspension delivery of the R8HNP-siRNA conjugate. The long-term silencing of a pluripotency marker gene resulted in differentiation of R1 ESCs predominantly towards the extra embryonic and ectodermal lineages. Cells displayed excellent tolerance to repeated exposures of R8HNPs. CONCLUSIONS: The results demonstrate that R8HNPs are promising, biocompatible, non-viral alternatives for prolonged gene silencing and obtaining differentiated cells for therapeutics.


Subject(s)
Cell Differentiation , Durapatite , Mouse Embryonic Stem Cells , RNA, Small Interfering , Animals , Mice , Durapatite/chemistry , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/drug effects , RNA, Small Interfering/genetics , Gene Silencing , Biocompatible Materials/chemistry , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Nanoparticles/chemistry , Transduction, Genetic , RNA Interference , Gene Knockdown Techniques
4.
Nat Commun ; 15(1): 5055, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871742

ABSTRACT

The anterior-posterior axis of the mammalian embryo is laid down by the anterior visceral endoderm (AVE), an extraembryonic signaling center that is specified within the visceral endoderm. Current models posit that AVE differentiation is promoted globally by epiblast-derived Nodal signals, and spatially restricted by a BMP gradient established by the extraembryonic ectoderm. Here, we report spatially restricted AVE differentiation in bilayered embryo-like aggregates made from mouse embryonic stem cells that lack an extraembryonic ectoderm. Notably, clusters of AVE cells also form in pure visceral endoderm cultures upon activation of Nodal signaling, indicating that tissue-intrinsic factors can restrict AVE differentiation. We identify ß-catenin activity as a tissue-intrinsic factor that antagonizes AVE-inducing Nodal signals. Together, our results show how an AVE-like population can arise through interactions between epiblast and visceral endoderm alone. This mechanism may be a flexible solution for axis patterning in a wide range of embryo geometries, and provide robustness to axis patterning when coupled with signal gradients.


Subject(s)
Body Patterning , Cell Differentiation , Endoderm , Nodal Protein , Signal Transduction , beta Catenin , Animals , Endoderm/cytology , Endoderm/metabolism , Endoderm/embryology , beta Catenin/metabolism , Mice , Nodal Protein/metabolism , Nodal Protein/genetics , Germ Layers/metabolism , Germ Layers/cytology , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Gene Expression Regulation, Developmental , Embryo, Mammalian/cytology
5.
Nat Commun ; 15(1): 5393, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918438

ABSTRACT

Although our understanding of the involvement of heterochromatin architectural factors in shaping nuclear organization is improving, there is still ongoing debate regarding the role of active genes in this process. In this study, we utilize publicly-available Micro-C data from mouse embryonic stem cells to investigate the relationship between gene transcription and 3D gene folding. Our analysis uncovers a nonmonotonic - globally positive - correlation between intragenic contact density and Pol II occupancy, independent of cohesin-based loop extrusion. Through the development of a biophysical model integrating the role of transcription dynamics within a polymer model of chromosome organization, we demonstrate that Pol II-mediated attractive interactions with limited valency between transcribed regions yield quantitative predictions consistent with chromosome-conformation-capture and live-imaging experiments. Our work provides compelling evidence that transcriptional activity shapes the 4D genome through Pol II-mediated micro-compartmentalization.


Subject(s)
Mouse Embryonic Stem Cells , RNA Polymerase II , Transcription, Genetic , Animals , Mice , Mouse Embryonic Stem Cells/metabolism , RNA Polymerase II/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Cohesins , Heterochromatin/metabolism , Heterochromatin/genetics , Chromosomes/metabolism , Chromatin/metabolism , Chromatin/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Gene Expression Regulation
6.
Mol Biol Rep ; 51(1): 704, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824233

ABSTRACT

BACKGROUND: Tumor modeling using organoids holds potential in studies of cancer development, enlightening both the intracellular and extracellular molecular mechanisms behind different cancer types, biobanking, and drug screening. Intestinal organoids can be generated in vitro using a unique type of adult stem cells which are found at the base of crypts and are characterized by their high Lgr5 expression levels. METHODS AND RESULTS: In this study, we successfully established intestinal cancer organoid models by using both the BALB/c derived and mouse embryonic stem cells (mESCs)-derived intestinal organoids. In both cases, carcinogenesis-like model was developed by using azoxymethane (AOM) treatment. Carcinogenesis-like model was verified by H&E staining, immunostaining, relative mRNA expression analysis, and LC/MS analysis. The morphologic analysis demonstrated that the number of generated organoids, the number of crypts, and the intensity of the organoids were significantly augmented in AOM-treated intestinal organoids compared to non-AOM-treated ones. Relative mRNA expression data revealed that there was a significant increase in both Wnt signaling pathway-related genes and pluripotency transcription factors in the AOM-induced intestinal organoids. CONCLUSION: We successfully developed simple carcinogenesis-like models using mESC-based and Lgr5 + stem cell-based intestinal organoids. Intestinal organoid based carcinogenesi models might be used for personalized cancer therapy in the future.


Subject(s)
Azoxymethane , Carcinogenesis , Mouse Embryonic Stem Cells , Organoids , Wnt Signaling Pathway , Animals , Organoids/metabolism , Organoids/pathology , Mice , Azoxymethane/toxicity , Carcinogenesis/pathology , Carcinogenesis/chemically induced , Carcinogenesis/genetics , Mouse Embryonic Stem Cells/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Mice, Inbred BALB C , Intestines/pathology , Intestinal Neoplasms/pathology , Intestinal Neoplasms/chemically induced , Intestinal Neoplasms/genetics , Intestinal Neoplasms/metabolism , Disease Models, Animal , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology
7.
Acta Physiol (Oxf) ; 240(8): e14160, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38747650

ABSTRACT

AIM: Striatin (Strn) is a scaffold protein expressed in cardiomyocytes (CMs) and alteration of its expression are described in various cardiac diseases. However, the alteration underlying its pathogenicity have been poorly investigated. METHODS: We studied the role(s) of cardiac Strn gene (STRN) by comparing the functional properties of CMs, generated from Strn-KO and isogenic WT mouse embryonic stem cell lines. RESULTS: The spontaneous beating rate of Strn-KO CMs was faster than WT cells, and this correlated with a larger fast INa conductance and no changes in If. Paced (2-8 Hz) Strn-KO CMs showed prolonged action potential (AP) duration in comparison with WT CMs and this was not associated with changes in ICaL and IKr. Motion video tracking analysis highlighted an altered contraction in Strn-KO CMs; this was associated with a global increase in intracellular Ca2+, caused by an enhanced late Na+ current density (INaL) and a reduced Na+/Ca2+ exchanger (NCX) activity and expression. Immunofluorescence analysis confirmed the higher Na+ channel expression and a more dynamic microtubule network in Strn-KO CMs than in WT. Indeed, incubation of Strn-KO CMs with the microtubule stabilizer taxol, induced a rescue (downregulation) of INa conductance toward WT levels. CONCLUSION: Loss of STRN alters CMs electrical and contractile profiles and affects cell functionality by a disarrangement of Strn-related multi-protein complexes. This leads to impaired microtubules dynamics and Na+ channels trafficking to the plasma membrane, causing a global Na+ and Ca2+ enhancement.


Subject(s)
Calcium , Myocytes, Cardiac , Animals , Myocytes, Cardiac/metabolism , Mice , Calcium/metabolism , Action Potentials/drug effects , Mice, Knockout , Muscle Proteins/metabolism , Muscle Proteins/genetics , Sodium-Calcium Exchanger/metabolism , Sodium-Calcium Exchanger/genetics , Mouse Embryonic Stem Cells/metabolism , Sodium/metabolism
8.
Genes Cells ; 29(7): 549-566, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38811355

ABSTRACT

DNA methyltransferases and Ten-Eleven Translocation (TET) proteins regulate the DNA methylation and demethylation cycles during mouse embryonic development. Although DNMT1 mainly plays a role in the maintenance of DNA methylation after DNA replication, it is also reported to possess de novo methyltransferase capacity. However, its physiological significance remains unclear. Here, we demonstrate that full-length DNMT1 (FL) and a mutant lacking the N-terminus necessary for its maintenance activity (602) confer the differentiation potential of mouse Dnmt1, Dnmt3a, and Dnmt3b (Dnmts-TKO) embryonic stem cells (ESCs). Both FL and 602 inhibit the spontaneous differentiation of Dnmts-TKO ESCs in the undifferentiated state. Dnmts-TKO ESCs showed loss of DNA methylation and de-repression of primitive endoderm-related genes, but these defects were partially restored in Dnmts-TKO + FL and Dnmts-TKO + 602 ESCs. Upon differentiation, Dnmts-TKO + FL ESCs show increased 5mC and 5hmC levels across chromosomes, including pericentromeric regions. In contrast, Dnmts-TKO + 602 ESCs didn't accumulate 5mC, and sister chromatids showed 5hmC asynchronously. Furthermore, in comparison with DNMT1_602, DNMT1_FL effectively promoted commitment to the epiblast-like cells and beyond, driving cell-autonomous mesendodermal and germline differentiation through embryoid body-based methods. With precise target selectivity achieved by its N-terminal region, DNMT1 may play a role in gene regulation leading to germline development.


Subject(s)
Cell Differentiation , DNA (Cytosine-5-)-Methyltransferase 1 , DNA Methylation , Animals , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Mice , Germ Layers/metabolism , Germ Layers/cytology , DNA Methyltransferase 3B , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , DNA Methyltransferase 3A/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics
9.
Nature ; 629(8014): 1165-1173, 2024 May.
Article in English | MEDLINE | ID: mdl-38720076

ABSTRACT

The nucleus is highly organized, such that factors involved in the transcription and processing of distinct classes of RNA are confined within specific nuclear bodies1,2. One example is the nuclear speckle, which is defined by high concentrations of protein and noncoding RNA regulators of pre-mRNA splicing3. What functional role, if any, speckles might play in the process of mRNA splicing is unclear4,5. Here we show that genes localized near nuclear speckles display higher spliceosome concentrations, increased spliceosome binding to their pre-mRNAs and higher co-transcriptional splicing levels than genes that are located farther from nuclear speckles. Gene organization around nuclear speckles is dynamic between cell types, and changes in speckle proximity lead to differences in splicing efficiency. Finally, directed recruitment of a pre-mRNA to nuclear speckles is sufficient to increase mRNA splicing levels. Together, our results integrate the long-standing observations of nuclear speckles with the biochemistry of mRNA splicing and demonstrate a crucial role for dynamic three-dimensional spatial organization of genomic DNA in driving spliceosome concentrations and controlling the efficiency of mRNA splicing.


Subject(s)
Genome , Nuclear Speckles , RNA Precursors , RNA Splicing , RNA, Messenger , Spliceosomes , Animals , Humans , Male , Mice , Genes , Genome/genetics , Human Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/metabolism , Nuclear Speckles/genetics , Nuclear Speckles/metabolism , RNA Precursors/metabolism , RNA Precursors/genetics , RNA Splicing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spliceosomes/metabolism , Transcription, Genetic
10.
Development ; 151(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38804879

ABSTRACT

Dorsal interneurons (dIs) in the spinal cord encode the perception of touch, pain, heat, itchiness and proprioception. Previous studies using genetic strategies in animal models have revealed important insights into dI development, but the molecular details of how dIs arise as distinct populations of neurons remain incomplete. We have developed a resource to investigate dI fate specification by combining a single-cell RNA-Seq atlas of mouse embryonic stem cell-derived dIs with pseudotime analyses. To validate this in silico resource as a useful tool, we used it to first identify genes that are candidates for directing the transition states that lead to distinct dI lineage trajectories, and then validated them using in situ hybridization analyses in the developing mouse spinal cord in vivo. We have also identified an endpoint of the dI5 lineage trajectory and found that dIs become more transcriptionally homogeneous during terminal differentiation. This study introduces a valuable tool for further discovery about the timing of gene expression during dI differentiation and demonstrates its utility in clarifying dI lineage relationships.


Subject(s)
Cell Differentiation , Cell Lineage , Gene Expression Regulation, Developmental , Interneurons , Spinal Cord , Animals , Mice , Spinal Cord/metabolism , Spinal Cord/embryology , Cell Lineage/genetics , Interneurons/metabolism , Interneurons/cytology , Cell Differentiation/genetics , Single-Cell Analysis , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , RNA-Seq
11.
Cell Stem Cell ; 31(5): 583-585, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701751

ABSTRACT

How nuclear RNA homeostasis impacts cellular functions remains elusive. In this issue of Cell Stem Cell, Han et al.1 utilized a controllable protein degradation system targeting EXOSC2 to perturb RNA homeostasis in mouse pluripotent embryonic stem cells, revealing its vital role in orchestrating crucial nuclear events for cellular fitness.


Subject(s)
Homeostasis , RNA, Nuclear , Animals , Mice , RNA, Nuclear/metabolism , RNA, Nuclear/genetics , Exosome Multienzyme Ribonuclease Complex/metabolism , Exosome Multienzyme Ribonuclease Complex/genetics , Cell Nucleus/metabolism , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA/metabolism , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology
12.
Mol Cell ; 84(10): 1870-1885.e9, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759625

ABSTRACT

How Polycomb repressive complex 2 (PRC2) is regulated by RNA remains an unsolved problem. Although PRC2 binds G-tracts with the potential to form RNA G-quadruplexes (rG4s), whether rG4s fold extensively in vivo and whether PRC2 binds folded or unfolded rG4 are unknown. Using the X-inactivation model in mouse embryonic stem cells, here we identify multiple folded rG4s in Xist RNA and demonstrate that PRC2 preferentially binds folded rG4s. High-affinity rG4 binding inhibits PRC2's histone methyltransferase activity, and stabilizing rG4 in vivo antagonizes H3 at lysine 27 (H3K27me3) enrichment on the inactive X chromosome. Surprisingly, mutagenizing the rG4 does not affect PRC2 recruitment but promotes its release and catalytic activation on chromatin. H3K27me3 marks are misplaced, however, and gene silencing is compromised. Xist-PRC2 complexes become entrapped in the S1 chromosome compartment, precluding the required translocation into the S2 compartment. Thus, Xist rG4 folding controls PRC2 activity, H3K27me3 enrichment, and the stepwise regulation of chromosome-wide gene silencing.


Subject(s)
G-Quadruplexes , Histones , Polycomb Repressive Complex 2 , RNA, Long Noncoding , X Chromosome Inactivation , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mice , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics , Histones/metabolism , Histones/genetics , Mouse Embryonic Stem Cells/metabolism , Chromatin/metabolism , Chromatin/genetics , X Chromosome/genetics , X Chromosome/metabolism , Gene Silencing , RNA Folding , Protein Binding
13.
Stem Cell Reports ; 19(5): 689-709, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38701778

ABSTRACT

Embryo size, specification, and homeostasis are regulated by a complex gene regulatory and signaling network. Here we used gene expression signatures of Wnt-activated mouse embryonic stem cell (mESC) clones to reverse engineer an mESC regulatory network. We identify NKX1-2 as a novel master regulator of preimplantation embryo development. We find that Nkx1-2 inhibition reduces nascent RNA synthesis, downregulates genes controlling ribosome biogenesis, RNA translation, and transport, and induces severe alteration of nucleolus structure, resulting in the exclusion of RNA polymerase I from nucleoli. In turn, NKX1-2 loss of function leads to chromosome missegregation in the 2- to 4-cell embryo stages, severe decrease in blastomere numbers, alterations of tight junctions (TJs), and impairment of microlumen coarsening. Overall, these changes impair the blastocoel expansion-collapse cycle and embryo cavitation, leading to altered lineage specification and developmental arrest.


Subject(s)
Embryonic Development , Gene Expression Regulation, Developmental , Homeodomain Proteins , Animals , Mice , Embryonic Development/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Blastocyst/metabolism , Blastocyst/cytology , Wnt Signaling Pathway , Wnt Proteins/metabolism , Tight Junctions/metabolism , Cell Nucleolus/metabolism
14.
Nat Commun ; 15(1): 3918, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724524

ABSTRACT

Differences in gene-expression profiles between individual cells can give rise to distinct cell fate decisions. Yet how localisation on a micropattern impacts initial changes in mRNA, protein, and phosphoprotein abundance remains unclear. To identify the effect of cellular position on gene expression, we developed a scalable antibody and mRNA targeting sequential fluorescence in situ hybridisation (ARTseq-FISH) method capable of simultaneously profiling mRNAs, proteins, and phosphoproteins in single cells. We studied 67 (phospho-)protein and mRNA targets in individual mouse embryonic stem cells (mESCs) cultured on circular micropatterns. ARTseq-FISH reveals relative changes in both abundance and localisation of mRNAs and (phospho-)proteins during the first 48 hours of exit from pluripotency. We confirm these changes by conventional immunofluorescence and time-lapse microscopy. Chemical labelling, immunofluorescence, and single-cell time-lapse microscopy further show that cells closer to the edge of the micropattern exhibit increased proliferation compared to cells at the centre. Together these data suggest that while gene expression is still highly heterogeneous position-dependent differences in mRNA and protein levels emerge as early as 12 hours after LIF withdrawal.


Subject(s)
In Situ Hybridization, Fluorescence , Mouse Embryonic Stem Cells , RNA, Messenger , Animals , In Situ Hybridization, Fluorescence/methods , Mice , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , RNA, Messenger/metabolism , RNA, Messenger/genetics , Phosphoproteins/metabolism , Phosphoproteins/genetics , Single-Cell Analysis/methods , Time-Lapse Imaging/methods , Gene Expression Profiling/methods , Cell Differentiation
15.
Sci Rep ; 14(1): 10420, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38710730

ABSTRACT

In the mouse embryo, the transition from the preimplantation to the postimplantation epiblast is governed by changes in the gene regulatory network (GRN) that lead to transcriptional, epigenetic, and functional changes. This transition can be faithfully recapitulated in vitro by the differentiation of mouse embryonic stem cells (mESCs) to epiblast-like cells (EpiLCs), that reside in naïve and formative states of pluripotency, respectively. However, the GRN that drives this conversion is not fully elucidated. Here we demonstrate that the transcription factor OCT6 is a key driver of this process. Firstly, we show that Oct6 is not expressed in mESCs but is rapidly induced as cells exit the naïve pluripotent state. By deleting Oct6 in mESCs, we find that knockout cells fail to acquire the typical morphological changes associated with the formative state when induced to differentiate. Additionally, the key naïve pluripotency TFs Nanog, Klf2, Nr5a2, Prdm14, and Esrrb were expressed at higher levels than in wild-type cells, indicating an incomplete dismantling of the naïve pluripotency GRN. Conversely, premature expression of Oct6 in naïve cells triggered a rapid morphological transformation mirroring differentiation, that was accompanied by the upregulation of the endogenous Oct6 as well as the formative genes Sox3, Zic2/3, Foxp1, Dnmt3A and FGF5. Strikingly, we found that OCT6 represses Nanog in a bistable manner and that this regulation is at the transcriptional level. Moreover, our findings also reveal that Oct6 is repressed by NANOG. Collectively, our results establish OCT6 as a key TF in the dissolution of the naïve pluripotent state and support a model where Oct6 and Nanog form a double negative feedback loop which could act as an important toggle mediating the transition to the formative state.


Subject(s)
Cell Differentiation , Gene Regulatory Networks , Mouse Embryonic Stem Cells , Nanog Homeobox Protein , Animals , Mice , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , Cell Differentiation/genetics , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Gene Expression Regulation, Developmental , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Germ Layers/metabolism , Germ Layers/cytology , Mice, Knockout
16.
EMBO Rep ; 25(5): 2258-2277, 2024 May.
Article in English | MEDLINE | ID: mdl-38654121

ABSTRACT

X chromosome inactivation (XCI) in mammals is mediated by Xist RNA which functions in cis to silence genes on a single X chromosome in XX female cells, thereby equalising levels of X-linked gene expression relative to XY males. XCI progresses over a period of several days, with some X-linked genes silencing faster than others. The chromosomal location of a gene is an important determinant of silencing rate, but uncharacterised gene-intrinsic features also mediate resistance or susceptibility to silencing. In this study, we examine mouse embryonic stem cell lines with an inducible Xist allele (iXist-ChrX mESCs) and integrate allele-specific data of gene silencing and decreasing inactive X (Xi) chromatin accessibility over time courses of Xist induction with cellular differentiation. Our analysis reveals that motifs bound by the transcription factor YY1 are associated with persistently accessible regulatory elements, including many promoters and enhancers of slow-silencing genes. We further show that YY1 is evicted relatively slowly from target sites on Xi, and that silencing of X-linked genes is increased upon YY1 degradation. Together our results suggest that YY1 acts as a barrier to Xist-mediated silencing until the late stages of the XCI process.


Subject(s)
Gene Silencing , RNA, Long Noncoding , X Chromosome Inactivation , YY1 Transcription Factor , Animals , Female , Male , Mice , Alleles , Cell Differentiation/genetics , Cell Line , Chromatin/metabolism , Chromatin/genetics , Mouse Embryonic Stem Cells/metabolism , Promoter Regions, Genetic , Protein Binding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , X Chromosome/genetics , X Chromosome/metabolism , X Chromosome Inactivation/genetics , YY1 Transcription Factor/metabolism , YY1 Transcription Factor/genetics
17.
Dev Cell ; 59(12): 1489-1505.e14, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38579718

ABSTRACT

Embryogenesis requires substantial coordination to translate genetic programs to the collective behavior of differentiating cells, but understanding how cellular decisions control tissue morphology remains conceptually and technically challenging. Here, we combine continuous Cas9-based molecular recording with a mouse embryonic stem cell-based model of the embryonic trunk to build single-cell phylogenies that describe the behavior of transient, multipotent neuro-mesodermal progenitors (NMPs) as they commit into neural and somitic cell types. We find that NMPs show subtle transcriptional signatures related to their recent differentiation and contribute to downstream lineages through a surprisingly broad distribution of individual fate outcomes. Although decision-making can be heavily influenced by environmental cues to induce morphological phenotypes, axial progenitors intrinsically mature over developmental time to favor the neural lineage. Using these data, we present an experimental and analytical framework for exploring the non-homeostatic dynamics of transient progenitor populations as they shape complex tissues during critical developmental windows.


Subject(s)
Cell Differentiation , Cell Lineage , Mouse Embryonic Stem Cells , Animals , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Gene Expression Regulation, Developmental , Mesoderm/cytology , Embryonic Development , Somites/cytology , Somites/metabolism
18.
Nucleic Acids Res ; 52(11): 6183-6200, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38613389

ABSTRACT

The imprinted Dlk1-Dio3 domain comprises the developmental genes Dlk1 and Rtl1, which are silenced on the maternal chromosome in different cell types. On this parental chromosome, the domain's imprinting control region activates a polycistron that produces the lncRNA Meg3 and many miRNAs (Mirg) and C/D-box snoRNAs (Rian). Although Meg3 lncRNA is nuclear and associates with the maternal chromosome, it is unknown whether it controls gene repression in cis. We created mouse embryonic stem cells (mESCs) that carry an ectopic poly(A) signal, reducing RNA levels along the polycistron, and generated Rian-/- mESCs as well. Upon ESC differentiation, we found that Meg3 lncRNA (but not Rian) is required for Dlk1 repression on the maternal chromosome. Biallelic Meg3 expression acquired through CRISPR-mediated demethylation of the paternal Meg3 promoter led to biallelic Dlk1 repression, and to loss of Rtl1 expression. lncRNA expression also correlated with DNA hypomethylation and CTCF binding at the 5'-side of Meg3. Using Capture Hi-C, we found that this creates a Topologically Associating Domain (TAD) organization that brings Meg3 close to Dlk1 on the maternal chromosome. The requirement of Meg3 for gene repression and TAD structure may explain how aberrant MEG3 expression at the human DLK1-DIO3 locus associates with imprinting disorders.


Subject(s)
Calcium-Binding Proteins , Cell Differentiation , Genomic Imprinting , RNA, Long Noncoding , Animals , Mice , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , DNA Methylation , Gene Expression Regulation, Developmental , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Nuclear Proteins , Pregnancy Proteins , Promoter Regions, Genetic , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
19.
Genome Res ; 34(3): 484-497, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38580401

ABSTRACT

Transcriptional regulation controls cellular functions through interactions between transcription factors (TFs) and their chromosomal targets. However, understanding the fate conversion potential of multiple TFs in an inducible manner remains limited. Here, we introduce iTF-seq as a method for identifying individual TFs that can alter cell fate toward specific lineages at a single-cell level. iTF-seq enables time course monitoring of transcriptome changes, and with biotinylated individual TFs, it provides a multi-omics approach to understanding the mechanisms behind TF-mediated cell fate changes. Our iTF-seq study in mouse embryonic stem cells identified multiple TFs that trigger rapid transcriptome changes indicative of differentiation within a day of induction. Moreover, cells expressing these potent TFs often show a slower cell cycle and increased cell death. Further analysis using bioChIP-seq revealed that GCM1 and OTX2 act as pioneer factors and activators by increasing gene accessibility and activating the expression of lineage specification genes during cell fate conversion. iTF-seq has utility in both mapping cell fate conversion and understanding cell fate conversion mechanisms.


Subject(s)
Cell Differentiation , Transcription Factors , Animals , Mice , Cell Differentiation/genetics , Cell Lineage/genetics , Gene Expression Profiling/methods , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Multiomics , RNA, Small Cytoplasmic/genetics , RNA, Small Cytoplasmic/metabolism , RNA-Seq/methods , Sequence Analysis, RNA/methods , Single-Cell Gene Expression Analysis , Transcription Factors/metabolism , Transcription Factors/genetics , Transcriptome
20.
J Cell Sci ; 137(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38639717

ABSTRACT

Activation of the Wnt-ß-catenin signaling pathway by CHIR99021, a specific inhibitor of GSK3ß, induces Tcf7l1 protein degradation, which facilitates the maintenance of an undifferentiated state in mouse embryonic stem cells (mESCs); however, the precise mechanism is still unclear. Here, we showed that the overexpression of transducin-ß-like protein 1 (Tbl1, also known as Tbl1x) or its family member Tblr1 (also known as Tbl1xr1) can decrease Tcf7l1 protein levels, whereas knockdown of each gene increases Tcf7l1 levels without affecting Tcf7l1 transcription. Interestingly, only Tbl1, and not Tblr1, interacts with Tcf7l1. Mechanistically, Tbl1 translocates from the cytoplasm into the nucleus in association with ß-catenin (CTNNB1) after the addition of CHIR99021 and functions as an adaptor to promote ubiquitylation of the Tcf7l1 protein. Functional assays further revealed that enforced expression of Tbl1 is capable of delaying mESC differentiation. In contrast, knockdown of Tbl1 attenuates the effect of CHIR99021 on Tcf7l1 protein stability and mESC self-renewal. Our results provide insight into the regulatory network of the Wnt-ß-catenin signaling pathway involved in promoting the maintenance of naïve pluripotency.


Subject(s)
Mouse Embryonic Stem Cells , Transcription Factor 7-Like 1 Protein , Wnt Signaling Pathway , beta Catenin , Animals , Humans , Mice , beta Catenin/metabolism , beta-Transducin Repeat-Containing Proteins/metabolism , beta-Transducin Repeat-Containing Proteins/genetics , Cell Differentiation/drug effects , Mouse Embryonic Stem Cells/metabolism , Proteolysis/drug effects , Pyridines/pharmacology , Pyrimidines/pharmacology , Transcription Factor 7-Like 1 Protein/metabolism , Transcription Factor 7-Like 1 Protein/genetics , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...