Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 491
Filter
1.
Sci Rep ; 14(1): 18784, 2024 08 13.
Article in English | MEDLINE | ID: mdl-39138250

ABSTRACT

Previously, we constructed engineered M. circinelloides strains that can not only utilize cellulose, but also increase the yield of γ-linolenic acid (GLA). In the present study, an in-depth analysis of lipid accumulation by engineered M. circinelloides strains using corn straw was to be explored. When a two-stage temperature control strategy was adopted with adding 1.5% cellulase and 15% inoculum, the engineered strains led to increases in the lipid yield (up to 1.56 g per 100 g dry medium) and GLA yield (up to 274 mg per 100 g dry medium) of 1.8- and 2.3-fold, respectively, compared with the control strain. This study proved the engineered M. circinelloides strains, especially for Mc-C2PD6, possess advantages in using corn straw to produce GLA. This work provided a reference for transformation from agricultural cellulosic waste to functional lipid in one step, which might play a positive role in promoting the sustainable development of biological industry.


Subject(s)
Cellulose 1,4-beta-Cellobiosidase , Fermentation , Mucor , Zea mays , Zea mays/metabolism , Mucor/genetics , Mucor/metabolism , Mucor/enzymology , Cellulose 1,4-beta-Cellobiosidase/metabolism , Cellulose 1,4-beta-Cellobiosidase/genetics , gamma-Linolenic Acid/metabolism , Lipids/biosynthesis , Fatty Acid Desaturases/metabolism , Fatty Acid Desaturases/genetics , Cellulose/metabolism , Metabolic Engineering/methods , Lipid Metabolism
2.
Molecules ; 29(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38998931

ABSTRACT

Eucommiae Cortex (EC) is frequently used alone or in combination with other active ingredients to treat a range of illnesses. An efficient technical instrument for changing cheap or plentiful organic chemicals into rare or costly counterparts is biotransformation. It combines EC with biotransformation techniques with the aim of producing some novel active ingredients, using different strains of bacteria that were introduced to biotransform EC in an aseptic environment. The high-quality strains were screened for identification after the fermentation broth was found using HPLC, and the primary unidentified chemicals were separated and purified in order to be structurally identified. Strain 1 was identified as Aspergillus niger and strain 2 as Actinomucor elegans; the main transformation product A was identified as pinoresinol (Pin) and B as dehydrodiconiferyl alcohol (DA). The biotransformation of EC utilizing Aspergillus niger and Actinomucor elegans is reported for the first time in this study's conclusion, resulting in the production of Pin and DA.


Subject(s)
Aspergillus niger , Biotransformation , Eucommiaceae , Fermentation , Lignans , Mucor , Plant Extracts , Aspergillus niger/metabolism , Mucor/metabolism , Lignans/chemistry , Lignans/metabolism , Eucommiaceae/chemistry , Plant Extracts/chemistry , Furans/metabolism , Furans/chemistry , Chromatography, High Pressure Liquid
3.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159537, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39032627

ABSTRACT

Mucor circinelloides has been exploited as model filamentous fungi for studies of genetic manipulation of lipogenesis. It is widely recognized that lipid accumulation is increased when there is a lack of nitrogen source in oleaginous microorganism. Nitrogen metabolism in filamentous fungi is a complex process that can be regulated by the global nitrogen regulator AreA. In this study, we cultivated the areA-knockout and -overexpression strains obtained in our previous study, using 20 different nitrogen sources. It emerged that the disruption of AreA in M. circinelloides reduced its sensitivity to nitrogen availability, resulting in increased lipid synthesis. Specially, the areA-knockout strain was unable to fully utilize many nitrogen sources but the ammonium and glutamate. We continued to investigate lipid production at different molar C/N ratios using glucose as sole carbon source and ammonium sulfate as sole nitrogen source, of which the high C/N ratios activate high lipid accumulation. By comparing the experimental results with transcriptional analysis, we were able to identify the optimal process conditions suitable for lipid accumulation and potential targets for future metabolic engineering.


Subject(s)
Carbon , Fungal Proteins , Mucor , Nitrogen , Mucor/metabolism , Mucor/genetics , Nitrogen/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Carbon/metabolism , Gene Expression Regulation, Fungal , Lipid Metabolism/genetics , Lipids/biosynthesis
4.
mBio ; 15(8): e0166124, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38980037

ABSTRACT

Mucormycoses are emerging fungal infections caused by a variety of heterogeneous species within the Mucorales order. Among the Mucor species complex, Mucor circinelloides is the most frequently isolated pathogen in mucormycosis patients and despite its clinical significance, there is an absence of established genome manipulation techniques to conduct molecular pathogenesis studies. In this study, we generated a spontaneous uracil auxotrophic strain and developed a genetic transformation procedure to analyze molecular mechanisms conferring antifungal drug resistance. With this new model, phenotypic analyses of gene deletion mutants were conducted to define Erg3 and Erg6a as key biosynthetic enzymes in the M. circinelloides ergosterol pathway. Erg3 is a C-5 sterol desaturase involved in growth, sporulation, virulence, and azole susceptibility. In other fungal pathogens, erg3 mutations confer azole resistance because Erg3 catalyzes the production of a toxic diol upon azole exposure. Surprisingly, M. circinelloides produces only trace amounts of this toxic diol and yet, it is still susceptible to posaconazole and isavuconazole due to alterations in membrane sterol composition. These alterations are severely aggravated by erg3Δ mutations, resulting in ergosterol depletion and, consequently, hypersusceptibility to azoles. We also identified Erg6a as the main C-24 sterol methyltransferase, whose activity may be partially rescued by the paralogs Erg6b and Erg6c. Loss of Erg6a function diverts ergosterol synthesis to the production of cholesta-type sterols, resulting in resistance to amphotericin B. Our findings suggest that mutations or epimutations causing loss of Erg6 function may arise during human infections, resulting in antifungal drug resistance to first-line treatments against mucormycosis. IMPORTANCE: The Mucor species complex comprises a variety of opportunistic pathogens known to cause mucormycosis, a potentially lethal fungal infection with limited therapeutic options. The only effective first-line treatments against mucormycosis consist of liposomal formulations of amphotericin B and the triazoles posaconazole and isavuconazole, all of which target components within the ergosterol biosynthetic pathway. This study uncovered M. circinelloides Erg3 and Erg6a as key enzymes to produce ergosterol, a vital constituent of fungal membranes. Absence of any of those enzymes leads to decreased ergosterol and consequently, resistance to ergosterol-binding polyenes such as amphotericin B. Particularly, losing Erg6a function poses a higher threat as the ergosterol pathway is channeled into alternative sterols similar to cholesterol, which maintain membrane permeability. As a result, erg6a mutants survive within the host and disseminate the infection, indicating that Erg6a deficiency may arise during human infections and confer resistance to the most effective treatment against mucormycoses.


Subject(s)
Antifungal Agents , Biosynthetic Pathways , Drug Resistance, Fungal , Ergosterol , Mucor , Ergosterol/biosynthesis , Ergosterol/metabolism , Antifungal Agents/pharmacology , Drug Resistance, Fungal/genetics , Biosynthetic Pathways/genetics , Humans , Mucor/genetics , Mucor/drug effects , Mucor/metabolism , Mucormycosis/microbiology , Mucormycosis/drug therapy , Microbial Sensitivity Tests , Triazoles/pharmacology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Deletion , Nitriles/pharmacology , Pyridines/pharmacology , Oxidoreductases
5.
PLoS One ; 19(5): e0302311, 2024.
Article in English | MEDLINE | ID: mdl-38814929

ABSTRACT

This study aimed to enhance sludge dewatering through sequential bioleaching, employing the filamentous fungus Mucor sp. ZG-3 and the iron-oxidizing bacterium Acidithiobacillus ferrooxidans LX5. The mechanism by which Mucor sp. ZG-3 alleviates sludge dissolved organic matter (DOM) inhibition of A. ferrooxidans LX5 was investigated, and the optimal addition of energy source for enhanced sludge dewaterability during sequential bioleaching was determined. Sludge dissolved organic carbon (DOC) decreased to 272 mg/L with a 65.2% reduction by Mucor sp. ZG-3 in 3 days, and the degraded fraction of sludge DOM was mainly low-molecular-weight DOM (L-DOM) which inhibited the oxidization of Fe2+ by A. ferrooxidans LX5. By degrading significant inhibitory low-molecular-weight organic acids, Mucor sp. ZG-3 alleviated DOM inhibition of A. ferrooxidans LX5. In the sequential bioleaching process, the optimal concentration of FeSO4·7H2O for A. ferrooxidans LX5 was 4 g/L, resulting in the minimum specific resistance to filtration (SRF) of 2.60×1011 m/kg, 40.0% lower than that in the conventional bioleaching process with 10 g/L energy source. Moreover, the sequential bioleaching process increased the sludge zeta potential (from -31.8 to -9.47 mV) and median particle size (d50) of the sludge particle (from 17.90 to 27.44 µm), contributing to enhanced sludge dewaterability. Inoculation of Mucor sp. ZG-3 during the bioleaching process reduced the demand for energy sources by A. ferrooxidans LX5 while improving sludge dewaterability performance.


Subject(s)
Mucor , Sewage , Mucor/metabolism , Sewage/microbiology , Biodegradation, Environmental , Water/chemistry , Water/metabolism , Organic Chemicals/metabolism
6.
Food Chem ; 452: 139525, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38718453

ABSTRACT

The primary inhibitory targets of phenyllactic acid (PLA, including D-PLA and L-PLA) on Mucor were investigated using Mucor racemosus LD3.0026 isolated from naturally spoiled cherry, as an indicator fungi. The results demonstrated that the minimum inhibitory concentration (MIC) of PLA against Mucor was 12.5 mmol·L-1. Results showed that the growing cells at the tip of the Mucor were not visibly deformed, and there was no damage to the cell wall following PLA treatment; however, PLA damaged the cell membrane and internal structure. The results of isobaric tags for relative and absolute quantification (iTRAQ) indicated that the Mucor mitochondrial respiratory chain may be the target of PLA, potentially inhibiting the energy supply of Mucor. These results indicate that the antifungal mechanism of PLA against mold is independent of its molecular configuration. The growth of Mucor is suppressed by PLA, which destroys the organelle structure in the mycelium and inhibits energy metabolism.


Subject(s)
Antifungal Agents , Mucor , Proteomics , Mucor/metabolism , Mucor/growth & development , Mucor/chemistry , Mucor/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Microbial Sensitivity Tests , Lactates/pharmacology , Lactates/metabolism , Fungal Proteins/metabolism , Fungal Proteins/chemistry
7.
Bioresour Technol ; 398: 130540, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452954

ABSTRACT

This study aimed to improve the lipid and biomass yields of Mucor circinelloides WJ11 by implementing four different fed-batch fermentation strategies, varied in time and glucose concentration (S1-S4). The S1 fermentation strategy yielded the highest biomass, lipid, and fatty acid content (22 ± 0.7 g/L, 53 ± 1.2 %, and 28 ± 1.6 %) after 120 and 144 h, respectively. The γ-linolenic acid titer of 0.75 ± 0.0 g/L was greatest in S3 after 48 h. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to analyze the transcription of key genes involved in lipid accumulation. The glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and ATP-citrate lyase genes showed increased expression levels. Fourier-transform infrared (FTIR) spectroscopy was used to analyze the biochemical profile during fermentation strategies. Optimal abiotic factors for production efficiency included pH 6.5, 25-26 °C, 15 % (v/v) inoculum, 500 rpm, 20 %-30 % dissolved oxygen, and 120 h fermentation. Glucose co-feeding offers valuable insights to develop effective fermentation strategies for lipid production.


Subject(s)
Fatty Acids , Mucor , Fermentation , Biomass , Mucor/metabolism , Fatty Acids/metabolism , Glucose/metabolism
8.
Article in English | MEDLINE | ID: mdl-38185464

ABSTRACT

In the oleaginous fungus Mucor circinelloides, lipid accumulation is regulated by nitrogen metabolism, which is regulated by the areA gene, a member of the GATA zinc finger transporter family and a major regulator for nitrogen metabolism. However, the role of areA in lipid accumulation in this fungus has not been reported. In order to explore the regulatory effect of areA gene on nitrogen metabolism and lipid accumulation in M. circinelloides, we constructed areA gene knockout and overexpression strains. Then, the recombinant strains were cultured and their biochemical indexes were measured. Simultaneously, transcriptomic studies on the recombinant strains were conducted to infer the regulatory mechanism of areA. The results showed that the areA knockout strain accumulated more lipid, which is 42 % higher than the control. While the areA overexpressing strain obtained the higher biomass accumulation (23 g/L) and used up the nitrogen source in the medium earlier than the control strain and knockout strain. Transcriptome data analysis showed that nr and nit-6 genes related to nitrogen metabolism were up-regulated. And the expression levels of key genes acc and aclY were higher in the areA knockout strain than others, which was positively correlated with the increased lipid accumulation. In addition, in knockout strains, protein catabolism tended to provide substrates for the lipid production, and the expression levels of the related genes were also higher than others. These results indicated that the areA gene not only controls the transcription level of genes related to nitrogen metabolism but also affects lipid accumulation.


Subject(s)
Lipid Metabolism , Mucor , Lipid Metabolism/genetics , Mucor/genetics , Mucor/metabolism , Lipids , Nitrogen/metabolism
9.
J Agric Food Chem ; 71(42): 15680-15691, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37822229

ABSTRACT

Lipid accumulation in oleaginous organisms is initiated by AMP deaminase (AMPD) after nitrogen depletion because it mediates the concentration of intracellular adenosine monophosphate (AMP). However, the role of AMPD in lipogenesis in the oleaginous fungus Mucor circinelloides is largely unknown. Therefore, we identified the genes (ampd1 and ampd2) encoding AMPD and investigated the role of AMPD in lipid synthesis in this fungus by overexpressing and deleting ampd genes. Deletion of ampd1 and ampd2 caused 21 and 28% increments in lipid contents under N-limited conditions, respectively. These increases were correlated with the activation of enzymes involved in lipogenesis and the alteration of energy balance. Unexpectedly, overexpression of ampd genes affected nitrogen consumption in both N-limited and N-excess media, which resulted in an increase in cell growth and lipid accumulation compared with the control strain when nitrogen was available. Furthermore, the increased lipid accumulation in the ampd-overexpressing mutants in N-excess media was accompanied by enhanced activities of lipid biosynthetic enzymes. These data suggested that nitrogen metabolism and energy metabolism are affected by AMPD, and overexpression of ampd genes induced lipid accumulation under nitrogen-rich conditions by mimicking the nitrogen limitation response. This highlights an intriguing function of AMPD in M. circinelloides.


Subject(s)
AMP Deaminase , Lipogenesis , Lipid Metabolism , AMP Deaminase/genetics , AMP Deaminase/metabolism , Mucor/genetics , Mucor/metabolism , Lipids , Nitrogen/metabolism
10.
Microbiol Spectr ; 11(3): e0031523, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37036336

ABSTRACT

Certain members of the order Mucorales can cause a life-threatening, often-fatal systemic infection called mucormycosis. Mucormycosis has a high mortality rate, which can reach 96 to 100% depending on the underlying condition of the patient. Mucorales species are intrinsically resistant to most antifungal agents, such as most of the azoles, which makes mucormycosis treatment challenging. The main target of azoles is the lanosterol 14α-demethylase (Erg11), which is responsible for an essential step in the biosynthesis of ergosterol, the main sterol component of the fungal membrane. Mutations in the erg11 gene can be associated with azole resistance; however, resistance can also be mediated by loss of function or mutation of other ergosterol biosynthetic enzymes, such as the sterol 24-C-methyltransferase (Erg6). The genome of Mucor lusitanicus encodes three putative erg6 genes (i.e., erg6a, erg6b, and erg6c). In this study, the role of erg6 genes in azole resistance of Mucor was analyzed by generating and analyzing knockout mutants constructed using the CRISPR-Cas9 technique. Susceptibility testing of the mutants suggested that one of the three genes, erg6b, plays a crucial role in the azole resistance of Mucor. The sterol composition of erg6b knockout mutants was significantly altered compared to that of the original strain, and it revealed the presence of at least four alternative sterol biosynthesis pathways leading to formation of ergosterol and other alternative, nontoxic sterol products. Dynamic operation of these pathways and the switching of biosynthesis from one to the other in response to azole treatment could significantly contribute to avoiding the effects of azoles by these fungi. IMPORTANCE The fungal membrane contains ergosterol instead of cholesterol, which offers a specific point of attack for the defense against pathogenic fungi. Indeed, most antifungal agents target ergosterol or its biosynthesis. Mucormycoses-causing fungi are resistant to most antifungal agents, including most of the azoles. For this reason, the drugs of choice to treat such infections are limited. The exploration of ergosterol biosynthesis is therefore of fundamental importance to understand the azole resistance of mucormycosis-causing fungi and to develop possible new control strategies. Characterization of sterol 24-C-methyltransferase demonstrated its role in the azole resistance and virulence of M. lusitanicus. Moreover, our experiments suggest that there are at least four alternative pathways for the biosynthesis of sterols in Mucor. Switching between pathways may contribute to the maintenance of azole resistance.


Subject(s)
Antifungal Agents , Mucormycosis , Humans , Antifungal Agents/pharmacology , Sterols/metabolism , Sterols/pharmacology , Mucor/genetics , Mucor/metabolism , Biosynthetic Pathways , Drug Resistance, Fungal/genetics , Azoles/pharmacology , Ergosterol , Microbial Sensitivity Tests
11.
Appl Biochem Biotechnol ; 195(12): 7697-7707, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37086376

ABSTRACT

Sucrose non-fermenting 1 (SNF1) protein kinase plays the regulatory roles in the utilization of selective carbon sources and lipid metabolism. Previously, the role of ß subunit of SNF1 in lipid accumulation was evaluated by overexpression and knockout of Snf-ß in oleaginous fungus M. circinelloides. In the present study, the growth and lipid accumulation of Snf-ß overexpression and knockout strains were further analyzed and compared with glucose or xylose as a single or mixed carbon sources. The results showed that the lipid contents in Snf-ß knockout strain improved by 23.2% (for glucose), 28.4% (for xylose), and 30.5% (for mixed glucose and xylose) compared with that of the control strain, respectively. The deletion of Snf-ß subunit also altered the transcriptional level of acetyl-CoA carboxylase (ACC). The highest transcriptional levels of ACC1 in Snf-ß knockout strain at 24 h were increased by 2.4-fold (for glucose), 2.8-fold (for xylose), and 3.1-fold (for mixed glucose and xylose) compared with that of the control strain, respectively. Our results indicated that Snf-ß subunit enhanced lipid accumulation through the regulation of ACC1 in response to xylose or mixed sugars of glucose and xylose more significantly than that of response to glucose. This is the first study to explore the effect of Snf-ß subunit of M. circinelloides in regulating lipid accumulation responding to different carbon nutrient signals of glucose and xylose. This study provides a foundation for the future application of the Snf-ß engineered strains in lipid production from lignocellulose.


Subject(s)
Glucose , Xylose , Xylose/metabolism , Glucose/metabolism , Mucor/metabolism , Carbon/metabolism , Lipids , Lipid Metabolism/genetics
12.
Lett Appl Microbiol ; 75(6): 1617-1627, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36067029

ABSTRACT

Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are important dietary components due to their health benefits and preventative role in cardiovascular disease. Fish-based and plant seed oils are rich in stearidonic acid (SDA; 18:4, n-3), which are readily metabolized into ω-3 PUFAs such as eicosapentaenoic acid. However, these natural sources of SDA are generally low yielding and are unlikely to meet global demands, so new sustainable microbial fermentative sources of SDA need to be identified. Expression of delta15-desaturase in the oleaginous filamentous fungus Mucor circinelloides (McD15D) has been used to construct a recombinant SDA-producing McD15D strain that produces 5·0% SDA levels using submerged fermentation conditions. Switching to solid-state fermentation conditions in the same medium with submerged fermentation resulted in this engineered strain producing significantly higher amounts of SDA. A Box-Behnken design of response surface methodology approach has been used to identify optimal glucose and ammonium tartrate concentrations and temperature levels to maximize SDA production. The use of these optimal solid-state fermentation conditions resulted in the spores and mycelium of the recombinant McD15D producing 19·5% (0·64 mg g-1 ) and 12·2% (1·52 mg g-1 ) SDA content, respectively, which represents an overall increase in SDA yield of 188·0% compared with SDA yields produced using submerged fermentation conditions.


Subject(s)
Fatty Acids, Omega-3 , Animals , Fermentation , Fatty Acids, Omega-3/metabolism , Mucor/genetics , Mucor/metabolism
13.
Biomed Res Int ; 2022: 3816010, 2022.
Article in English | MEDLINE | ID: mdl-35496057

ABSTRACT

Xylan is the primary hemicellulosic polymer found in lignocellulosic agricultural wastes and can be degraded by xylanase. In the current research, Mucor circinelloides and M. hiemalis were tested for their ability to produce xylanase from tangerine peel by submerged fermentation. Experiments on five variables were designed with Box-Behnken design and response surface methodology. Analysis of variance was exercised, the xylanase output was demonstrated with a mathematical equation as a function of the five factors, and the quixotic states for xylanase biosynthesis was secured. In addition, xylanase was partially purified, characterized, and immobilized on calcium alginate beads. The optimum parameters for xylanase production by M. circinelloides and M. hiemalis were consisted of incubation temperature (30 and 20°C), pH value (9 and 7) incubation period (9 and 9 days), inoculum size (3 and 3 mL), and substrate concentration (3 and 3 g/100 mL), respectively. M. circinelloides and M. hiemalis demonstrated the highest xylanase activities after RSM optimization, with 42.23 and 35.88 U/mL, respectively. The influence of single, interchange, and quadratic factors on xylanase output was investigated using nonlinear regression equations with significant R 2 and p values. The partial purification of M. circinelloides and M. hiemalis xylanase yielded 1.69- and 1.97-fold purification, and 30.74 and 31.34% recovery with 292.08 and 240.15 U/mg specific activity, respectively. Partially purified xylanase from M. circinelloides and M. hiemalis demonstrated the highest activity at neutral pH and 60 and 50°C, respectively. The immobilized M. circinelloides and M. hiemalis xylanase retained 84.02 and 79.43% activity, respectively. The production of xylanase from M. circinelloides and M. hiemalis utilizing RSM is deemed profitable for the decomposition of the agro-industrial wastes.


Subject(s)
Endo-1,4-beta Xylanases , Industrial Waste , Endo-1,4-beta Xylanases/chemistry , Fermentation , Hydrogen-Ion Concentration , Mucor/metabolism
14.
J Assoc Physicians India ; 70(4): 11-12, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35443524

ABSTRACT

India witnessed a huge surge in Covid 19 cases in the second wave. There was also an increased presentation of Mucor mycosis cases associated with Covid 19 illness. Severe COVID-19 is a hyper-ferritinemic syndrome, but whether high ferritin is a marker of a severe systemic disease versus a modulator of pathophysiology is not known. Irrespective of its role, high ferritin levels lead to excess intracellular iron that generates reactive oxygen species resulting in tissue damage. There are many theories existing presently to associate the development of Mucor mycosis in Covid 19 patients. The present study is to evaluate the correlation between HbA1c and serum ferritin levels in COVID 19 associated Mucor mycosis and the associated outcomes. MATERIAL: It is prospective observational study. RT-PCR confirmed cases of COVID 19 pneumonia with clinical, microbiological or radiologically confirmed cases of mucor mycosis were selected after obtaining informed consent. Relevant clinical data collected, Serum Hba1c and Ferritin was sent. Data analysis was done using SPSS software. OBSERVATION: Among the 97 patients, 63 (64.9 %) were male and 34 (35.1%) were females, 10 (10.3 %) patients had no comorbidities, 82 (84.5 %) patients had diabetes mellitus, 32 (33.0 %) patients had hypertension and 30 (30.9 %) patients had both diabetes and hypertension. Mean Hba1c among the patients was 10.98 %. Mean serum ferritin level was 929.11 ng/dl. Mean Serum ferritin was significantly lower among survivors (843.8 ng/dl) when compared to non survivors (1150.2 ng/dl) (p= 0.034). CONCLUSION: Serum ferritin is significantly elevated in COVID-19- associated mucor mycosis (CAMCR) cases. The mean Hba1c of 10.98 % suggests a background of poorly controlled diabetes mellitus along with COVID 19 infection is a risk factor for mucor mycosis. Serum ferritin was significantly lower among survivors when compared to non survivors. Increased serum ferritin can be associated with poor prognosis and mortality in COVID-19 associated mucor mycosis.


Subject(s)
COVID-19 , Diabetes Mellitus , Hypertension , Diabetes Mellitus/epidemiology , Female , Ferritins , Glycated Hemoglobin/metabolism , Humans , Male , Mucor/metabolism , SARS-CoV-2
15.
Microb Cell Fact ; 21(1): 29, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35227264

ABSTRACT

Microbial oils have gained massive attention because of their significant role in industrial applications. Currently plants and animals are the chief sources of medically and nutritionally important fatty acids. However, the ever-increasing global demand for polyunsaturated fatty acids (PUFAs) cannot be met by the existing sources. Therefore microbes, especially fungi, represent an important alternative source of microbial oils being investigated. Mucor circinelloides-an oleaginous filamentous fungus, came to the forefront because of its high efficiency in synthesizing and accumulating lipids, like γ-linolenic acid (GLA) in high quantity. Recently, mycelium of M. circinelloides has acquired substantial attraction towards it as it has been suggested as a convenient raw material source for the generation of biodiesel via lipid transformation. Although M. circinelloides accumulates lipids naturally, metabolic engineering is found to be important for substantial increase in their yields. Both modifications of existing pathways and re-formation of biosynthetic pathways in M. circinelloides have shown the potential to improve lipid levels. In this review, recent advances in various important metabolic aspects of M. circinelloides have been discussed. Furthermore, the potential applications of M. circinelloides in the fields of antioxidants, nutraceuticals, bioremediation, ethanol production, and carotenoids like beta carotene and astaxanthin having significant nutritional value are also deliberated.


Subject(s)
Lipids/biosynthesis , Mucor/metabolism , Biofuels , Biosynthetic Pathways , Fatty Acids/biosynthesis , Genome, Fungal , Lipid Metabolism , Metabolic Engineering , Metabolic Networks and Pathways , Mucor/genetics , Proteomics
16.
Biotechnol Lett ; 44(4): 595-604, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35288781

ABSTRACT

Oxygen availability is a limiting factor for lipid biosynthesis in eukaryotic microorganisms. Two bacterial hemoglobins from Vitreoscilla sp. (VHb) and Shinorhizobium meliloti (SHb), which deliver oxygen to the respiratory chain to produce more ATP, were introduced into Mucor circinelloides to alleviate oxygen limitation, thereby improving cell growth and fatty acid production. The VHb and SHb genes were integrated into the M. circinelloides MU402 genome by homologous recombination. VHb and SHb protein expression was verified by carbon monoxide difference spectrum analysis. The biomass was increased by ~ 50% in the strain expressing SHb compared with VHb. The total fatty acid (TFA) content of the strain expressing SHb reached 15.7% of the dry cell weight (~ 40% higher than that of the control strain) during flask cultivation. The biomass and TFA content were markedly increased (12.1 g/L and 21.1% dry cell weight, respectively) in strains expressing SHb than strains expressing VHb during fermenter cultivation. VHb and SHb expression also increased the proportion of polyunsaturated fatty acids. Overexpressed bacterial hemoglobins, especially SHb, increased cell growth and TFA content in M. circinelloides at low and high aeration, suggesting that SHb improves fatty acid production more effectively than VHb in oleaginous microorganisms.


Subject(s)
Lipid Metabolism , Mucor , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Fatty Acids/metabolism , Hemoglobins/metabolism , Mucor/genetics , Mucor/metabolism , Oxygen/metabolism , Truncated Hemoglobins/genetics , Truncated Hemoglobins/metabolism
17.
mBio ; 12(6): e0300021, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34809463

ABSTRACT

Calcineurin is a critical enzyme in fungal pathogenesis and antifungal drug tolerance and, therefore, an attractive antifungal target. Current clinically accessible calcineurin inhibitors, such as FK506, are immunosuppressive to humans, so exploiting calcineurin inhibition as an antifungal strategy necessitates fungal specificity in order to avoid inhibiting the human pathway. Harnessing fungal calcineurin-inhibitor crystal structures, we recently developed a less immunosuppressive FK506 analog, APX879, with broad-spectrum antifungal activity and demonstrable efficacy in a murine model of invasive fungal infection. Our overarching goal is to better understand, at a molecular level, the interaction determinants of the human and fungal FK506-binding proteins (FKBP12) required for calcineurin inhibition in order to guide the design of fungus-selective, nonimmunosuppressive FK506 analogs. To this end, we characterized high-resolution structures of the Mucor circinelloides FKBP12 bound to FK506 and of the Aspergillus fumigatus, M. circinelloides, and human FKBP12 proteins bound to the FK506 analog APX879, which exhibits enhanced selectivity for fungal pathogens. Combining structural, genetic, and biophysical methodologies with molecular dynamics simulations, we identify critical variations in these structurally similar FKBP12-ligand complexes. The work presented here, aimed at the rational design of more effective calcineurin inhibitors, indeed suggests that modifications to the APX879 scaffold centered around the C15, C16, C18, C36, and C37 positions provide the potential to significantly enhance fungal selectivity. IMPORTANCE Invasive fungal infections are a leading cause of death in the immunocompromised patient population. The rise in drug resistance to current antifungals highlights the urgent need to develop more efficacious and highly selective agents. Numerous investigations of major fungal pathogens have confirmed the critical role of the calcineurin pathway for fungal virulence, making it an attractive target for antifungal development. Although FK506 inhibits calcineurin, it is immunosuppressive in humans and cannot be used as an antifungal. By combining structural, genetic, biophysical, and in silico methodologies, we pinpoint regions of the FK506 scaffold and a less immunosuppressive analog, APX879, centered around the C15 to C18 and C36 to C37 positions that could be altered with selective extensions and/or deletions to enhance fungal selectivity. This work represents a significant advancement toward realizing calcineurin as a viable target for antifungal drug discovery.


Subject(s)
Antifungal Agents/chemistry , Calcineurin Inhibitors/chemistry , Calcineurin/chemistry , Fungal Proteins/chemistry , Mucor/metabolism , Mucormycosis/microbiology , Tacrolimus/chemistry , Amino Acid Sequence , Antifungal Agents/pharmacology , Calcineurin/genetics , Calcineurin/metabolism , Calcineurin Inhibitors/pharmacology , Drug Design , Fungal Proteins/genetics , Fungal Proteins/metabolism , Host-Pathogen Interactions , Humans , Mucor/drug effects , Mucor/genetics , Mucormycosis/drug therapy , Mucormycosis/genetics , Mucormycosis/metabolism , Sequence Alignment , Tacrolimus/pharmacology , Tacrolimus Binding Protein 1A/chemistry , Tacrolimus Binding Protein 1A/genetics , Tacrolimus Binding Protein 1A/metabolism
18.
Int J Mol Sci ; 22(13)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206985

ABSTRACT

Microbial conjugation studies of licochalcones (1-4) and xanthohumol (5) were performed by using the fungi Mucor hiemalis and Absidia coerulea. As a result, one new glucosylated metabolite was produced by M. hiemalis whereas four new and three known sulfated metabolites were obtained by transformation with A. coerulea. Chemical structures of all the metabolites were elucidated on the basis of 1D-, 2D-NMR and mass spectroscopic data analyses. These results could contribute to a better understanding of the metabolic fates of licochalcones and xanthohumol in mammalian systems. Although licochalcone A 4'-sulfate (7) showed less cytotoxic activity against human cancer cell lines compared to its substrate licochalcone A, its activity was fairly retained with the IC50 values in the range of 27.35-43.07 µM.


Subject(s)
Absidia/metabolism , Chalcones/chemistry , Flavonoids/chemistry , Mucor/metabolism , Propiophenones/chemistry , A549 Cells , Absidia/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Cell Proliferation/drug effects , Chalcones/metabolism , Chalcones/toxicity , Flavonoids/metabolism , Flavonoids/toxicity , Humans , MCF-7 Cells , Metabolome , Mucor/chemistry , Propiophenones/metabolism , Propiophenones/toxicity
19.
Sci Rep ; 11(1): 12674, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34135458

ABSTRACT

In our previous work, we reported a novel approach for increasing lipid production in an oleaginous fungus Mucor circinelloides by overexpression of mitochondrial malate transporter protein. This transporter plays a vital role in fatty acid biosynthesis during malate and citrate transport systems in oleaginous fungi. In this study, the controlling metabolic supplementation strategy was used to improve the lipid production by overexpression of malate transporter protein in M. circinelloides strain coded as Mc-MT-2. The effects of different metabolic intermediates on lipid production in batch fermentation by Mc-MT-2 were investigated. The optimal lipid production was obtained at 0.8% malic acid after 24 h of fermentation. Furthermore, in fed-batch bioreactors containing glucose as a carbon source supplemented with malic acid, the highest cell growth, and lipid production were achieved. The resulting strain showed the fungal dry biomass of 16 g/L, a lipid content of 32%, lipid yield of 5.12 g/L in a controlled bench-top bioreactor, with 1.60-, 1.60- and 2.56-fold improvement, respectively, compared with the batch control without supplementation of malic acid. Our findings revealed that the addition of malic acid during fermentation might play an important role in lipid accumulation in the recombinant M. circinelloides Mc-MT-2. This study provides valuable insights for enhanced microbial lipid production through metabolic supplementation strategy in large scale and industrial applications.


Subject(s)
Lipid Metabolism , Malates/metabolism , Mucor/metabolism , Bioreactors , Culture Media , Fermentation , Fungal Proteins/metabolism , Glucose/metabolism , Mucor/genetics , Mucor/growth & development , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism
20.
Fungal Genet Biol ; 152: 103572, 2021 07.
Article in English | MEDLINE | ID: mdl-34015432

ABSTRACT

Branched-chain amino acids (BCAAs) play an important role in lipid metabolism by serving as signal molecules as well as a potential acetyl-CoA source. Our previous study found that in the oleaginous fungus Mucor circinelloides, beta-isopropylmalate dehydrogenase (IPMDH), an important enzyme participating in the key BCAA leucine biosynthesis, was differentially expressed during lipid accumulation phase and has a positive role on lipogenesis. To further analyze its effects on lipogenesis in another oleaginous fungus Mortierella alpina, the IPMDH-encoding gene MaLeuB was homologously expressed. It was found that the total fatty acid content in the recombinant strain was increased by 20.2% compared with the control strain, which correlated with a 4-fold increase in the MaLeuB transcriptional level. Intracellular metabolites analysis revealed significant changes in amino acid biosynthesis and metabolism, tricarboxylic acid cycle and butanoate metabolism; specifically, leucine and isoleucine levels were upregulated by 6.4-fold and 2.2-fold, respectively. Our genetic engineering approach and metabolomics study demonstrated that MaLeuB is involved in fatty acid metabolism in M. alpina by affecting BCAAs metabolism, and this newly discovered role of IPMDH provides a potential bypass route to increase lipogenesis in oleaginous fungi.


Subject(s)
3-Isopropylmalate Dehydrogenase/metabolism , Lipid Metabolism/physiology , Lipogenesis/physiology , Mortierella/enzymology , Mortierella/metabolism , 3-Isopropylmalate Dehydrogenase/genetics , Acetyl Coenzyme A , Amino Acid Sequence , Amino Acids/metabolism , Fatty Acids/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Genes, Fungal/genetics , Keto Acids/metabolism , Lipid Metabolism/genetics , Lipogenesis/genetics , Metabolomics , Mortierella/genetics , Mucor/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL