Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 638
Filter
1.
Methods Mol Biol ; 2848: 269-297, 2025.
Article in English | MEDLINE | ID: mdl-39240529

ABSTRACT

Dynamic interactions between transcription factors govern changes in gene expression that mediate changes in cell state accompanying injury response and regeneration. Transcription factors frequently function as obligate dimers whose activity is often modulated by post-translational modifications. These critical and often transient interactions are not easily detected by traditional methods to investigate protein-protein interactions. This chapter discusses the design and validation of a fusion protein involving a transcription factor tethered to a proximity labeling ligase, APEX2. In this technique, proteins are biotinylated within a small radius of the transcription factor of interest, regardless of time of interaction. Here we discuss the validations required to ensure proper functioning of the transcription factor proximity labeling tool and the sample preparation of biotinylated proteins for mass spectrometry analysis of putative protein interactors.


Subject(s)
Biotinylation , DNA-(Apurinic or Apyrimidinic Site) Lyase , Protein Interaction Mapping , Transcription Factors , Protein Interaction Mapping/methods , Humans , Transcription Factors/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Protein Binding , Mass Spectrometry/methods , Protein Processing, Post-Translational , Endonucleases , Multifunctional Enzymes
2.
DNA Repair (Amst) ; 142: 103758, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39236419

ABSTRACT

Timely and accurate DNA replication is critical for safeguarding genome integrity and ensuring cell viability. Yet, this process is challenged by DNA damage blocking the progression of the replication machinery. To counteract replication fork stalling, evolutionary conserved DNA damage tolerance (DDT) mechanisms promote DNA damage bypass and fork movement. One of these mechanisms involves "skipping" DNA damage through repriming downstream of the lesion, leaving single-stranded DNA (ssDNA) gaps behind the advancing forks (also known as post-replicative gaps). In vertebrates, repriming in damaged leading templates is proposed to be mainly promoted by the primase and polymerase PRIMPOL. In this review, we discuss recent advances towards our understanding of the physiological and pathological conditions leading to repriming activation in human models, revealing a regulatory network of PRIMPOL activity. Upon repriming by PRIMPOL, post-replicative gaps formed can be filled-in by the DDT mechanisms translesion synthesis and template switching. We discuss novel findings on how these mechanisms are regulated and coordinated in time to promote gap filling. Finally, we discuss how defective gap filling and aberrant gap expansion by nucleases underlie the cytotoxicity associated with post-replicative gap accumulation. Our increasing knowledge of this repriming mechanism - from gap formation to gap filling - is revealing that targeting the last step of this pathway is a promising approach to exploit post-replicative gaps in anti-cancer therapeutic strategies.


Subject(s)
DNA Damage , DNA Primase , DNA Replication , DNA-Directed DNA Polymerase , Humans , DNA Primase/metabolism , DNA-Directed DNA Polymerase/metabolism , Animals , DNA Repair , Multifunctional Enzymes/metabolism , DNA, Single-Stranded/metabolism
3.
Sci Rep ; 14(1): 21073, 2024 09 10.
Article in English | MEDLINE | ID: mdl-39256448

ABSTRACT

The mitochondrial enzyme methylenetetrahydrofolate dehydrogenase (MTHFD2) is involved in purine and thymidine synthesis via 1C metabolism. MTHFD2 is exclusively overexpressed in cancer cells but absent in most healthy adult human tissues. However, the two close homologs of MTHFD2 known as MTHFD1 and MTHFD2L are expressed in healthy adult human tissues and share a great structural resemblance to MTHFD2 with 54% and 89% sequence similarity, respectively. It is therefore notably challenging to find selective inhibitors of MTHFD2 due to the structural similarity, in particular protein binding site similarity with MTHFD1 and MTHFD2L. Tricyclic coumarin-based compounds (substrate site binders) and xanthine derivatives (allosteric site binders) are the only selective inhibitors of MTHFD2 reported till date. Nanomolar potent diaminopyrimidine-based inhibitors of MTHFD2 have been reported recently, however, they also demonstrate significant inhibitory activities against MTHFD1 and MTHFD2L. In this study, we have employed extensive computational modeling involving molecular docking and molecular dynamics simulations in order to investigate the binding modes and key interactions of diaminopyrimidine-based inhibitors at the substrate binding sites of MTHFD1, MTHFD2 and MTHFD2L, and compare with the tricyclic coumarin-based selective MTHFD2 inhibitor. The outcomes of our study provide significant insights into desirable and undesirable structural elements for rational structure-based design of new and selective inhibitors of MTHFD2 against cancer.


Subject(s)
Aminohydrolases , Enzyme Inhibitors , Methylenetetrahydrofolate Dehydrogenase (NADP) , Minor Histocompatibility Antigens , Multifunctional Enzymes , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Methylenetetrahydrofolate Dehydrogenase (NADP)/chemistry , Humans , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Minor Histocompatibility Antigens/chemistry , Multifunctional Enzymes/genetics , Multifunctional Enzymes/antagonists & inhibitors , Multifunctional Enzymes/metabolism , Multifunctional Enzymes/chemistry , Aminohydrolases/genetics , Aminohydrolases/metabolism , Aminohydrolases/antagonists & inhibitors , Aminohydrolases/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemistry , Molecular Docking Simulation , Mitochondrial Proteins/genetics , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/antagonists & inhibitors , Binding Sites , Protein Binding
4.
Nucleic Acids Res ; 52(17): 10355-10369, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39119900

ABSTRACT

Replication forks stalled at co-transcriptional R-loops can be restarted by a mechanism involving fork cleavage-religation cycles mediated by MUS81 endonuclease and DNA ligase IV (LIG4), which presumably relieve the topological barrier generated by the transcription-replication conflict (TRC) and facilitate ELL-dependent reactivation of transcription. Here, we report that the restart of R-loop-stalled replication forks via the MUS81-LIG4-ELL pathway requires senataxin (SETX), a helicase that can unwind RNA:DNA hybrids. We found that SETX promotes replication fork progression by preventing R-loop accumulation during S-phase. Interestingly, loss of SETX helicase activity leads to nascent DNA degradation upon induction of R-loop-mediated fork stalling by hydroxyurea. This fork degradation phenotype is independent of replication fork reversal and results from DNA2-mediated resection of MUS81-cleaved replication forks that accumulate due to defective replication restart. Finally, we demonstrate that SETX acts in a common pathway with the DEAD-box helicase DDX17 to suppress R-loop-mediated replication stress in human cells. A possible cooperation between these RNA/DNA helicases in R-loop unwinding at TRC sites is discussed.


Subject(s)
DEAD-box RNA Helicases , DNA Helicases , DNA Replication , DNA-Binding Proteins , Endonucleases , Multifunctional Enzymes , R-Loop Structures , RNA Helicases , DNA Helicases/metabolism , DNA Helicases/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , Humans , Multifunctional Enzymes/metabolism , Multifunctional Enzymes/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Endonucleases/metabolism , Endonucleases/genetics , Flap Endonucleases/metabolism , Flap Endonucleases/genetics , Transcription, Genetic , DNA Ligase ATP/metabolism , DNA Ligase ATP/genetics , DNA/metabolism , DNA/genetics
5.
Mol Cell ; 84(16): 3044-3060.e11, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39142279

ABSTRACT

G-quadruplexes (G4s) form throughout the genome and influence important cellular processes. Their deregulation can challenge DNA replication fork progression and threaten genome stability. Here, we demonstrate an unexpected role for the double-stranded DNA (dsDNA) translocase helicase-like transcription factor (HLTF) in responding to G4s. We show that HLTF, which is enriched at G4s in the human genome, can directly unfold G4s in vitro and uses this ATP-dependent translocase function to suppress G4 accumulation throughout the cell cycle. Additionally, MSH2 (a component of MutS heterodimers that bind G4s) and HLTF act synergistically to suppress G4 accumulation, restrict alternative lengthening of telomeres, and promote resistance to G4-stabilizing drugs. In a discrete but complementary role, HLTF restrains DNA synthesis when G4s are stabilized by suppressing primase-polymerase (PrimPol)-dependent repriming. Together, the distinct roles of HLTF in the G4 response prevent DNA damage and potentially mutagenic replication to safeguard genome stability.


Subject(s)
DNA Primase , DNA Replication , DNA-Binding Proteins , G-Quadruplexes , Genomic Instability , MutS Homolog 2 Protein , Transcription Factors , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , MutS Homolog 2 Protein/metabolism , MutS Homolog 2 Protein/genetics , DNA Primase/metabolism , DNA Primase/genetics , Telomere Homeostasis , DNA Damage , HEK293 Cells , Multifunctional Enzymes/metabolism , Multifunctional Enzymes/genetics , DNA-Directed DNA Polymerase
6.
DNA Repair (Amst) ; 142: 103741, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39153403

ABSTRACT

PrimPol is a human DNA primase involved in DNA damage tolerance pathways by restarting DNA replication downstream of DNA lesions and non-canonical DNA structures. Activity and affinity to DNA relays on the interaction of PrimPol with replication protein A (RPA). In this work, we report that PrimPol has an intrinsic ability to copy DNA hairpins with a stem length of 5-9 base pairs (bp) but shows pronounced pausing of DNA synthesis. RPA greatly stimulates DNA synthesis across inverted DNA repeats by PrimPol. Moreover, deletion of the C-terminal RPA binding motif (RBM) facilitates DNA hairpin bypass and makes it independent of RPA. This work supports the idea that RBM is a negative regulator of PrimPol and its interaction with RPA is required to achieve the fully active state.


Subject(s)
DNA Primase , DNA Replication , DNA , Humans , DNA Primase/metabolism , DNA Primase/chemistry , DNA Primase/genetics , DNA/metabolism , Multifunctional Enzymes/metabolism , Multifunctional Enzymes/genetics , Multifunctional Enzymes/chemistry , Replication Protein A/metabolism , Nucleic Acid Conformation , DNA-Directed DNA Polymerase/metabolism , Inverted Repeat Sequences , Protein Binding
7.
Cell Mol Life Sci ; 81(1): 339, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120648

ABSTRACT

Senataxin is an evolutionarily conserved DNA/RNA helicase, whose dysfunctions are linked to neurodegeneration and cancer. A main activity of this protein is the removal of R-loops, which are nucleic acid structures capable to promote DNA damage and replication stress. Here we found that Senataxin deficiency causes the release of damaged DNA into extranuclear bodies, called micronuclei, triggering the massive recruitment of cGAS, the apical sensor of the innate immunity pathway, and the downstream stimulation of interferon genes. Such cGAS-positive micronuclei are characterized by defective membrane envelope and are particularly abundant in cycling cells lacking Senataxin, but not after exposure to a DNA breaking agent or in absence of the tumor suppressor BRCA1 protein, a partner of Senataxin in R-loop removal. Micronuclei with a discontinuous membrane are normally cleared by autophagy, a process that we show is impaired in Senataxin-deficient cells. The formation of Senataxin-dependent inflamed micronuclei is promoted by the persistence of nuclear R-loops stimulated by the DSIF transcription elongation complex and the engagement of EXO1 nuclease activity on nuclear DNA. Coherently, high levels of EXO1 result in poor prognosis in a subset of tumors lacking Senataxin expression. Hence, R-loop homeostasis impairment, together with autophagy failure and unscheduled EXO1 activity, elicits innate immune response through micronuclei formation in cells lacking Senataxin.


Subject(s)
Autophagy , DNA Damage , DNA Helicases , Inflammation , Multifunctional Enzymes , Nucleotidyltransferases , R-Loop Structures , RNA Helicases , Humans , Autophagy/genetics , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , BRCA1 Protein/deficiency , DNA Helicases/metabolism , DNA Helicases/genetics , DNA Helicases/deficiency , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/deficiency , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , Immunity, Innate , Inflammation/pathology , Inflammation/metabolism , Inflammation/genetics , Multifunctional Enzymes/metabolism , Multifunctional Enzymes/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Phosphoproteins , RNA Helicases/metabolism , RNA Helicases/genetics
8.
Genes (Basel) ; 15(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39062651

ABSTRACT

Congenital heart disease is one of the most common congenital malformations and thus represents a considerable public health burden. Hence, the identification of individuals and families with an increased genetic predisposition to congenital heart disease (CHD) and its possible prevention is important. Even though CHD is associated with the lack of folate during early pregnancy, the genetic background of folate and methionine metabolism perturbations and their influence on CHD risk is not clear. While some genes, such as those coding for cytosolic enzymes of folate/methionine cycles, have been extensively studied, genetic studies of folate transporters (de)glutamation enzymes and mitochondrial enzymes of the folate cycle are lacking. Among genes coding for cytoplasmic enzymes of the folate cycle, MTHFR, MTHFD1, MTR, and MTRR have the strongest association with CHD, while among genes for enzymes of the methionine cycle BHMT and BHMT2 are the most prominent. Among mitochondrial folate cycle enzymes, MTHFD2 plays the most important role in CHD formation, while FPGS was identified as important in the group of (de)glutamation enzymes. Among transporters, the strongest association with CHD was demonstrated for SLC19A1.


Subject(s)
Folic Acid , Heart Defects, Congenital , Methionine , Methylenetetrahydrofolate Dehydrogenase (NADP) , Humans , Folic Acid/metabolism , Heart Defects, Congenital/genetics , Methionine/metabolism , Methionine/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Ferredoxin-NADP Reductase/genetics , Ferredoxin-NADP Reductase/metabolism , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , Genetic Predisposition to Disease , Betaine-Homocysteine S-Methyltransferase/genetics , Betaine-Homocysteine S-Methyltransferase/metabolism , Aminohydrolases , Multifunctional Enzymes
9.
DNA Repair (Amst) ; 141: 103712, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38959714

ABSTRACT

Epigenetic cytosine methylation covers most of genomic CpG dinucleotides in human cells. In addition to common deamination-mediated mutagenesis at CpG sites, an alternative deamination-independent pathway associated with DNA polymerase activity was previously described. This mutagenesis is characterized by the TCG→TTG mutational signature and is believed to arise from dAMP misincorporation opposite 5-methylcytosine (mC) or its oxidized derivative 5-hydroxymethylcytosine (hmC) by B-family replicative DNA polymerases with disrupted proofreading 3→5'-exonuclease activity. In addition to being less stable and pro-mutagenic themselves, cytosine modifications also increase the risk of adjacent nucleotides damage, including the formation of 8-oxo-2'-deoxyguanosine (8-oxoG), a well-known mutagenic lesion. The effect of cytosine methylation on error-prone DNA polymerases lacking proofreading activity and involved in repair and DNA translesion synthesis remains unexplored. Here we analyze the efficiency and fidelity of translesion Y-family polymerases (Pol κ, Pol η, Pol ι and REV1) and primase-polymerase PrimPol opposite mC and hmC as well as opposite 8-oxoG adjacent to mC in the TCG context. We demonstrate that epigenetic cytosine modifications suppress Pol ι and REV1 activities and lead to increasing dAMP misincorporation by PrimPol, Pol κ and Pol ι in vitro. Cytosine methylation also increases misincorporation of dAMP opposite the adjacent 8-oxoG by PrimPol, decreases the TLS activity of Pol η opposite the lesion but increases dCMP incorporation opposite 8-oxoG by REV1. Altogether, these data suggest that methylation and hydroxymethylation of cytosine alter activity and fidelity of translesion DNA polymerases.


Subject(s)
5-Methylcytosine , Cytosine , DNA Methylation , DNA-Directed DNA Polymerase , Humans , DNA-Directed DNA Polymerase/metabolism , Cytosine/metabolism , Cytosine/analogs & derivatives , 5-Methylcytosine/metabolism , 5-Methylcytosine/analogs & derivatives , DNA Repair , DNA Damage , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , DNA Polymerase iota , DNA/metabolism , Multifunctional Enzymes/metabolism , DNA Replication , 8-Hydroxy-2'-Deoxyguanosine/metabolism
10.
J Virol ; 98(8): e0100324, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39046232

ABSTRACT

Three-stranded DNA-RNA structures known as R-loops that form during papillomavirus transcription can cause transcription-replication conflicts and lead to DNA damage. We found that R-loops accumulated at the viral early promoter in human papillomavirus (HPV) episomal cells but were greatly reduced in cells with integrated HPV genomes. RNA-DNA helicases unwind R-loops and allow for transcription and replication to proceed. Depletion of the RNA-DNA helicase senataxin (SETX) using siRNAs increased the presence of R-loops at the viral early promoter in HPV-31 (CIN612) and HPV-16 (W12) episomal HPV cell lines. Depletion of SETX reduced viral transcripts in episomal HPV cell lines. The viral E2 protein, which binds with high affinity to specific palindromes near the promoter and origin, complexes with SETX, and both SETX and E2 are present at the viral p97 promoter in CIN612 and W12 cells. SETX overexpression increased E2 transcription activity on the p97 promoter. SETX depletion also significantly increased integration of viral genomes in CIN612 cells. Our results demonstrate that SETX resolves viral R-loops to proceed with HPV transcription and prevent genome integration.IMPORTANCEPapillomaviruses contain small circular genomes of approximately 8 kilobase pairs and undergo unidirectional transcription from the sense strand of the viral genome. Co-transcriptional R-loops were recently reported to be present at high levels in cells that maintain episomal HPV and were also detected at the early viral promoter. R-loops can inhibit transcription and DNA replication. The process that removes R-loops from the PV genome and the requisite enzymes are unknown. We propose a model in which the host RNA-DNA helicase senataxin assembles on the HPV genome to resolve R-loops in order to maintain the episomal status of the viral genome.


Subject(s)
DNA Helicases , Multifunctional Enzymes , Promoter Regions, Genetic , R-Loop Structures , RNA Helicases , Humans , RNA Helicases/genetics , RNA Helicases/metabolism , Multifunctional Enzymes/genetics , Multifunctional Enzymes/metabolism , DNA Helicases/metabolism , DNA Helicases/genetics , R-Loop Structures/genetics , Plasmids/genetics , Virus Replication , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Papillomaviridae/genetics , Genome, Viral , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Transcription, Genetic , Cell Line , DNA, Viral/genetics
11.
Methods Mol Biol ; 2814: 119-131, 2024.
Article in English | MEDLINE | ID: mdl-38954202

ABSTRACT

Largely due to its simplicity, while being more like human cells compared to other experimental models, Dictyostelium continues to be of great use to discover basic molecular mechanisms and signaling pathways underlying evolutionarily conserved biological processes. However, the identification of new protein interactions implicated in signaling pathways can be particularly challenging in Dictyostelium due to its extremely fast signaling kinetics coupled with the dynamic nature of signaling protein interactions. Recently, the proximity labeling method using engineered ascorbic acid peroxidase 2 (APEX2) in mammalian cells was shown to allow the detection of weak and/or transient protein interactions and also to obtain spatial and temporal resolution. Here, we describe a protocol for successfully using the APEX2-proximity labeling method in Dictyostelium. Coupled with the identification of the labeled proteins by mass spectrometry, this method expands Dictyostelium's proteomics toolbox and should be widely useful for identifying interacting partners involved in a variety of biological processes in Dictyostelium.


Subject(s)
Ascorbate Peroxidases , Dictyostelium , Proteomics , Dictyostelium/metabolism , Ascorbate Peroxidases/metabolism , Ascorbate Peroxidases/genetics , Proteomics/methods , Protein Interaction Mapping/methods , Mass Spectrometry/methods , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Humans , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Signal Transduction , Staining and Labeling/methods , Endonucleases , Multifunctional Enzymes
12.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892095

ABSTRACT

Pathogenic variants in the FAN1 gene lead to a systemic disease with karyomegalic interstitial nephritis (KIN) at the forefront clinically. The phenotypic-genotypic features of a FAN1 mutation-related disease involving five members of a Hungarian Caucasian family are presented. Each had adult-onset chronic kidney disease of unknown cause treated with renal replacement therapy and elevated liver enzymes. Short stature, emaciation, latte-colored skin, freckles, and a hawk-like nose in four patients, a limited intellect in two patients, and chronic restrictive lung disease in one patient completed the phenotype. Severe infections occurred in four patients. All five patients had ceased. Four patients underwent autopsy. KIN and extrarenal karyomegaly were observed histologically; the livers showed no specific abnormality. The genotyping using formalin-fixed tissue samples detected a hitherto undescribed homozygous FAN1 mutation (c.1673_1674insT/p.Met558lfs*4; exon 5) in three of these patients and a heterozygous FAN1 mutation in one patient. The reason for the heterozygosity is discussed. In addition, 56 family members consented to the screening for FAN1 mutation from which 17 individuals proved to be heterozygous carriers; a blood chemistry evaluation of their kidney and liver function did not find any abnormality. The clinical presentation of FAN1-related disease was multifaceted, and not yet described manifestations were observed besides kidney and liver disease. Mutation in this gene should be suspected in adults with small kidneys of unknown cause, elevated liver enzymes, and recurrent infections, even without a family history.


Subject(s)
Endodeoxyribonucleases , Exodeoxyribonucleases , Genotype , Multifunctional Enzymes , Mutation , Pedigree , Phenotype , Humans , Male , Female , Hungary , Adult , Middle Aged , Exodeoxyribonucleases/genetics , Multifunctional Enzymes/genetics , Endodeoxyribonucleases/genetics , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology
13.
mBio ; 15(8): e0108424, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38940614

ABSTRACT

Inositol pyrophosphate 1,5-IP8 regulates expression of a fission yeast phosphate homeostasis regulon, comprising phosphate acquisition genes pho1, pho84, and tgp1, via its action as an agonist of precocious termination of transcription of the upstream lncRNAs that repress PHO mRNA synthesis. 1,5-IP8 levels are dictated by a balance between the Asp1 N-terminal kinase domain that converts 5-IP7 to 1,5-IP8 and three inositol pyrophosphatases-the Asp1 C-terminal domain (a histidine acid phosphatase), Siw14 (a cysteinyl-phosphatase), and Aps1 (a Nudix enzyme). In this study, we report the biochemical and genetic characterization of Aps1 and an analysis of the effects of Asp1, Siw14, and Aps1 mutations on cellular inositol pyrophosphate levels. We find that Aps1's substrate repertoire embraces inorganic polyphosphates, 5-IP7, 1-IP7, and 1,5-IP8. Aps1 displays a ~twofold preference for hydrolysis of 1-IP7 versus 5-IP7 and aps1∆ cells have twofold higher levels of 1-IP7 vis-à-vis wild-type cells. While neither Aps1 nor Siw14 is essential for growth, an aps1∆ siw14∆ double mutation is lethal on YES medium. This lethality is a manifestation of IP8 toxicosis, whereby excessive 1,5-IP8 drives derepression of tgp1, leading to Tgp1-mediated uptake of glycerophosphocholine. We were able to recover an aps1∆ siw14∆ mutant on ePMGT medium lacking glycerophosphocholine and to suppress the severe growth defect of aps1∆ siw14∆ on YES by deleting tgp1. However, the severe growth defect of an aps1∆ asp1-H397A strain could not be alleviated by deleting tgp1, suggesting that 1,5-IP8 levels in this double-pyrophosphatase mutant exceed a threshold beyond which overzealous termination affects other genes, which results in cytotoxicity. IMPORTANCE: Repression of the fission yeast PHO genes tgp1, pho1, and pho84 by lncRNA-mediated interference is sensitive to changes in the metabolism of 1,5-IP8, a signaling molecule that acts as an agonist of precocious lncRNA termination. 1,5-IP8 is formed by phosphorylation of 5-IP7 and catabolized by inositol pyrophosphatases from three distinct enzyme families: Asp1 (a histidine acid phosphatase), Siw14 (a cysteinyl phosphatase), and Aps1 (a Nudix hydrolase). This study entails a biochemical characterization of Aps1 and an analysis of how Asp1, Siw14, and Aps1 mutations impact growth and inositol pyrophosphate pools in vivo. Aps1 catalyzes hydrolysis of inorganic polyphosphates, 5-IP7, 1-IP7, and 1,5-IP8 in vitro, with a ~twofold preference for 1-IP7 over 5-IP7. aps1∆ cells have twofold higher levels of 1-IP7 than wild-type cells. An aps1∆ siw14∆ double mutation is lethal because excessive 1,5-IP8 triggers derepression of tgp1, leading to toxic uptake of glycerophosphocholine.


Subject(s)
Pyrophosphatases , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces/genetics , Schizosaccharomyces/enzymology , Schizosaccharomyces/metabolism , Schizosaccharomyces/growth & development , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , Inorganic Pyrophosphatase/metabolism , Inorganic Pyrophosphatase/genetics , Inositol Phosphates/metabolism , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Gene Expression Regulation, Fungal , Mutation , Nudix Hydrolases , Multifunctional Enzymes
14.
Nucleic Acids Res ; 52(14): 8320-8331, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38917325

ABSTRACT

Replication repriming by the specialized primase-polymerase PRIMPOL ensures the continuity of DNA synthesis during replication stress. PRIMPOL activity generates residual post-replicative single-stranded nascent DNA gaps, which are linked with mutagenesis and chemosensitivity in BRCA1/2-deficient models, and which are suppressed by replication fork reversal mediated by the DNA translocases SMARCAL1 and ZRANB3. Here, we report that the MRE11 regulator MRNIP limits the prevalence of PRIMPOL and MRE11-dependent ssDNA gaps in cells in which fork reversal is perturbed either by treatment with the PARP inhibitor Olaparib, or by depletion of SMARCAL1 or ZRANB3. MRNIP-deficient cells are sensitive to PARP inhibition and accumulate PRIMPOL-dependent DNA damage, supportive of a pro-survival role for MRNIP linked to the regulation of gap prevalence. In MRNIP-deficient cells, post-replicative gap filling is driven in S-phase by UBC13-mediated template switching involving REV1 and the TLS polymerase Pol-ζ. Our findings represent the first report of modulation of post-replicative ssDNA gap dynamics by a direct MRE11 regulator.


Subject(s)
DNA Helicases , DNA Primase , DNA Replication , DNA, Single-Stranded , DNA-Directed DNA Polymerase , MRE11 Homologue Protein , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , MRE11 Homologue Protein/metabolism , MRE11 Homologue Protein/genetics , Humans , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , DNA Primase/metabolism , DNA Primase/genetics , DNA Helicases/metabolism , DNA Helicases/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA Damage , Phthalazines/pharmacology , Piperazines/pharmacology , Multifunctional Enzymes/genetics , Multifunctional Enzymes/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Carrier Proteins/metabolism , Carrier Proteins/genetics
16.
Redox Rep ; 29(1): 2345455, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38723197

ABSTRACT

OBJECTIVES: Cancer cells undergo metabolic reprogramming to adapt to high oxidative stress, but little is known about how metabolic remodeling enables gastric cancer cells to survive stress associated with aberrant reactive oxygen species (ROS) production. Here, we aimed to identify the key metabolic enzymes that protect gastric cancer (GC) cells from oxidative stress. METHODS: ROS level was detected by DCFH-DA probes. Multiple cell biological studies were performed to identify the underlying mechanisms. Furthermore, cell-based xenograft and patient-derived xenograft (PDX) model were performed to evaluate the role of MTHFD2 in vivo. RESULTS: We found that overexpression of MTHFD2, but not MTHFD1, is associated with reduced overall and disease-free survival in gastric cancer. In addition, MTHFD2 knockdown reduces the cellular NADPH/NADP+ ratio, colony formation and mitochondrial function, increases cellular ROS and cleaved PARP levels and induces in cell death under hypoxia, a hallmark of solid cancers and a common inducer of oxidative stress. Moreover, genetic or pharmacological inhibition of MTHFD2 reduces tumor burden in both tumor cell lines and patient-derived xenograft-based models. DISCUSSION: our study highlights the crucial role of MTHFD2 in redox regulation and tumor progression, demonstrating the therapeutic potential of targeting MTHFD2.


Subject(s)
Disease Progression , Homeostasis , Methylenetetrahydrofolate Dehydrogenase (NADP) , Oxidative Stress , Stomach Neoplasms , Animals , Humans , Mice , Aminohydrolases/metabolism , Aminohydrolases/genetics , Cell Line, Tumor , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Multifunctional Enzymes/metabolism , Multifunctional Enzymes/genetics , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Xenograft Model Antitumor Assays
17.
J Cell Biol ; 223(7)2024 07 01.
Article in English | MEDLINE | ID: mdl-38717338

ABSTRACT

Senataxin is an evolutionarily conserved RNA-DNA helicase involved in DNA repair and transcription termination that is associated with human neurodegenerative disorders. Here, we investigated whether Senataxin loss affects protein homeostasis based on previous work showing R-loop-driven accumulation of DNA damage and protein aggregates in human cells. We find that Senataxin loss results in the accumulation of insoluble proteins, including many factors known to be prone to aggregation in neurodegenerative disorders. These aggregates are located primarily in the nucleolus and are promoted by upregulation of non-coding RNAs expressed from the intergenic spacer region of ribosomal DNA. We also map sites of R-loop accumulation in human cells lacking Senataxin and find higher RNA-DNA hybrids within the ribosomal DNA, peri-centromeric regions, and other intergenic sites but not at annotated protein-coding genes. These findings indicate that Senataxin loss affects the solubility of the proteome through the regulation of transcription-dependent lesions in the nucleus and the nucleolus.


Subject(s)
DNA Helicases , Multifunctional Enzymes , RNA Helicases , RNA, Untranslated , Humans , Cell Nucleolus/metabolism , Cell Nucleolus/genetics , DNA Damage , DNA Helicases/metabolism , DNA Helicases/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Multifunctional Enzymes/metabolism , Multifunctional Enzymes/genetics , Protein Aggregates , Proteostasis , R-Loop Structures/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , RNA, Untranslated/genetics , RNA, Untranslated/metabolism
18.
Sci Rep ; 14(1): 11242, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755230

ABSTRACT

The interaction of Plasmodium falciparum-infected red blood cells (iRBCs) with the vascular endothelium plays a crucial role in malaria pathology and disease. KAHRP is an exported P. falciparum protein involved in iRBC remodelling, which is essential for the formation of protrusions or "knobs" on the iRBC surface. These knobs and the proteins that are concentrated within them allow the parasites to escape the immune response and host spleen clearance by mediating cytoadherence of the iRBC to the endothelial wall, but this also slows down blood circulation, leading in some cases to severe cerebral and placental complications. In this work, we have applied genetic and biochemical tools to identify proteins that interact with P. falciparum KAHRP using enhanced ascorbate peroxidase 2 (APEX2) proximity-dependent biotinylation and label-free shotgun proteomics. A total of 30 potential KAHRP-interacting candidates were identified, based on the assigned fragmented biotinylated ions. Several identified proteins have been previously reported to be part of the Maurer's clefts and knobs, where KAHRP resides. This study may contribute to a broader understanding of P. falciparum protein trafficking and knob architecture and shows for the first time the feasibility of using APEX2-proximity labelling in iRBCs.


Subject(s)
Erythrocytes , Plasmodium falciparum , Proteomics , Protozoan Proteins , Erythrocytes/parasitology , Erythrocytes/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Humans , Proteomics/methods , Malaria, Falciparum/parasitology , Malaria, Falciparum/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Ascorbate Peroxidases/metabolism , Protein Binding , Biotinylation , Endonucleases , Peptides , Proteins , Multifunctional Enzymes
19.
J Biol Chem ; 300(6): 107337, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705397

ABSTRACT

APE2 plays important roles in the maintenance of genomic and epigenomic stability including DNA repair and DNA damage response. Accumulating evidence has suggested that APE2 is upregulated in multiple cancers at the protein and mRNA levels and that APE2 upregulation is correlative with higher and lower overall survival of cancer patients depending on tumor type. However, it remains unknown how APE2 protein abundance is maintained and regulated in cells. Here, we provide the first evidence of APE2 regulation via the posttranslational modification ubiquitin. APE2 is poly-ubiquitinated via K48-linked chains and degraded via the ubiquitin-proteasome system where K371 is the key residue within APE2 responsible for its ubiquitination and degradation. We further characterize MKRN3 as the E3 ubiquitin ligase for APE2 ubiquitination in cells and in vitro. In summary, this study offers the first definition of the APE2 proteostasis network and lays the foundation for future studies pertaining to the posttranslational modification regulation and functions of APE2 in genome integrity and cancer etiology/treatment.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase , Ubiquitination , Humans , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Ubiquitin/metabolism , Protein Processing, Post-Translational , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , HEK293 Cells , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Proteolysis , Endonucleases , Multifunctional Enzymes
20.
Proc Natl Acad Sci U S A ; 121(16): e2322924121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38607933

ABSTRACT

Many Mendelian disorders, such as Huntington's disease (HD) and spinocerebellar ataxias, arise from expansions of CAG trinucleotide repeats. Despite the clear genetic causes, additional genetic factors may influence the rate of those monogenic disorders. Notably, genome-wide association studies discovered somewhat expected modifiers, particularly mismatch repair genes involved in the CAG repeat instability, impacting age at onset of HD. Strikingly, FAN1, previously unrelated to repeat instability, produced the strongest HD modification signals. Diverse FAN1 haplotypes independently modify HD, with rare genetic variants diminishing DNA binding or nuclease activity of the FAN1 protein, hastening HD onset. However, the mechanism behind the frequent and the most significant onset-delaying FAN1 haplotype lacking missense variations has remained elusive. Here, we illustrated that a microRNA acting on 3'-UTR (untranslated region) SNP rs3512, rather than transcriptional regulation, is responsible for the significant FAN1 expression quantitative trait loci signal and allelic imbalance in FAN1 messenger ribonucleic acid (mRNA), accounting for the most significant and frequent onset-delaying modifier haplotype in HD. Specifically, miR-124-3p selectively targets the reference allele at rs3512, diminishing the stability of FAN1 mRNA harboring that allele and consequently reducing its levels. Subsequent validation analyses, including the use of antagomir and 3'-UTR reporter vectors with swapped alleles, confirmed the specificity of miR-124-3p at rs3512. Together, these findings indicate that the alternative allele at rs3512 renders the FAN1 mRNA less susceptible to miR-124-3p-mediated posttranscriptional regulation, resulting in increased FAN1 levels and a subsequent delay in HD onset by mitigating CAG repeat instability.


Subject(s)
Huntington Disease , MicroRNAs , Humans , 3' Untranslated Regions/genetics , Endodeoxyribonucleases , Exodeoxyribonucleases/genetics , Genome-Wide Association Study , Huntington Disease/genetics , MicroRNAs/genetics , Multifunctional Enzymes
SELECTION OF CITATIONS
SEARCH DETAIL