Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 18.684
1.
Narra J ; 4(1): e406, 2024 Apr.
Article En | MEDLINE | ID: mdl-38798869

Patients with chronic obstructive pulmonary disease (COPD) commonly exhibit muscle atrophy and dysfunction due to a reduction in muscle mass; and protein supplements such as chicken egg whites have been reported to improve muscle mass. The aim of this study was to evaluate the impact of physical exercise and egg white supplementation on the muscle mass of COPD patients. An experimental study was conducted among stable COPD patients at Universitas Sumatra Utara Hospital Medan, Indonesia, between August and October 2022. The patients were divided into two groups, control and interventional groups, with each patient subjected to a pre- and post-muscle mass assessment. All the patients performed respiratory endurance and upper extremity muscle strength training three times/week for a total of 12 weeks. In addition, the patients in the intervention group were also given egg white supplementation (10 eggs/day) during the period of intervention in addition to the physical training. The Wilcoxon and Mann-Whitney tests were performed to identify the significance of the difference between pre- and post-intervention and between the control and intervention groups, respectively. A total of 38 COPD patients were included in the study, 19 from each group. Our data suggested no significant difference in muscle mass of the patients in the control group before and after 12 weeks of physical exercise (pre-intervention 27.37±4.54% and post-intervention 27.68±4.5% with p=0.174). However, there was a significant muscle mass increment of patients in the intervention group upon 12 weeks of physical training and egg white supplementation (pre-intervention 27.18±4.15%, post-intervention 29.95±3.76%, p<0.001). A significant difference in muscle mass was observed between patients in the control and the intervention groups (p=0.046) after the intervention. The study highlights that physical exercise in combination with egg white supplementation may serve as potential and effective non-pharmacological treatment for muscle mass restoration in COPD patients as compared to physical exercise alone.


Dietary Supplements , Egg White , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/therapy , Female , Male , Middle Aged , Aged , Animals , Exercise/physiology , Chickens , Indonesia , Muscle Strength/physiology , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Exercise Therapy/methods
2.
Clin Nutr ; 43(6): 1414-1424, 2024 Jun.
Article En | MEDLINE | ID: mdl-38701709

Sarcopenic obesity (SO) is defined as the combination of excess fat mass (obesity) and low skeletal muscle mass and function (sarcopenia). The identification and classification of factors related to SO would favor better prevention and diagnosis. The present article aimed to (i) define a list of factors related with SO based on literature analysis, (ii) identify clinical conditions linked with SO development from literature search and (iii) evaluate their relevance and the potential research gaps by consulting an expert panel. From 4746 articles screened, 240 articles were selected for extraction of the factors associated with SO. Factors were classified according to their frequency in the literature. Clinical conditions were also recorded. Then, they were evaluated by a panel of expert for evaluation of their relevance in SO development. Experts also suggested additional factors. Thirty-nine unique factors were extracted from the papers and additional eleven factors suggested by a panel of experts in the SO field. The frequency in the literature showed insulin resistance, dyslipidemia, lack of exercise training, inflammation and hypertension as the most frequent factors associated with SO whereas experts ranked low spontaneous physical activity, protein and energy intakes, low exercise training and aging as the most important. Although literature and expert panel presented some differences, this first list of associated factors could help to identify patients at risk of SO. Further work is needed to confirm the contribution of factors associated with SO among the population overtime or in randomized controlled trials to demonstrate causality.


Obesity , Sarcopenia , Humans , Obesity/complications , Risk Factors , Exercise , Muscle, Skeletal/physiopathology , Insulin Resistance , Aging/physiology , Voting
3.
Sci Rep ; 14(1): 12428, 2024 05 30.
Article En | MEDLINE | ID: mdl-38816528

Electromyography (EMG) is considered a potential predictive tool for the severity of knee osteoarthritis (OA) symptoms and functional outcomes. Patient-reported outcome measures (PROMs), such as the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and visual analog scale (VAS), are used to determine the severity of knee OA. We aim to investigate muscle activation and co-contraction patterns through EMG from the lower extremity muscles of patients with advanced knee OA patients and evaluate the effectiveness of an interpretable machine-learning model to estimate the severity of knee OA according to the WOMAC (pain, stiffness, and physical function) and VAS using EMG gait features. To explore neuromuscular gait patterns with knee OA severity, EMG from rectus femoris, medial hamstring, tibialis anterior, and gastrocnemius muscles were recorded from 84 patients diagnosed with advanced knee OA during ground walking. Muscle activation patterns and co-activation indices were calculated over the gait cycle for pairs of medial and lateral muscles. We utilized machine-learning regression models to estimate the severity of knee OA symptoms according to the PROMs using muscle activity and co-contraction features. Additionally, we utilized the Shapley Additive Explanations (SHAP) to interpret the contribution of the EMG features to the regression model for estimation of knee OA severity according to WOMAC and VAS. Muscle activity and co-contraction patterns varied according to the functional limitations associated with knee OA severity according to VAS and WOMAC. The coefficient of determination of the cross-validated regression model is 0.85 for estimating WOMAC, 0.82 for pain, 0.85 for stiffness, and 0.85 for physical function, as well as VAS scores, utilizing the gait features. SHAP explanation revealed that greater co-contraction of lower extremity muscles during the weight acceptance and swing phases indicated more severe knee OA. The identified muscle co-activation patterns may be utilized as objective candidate outcomes to better understand the severity of knee OA.


Electromyography , Gait , Knee Joint , Muscle, Skeletal , Osteoarthritis, Knee , Patient Reported Outcome Measures , Humans , Osteoarthritis, Knee/physiopathology , Male , Female , Middle Aged , Aged , Knee Joint/physiopathology , Muscle, Skeletal/physiopathology , Gait/physiology , Machine Learning , Severity of Illness Index , Muscle Contraction
4.
BMC Musculoskelet Disord ; 25(1): 415, 2024 May 28.
Article En | MEDLINE | ID: mdl-38807086

BACKGROUND: Biomechanical alterations in patients with low back pain (LBP), as reduced range of motion or strength, do not appear to be exclusively related to the trunk. Thus, studies have investigated biomechanical changes in the hip, due to the proximity of this joint to the low back region. However, the relationship between hip biomechanical changes in patients with LBP is still controversial and needs to be summarized. Therefore, the aim of this study was to systematically review observational studies that used biomechanical assessments in patients with non-specific LBP. METHODS: The search for observational studies that evaluated hip biomechanical variables (i.e., range of motion, kinematic, strength, and electromyography) in adults with non-specific acute, subacute, and chronic LBP was performed in the PubMed, Embase, Cinahl and Sportdiscus databases on February 22nd, 2024. Four blocks of descriptors were used: 1) type of study, 2) LBP, 3) hip and 4) biomechanical assessment. Two independent assessors selected eligible studies and extracted the following data: author, year of publication, country, study objective, participant characteristics, outcomes, and results. The methodological quality of the studies was assessed using the Epidemiological Appraisal Instrument and classified as low, moderate, and high. Due to the heterogeneity of the biomechanical assessment and, consequently, of the results among eligible studies, a descriptive analysis was performed. RESULTS: The search strategy returned 338 articles of which 54 were included: nine articles evaluating range of motion, 16 evaluating kinematic, four strength, seven electromyography and 18 evaluating more than one outcome. The studies presented moderate and high methodological quality. Patients with LBP, regardless of symptoms, showed a significant reduction in hip range of motion, especially hip internal rotation, reduction in the time to perform functional activities such as sit-to-stance-to-sit, sit-to-stand or walking, greater activation of the hamstrings and gluteus maximus muscles and weakness of the hip abductor and extensor muscles during specific tests and functional activities compared to healthy individuals. CONCLUSION: Patients with LBP present changes in range of motion, task execution, activation, and hip muscle strength when compared to healthy individuals. Therefore, clinicians must pay greater attention to the assessment and management of the hip during the treatment of these patients. SYSTEMATIC REVIEW REGISTRATION: International Prospective Register of Systematic Reviews (PROSPERO) (CRD42020213599).


Electromyography , Hip Joint , Low Back Pain , Range of Motion, Articular , Humans , Low Back Pain/physiopathology , Low Back Pain/diagnosis , Biomechanical Phenomena/physiology , Range of Motion, Articular/physiology , Hip Joint/physiopathology , Muscle Strength/physiology , Observational Studies as Topic , Muscle, Skeletal/physiopathology
5.
J Foot Ankle Res ; 17(2): e12028, 2024 Jun.
Article En | MEDLINE | ID: mdl-38820170

BACKGROUND: The aim of this study was to compare the plantar pressure distribution and knee and ankle muscle architecture in women with and without knee osteoarthritis (OA). METHODS: Fifty women with knee OA (mean age = 52.11 ± 4.96 years, mean Body mass index (BMI) = 30.94 ± 4.23 kg/m2) and 50 healthy women as a control group (mean age = 50.93 ± 3.78 years, mean BMI = 29.06 ± 4.82 kg/m2) were included in the study. Ultrasonography was used to evaluate knee and ankle muscles architecture and femoral cartilage thickness. The plantar pressure distribution was evaluated using the Digital Biometry Scanning System and Milleri software (DIASU, Italy). Static foot posture was evaluated using the Foot Posture Index (FPI), and pain severity was assessed using the Visual Analog Scale. RESULTS: The OA group exhibited lower muscle thickness in Rectus Femoris (RF) (p = 0.003), Vastus Medialis (VM) (p = 0.004), Vastus Lateralis (p = 0.023), and Peroneus Longus (p = 0.002), as well as lower Medial Gastrocnemius pennation angle (p = 0.049) and higher Fat thickness (FT) in RF (p = 0.033) and VM (p = 0.037) compared to the control group. The OA group showed thinner femoral cartilage thickness (p = 0.001) and higher pain severity (p = 0.001) than the control groups. FPI scores were higher (p = 0.001) in OA group compared to the control group. The plantar pressure distribution results indicated an increase in total surface (p = 0.027), total load (p = 0.002), medial load (p = 0.005), and lateral load (p = 0.002) on dominant side in OA group compared to the control group. CONCLUSIONS: Knee and ankle muscle architecture, knee extensor muscle FT, and plantar pressure distribution in the dominant foot differed in individuals with knee OA compared to the control group.


Foot , Muscle, Skeletal , Osteoarthritis, Knee , Pressure , Ultrasonography , Humans , Female , Osteoarthritis, Knee/physiopathology , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/pathology , Middle Aged , Muscle, Skeletal/physiopathology , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Foot/physiopathology , Foot/diagnostic imaging , Ankle Joint/physiopathology , Ankle Joint/diagnostic imaging , Ankle Joint/pathology , Case-Control Studies , Knee Joint/physiopathology , Knee Joint/diagnostic imaging , Knee Joint/pathology , Posture/physiology , Ankle/physiopathology , Ankle/diagnostic imaging
6.
Clin Nutr ESPEN ; 61: 333-337, 2024 Jun.
Article En | MEDLINE | ID: mdl-38777452

BACKGROUND & AIMS: Reduced skeletal muscle mass may negatively influence postural retention and walking function. This study aimed to examine the influence of the skeletal muscle mass index on walking function in patients with stroke. METHODS: This study included patients with cerebral infarction aged ≥65 years. The Asian Working Group for Sarcopenia's skeletal muscle mass index criteria were used to classify the participants into the low and high skeletal muscle mass index groups. The patient characteristics of the two groups were compared. The primary and secondary outcome measures were independent walking and walking speed, respectively. RESULTS: In total, 174 participants were included. There were no significant differences in the length of hospital stay, rehabilitation volume, or functional independence measure score at discharge between the males and females. Multivariate logistic regression analysis revealed that independent walking was independently associated with the skeletal muscle mass index on admission. The SMI, as an explanatory variable, was independently associated with the comfortable and fastest walking speeds. Faster walking was associated with higher skeletal muscle mass indexes on admission for both males and females. CONCLUSIONS: A low skeletal muscle mass index negatively influences walking function improvement in patients with stroke. A strategy aimed at increasing skeletal muscle mass can have beneficial effects on walking function in patients with stroke.


Muscle, Skeletal , Patient Discharge , Stroke Rehabilitation , Stroke , Walking , Humans , Male , Female , Aged , Walking/physiology , Muscle, Skeletal/physiopathology , Stroke/physiopathology , Sarcopenia/physiopathology , Aged, 80 and over , Walking Speed
7.
PeerJ ; 12: e17283, 2024.
Article En | MEDLINE | ID: mdl-38708354

Objective: To investigate the impact of the third lumbar skeletal muscle index (L3-SMI) assessed by CT on the in-hospital severity and short-term prognosis of acute pancreatitis. Methods: A total of 224 patients with severe acute pancreatitis admitted to Yantaishan Hospital from January 2021 to June 2022 were selected as the subjects. Based on the in-hospital treatment outcomes, they were divided into a mortality group of 59 cases as well as a survival group of 165 cases. Upon admission, general information such as the Acute Physiology and Chronic Health Evaluation II (APACHE II) score, along with the abdominal CT images of each patient, were analyzed. The L3-SMI was calculated, and the Modified CT Severity Index (MCTSI) and Balthazar CT grade were used to assess the severity of in-hospital complications of acute pancreatitis. The evaluation value of L3-SMI for the prognosis of severe acute pancreatitis was analyzed, as well as the factors influencing the prognosis of severe acute pancreatitis. Results: No statistically significant differences in gender, age, BMI, etiology, duration of anti-inflammatory drug use, and proportion of surgical patients between the survival and mortality groups were observed. But the mortality group showed higher proportions of patients with an elevated APACHE II score upon admission, mechanical ventilation, and renal replacement therapy, compared to the survival group, with statistically significant differences (P < 0.001). Furthermore, the mortality group had higher MCTSI scores (6.42 ± 0.69) and Balthazar CT grades (3.78 ± 0.45) than the survival group, with statistically significant differences (P < 0.001). The mortality group also had a lower L3-SMI (39.68 ± 3.25) compared to the survival group (42.71 ± 4.28), with statistically significant differences (P < 0.001). L3-SMI exhibited a negative correlation with MCTSI scores and Balthazar CT grades (r = -0.889, -0.790, P < 0.001). Logistic regression analysis, with mortality of acute pancreatitis patients as the dependent variable and MCTSI scores, Balthazar CT grades, L3-SMI, APACHE II score upon admission, mechanical ventilation, and renal replacement therapy as independent variables, revealed that MCTSI scores and L3-SMI were risk factors for mortality in acute pancreatitis patients (P < 0.001). Logistic regression analysis using the same variables confirmed that all these factors were risk factors for mortality in acute pancreatitis patients. Conclusion: This study confirmed that diagnosing muscle depletion using L3-SMI is a valuable radiological parameter for predicting in-hospital severity and short-term prognosis in patients with acute pancreatitis.


APACHE , Lumbar Vertebrae , Muscle, Skeletal , Pancreatitis , Severity of Illness Index , Tomography, X-Ray Computed , Humans , Male , Female , Middle Aged , Prognosis , Retrospective Studies , Pancreatitis/mortality , Pancreatitis/therapy , Pancreatitis/physiopathology , Pancreatitis/diagnostic imaging , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/physiopathology , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiopathology , Muscle, Skeletal/pathology , Adult , Aged , Hospital Mortality
8.
J Foot Ankle Res ; 17(2): e12014, 2024 Jun.
Article En | MEDLINE | ID: mdl-38773711

BACKGROUND: Patellofemoral pain (PFP) is characterized by chronic pain in the anterior aspect of the knee during loading activities. Many studies investigating muscle morphology changes for individuals with PFP focus on the proximal joints, however, few studies have investigated muscles of the foot and ankle complex. This study aimed to explore the differences in peroneal muscle size and activation between individuals with PFP and healthy controls using ultrasound imaging in weight-bearing. METHODS: A case-control study in a university lab setting was conducted. Thirty individuals with PFP (age: 20.23 ± 3.30 years, mass: 74.70 ± 27.63 kgs, height: 161.32 ± 11.72 cm) and 30 healthy individuals (age: 20.33 ± 3.37 years, mass: 64.02 ± 11.00 kgs, height: 169.31 ± 9.30 cm) participated. Cross-sectional area (CSA) images of the peroneal muscles were taken in non-weight bearing and weight-bearing positions. The functional activation ratio from lying to single-leg standing (SLS) was calculated. RESULTS: There was a statistically significant (p = 0.041) group (PFP, healthy) by position (non-weight-bearing, weight-bearing) interaction for the peroneal muscle CSA with a Cohen's d effect size of 0.2 in non-weight-bearing position and 0.7 in weight-bearing position. The functional activation ratio for the healthy group was significantly more (p = 0.01) than the PFP group. CONCLUSION: Peroneal muscles were found to be smaller in size in those with PFP compared to the healthy subjects in the weight-bearing SLS position. This study found that those with PFP have lower activation of peroneal muscles in functional position.


Muscle, Skeletal , Patellofemoral Pain Syndrome , Ultrasonography , Weight-Bearing , Humans , Weight-Bearing/physiology , Case-Control Studies , Male , Female , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiopathology , Muscle, Skeletal/pathology , Young Adult , Patellofemoral Pain Syndrome/physiopathology , Patellofemoral Pain Syndrome/diagnostic imaging , Patellofemoral Pain Syndrome/pathology , Adult , Adolescent , Foot/physiopathology , Foot/diagnostic imaging , Foot/pathology , Posture/physiology
9.
Sci Rep ; 14(1): 10829, 2024 05 11.
Article En | MEDLINE | ID: mdl-38734789

Patients with colorectal cancer (CRC) often exhibit changes in body composition (BC) which are associated with poorer clinical outcomes. Many studies group colon and rectal cancers together, irrespective of staging, potentially affecting assessment and treatment strategies. Our study aimed to compare BC in patients with CRC focusing on tumor location and metastasis presence. A total of 635 individuals were evaluated, with a mean age of 61.8 ± 12.4 years and 50.2% female. The majority had rectal cancer as the primary cancer site (51.0%), and 23.6% had metastatic disease. The first regression model showed tumor site and metastasis as independent factors influencing skeletal muscle (SM), skeletal muscle index (SMI), and visceral adipose tissue variability (all p values < 0.05). The second model, adjusted for BMI, indicated tumor site as the primary factor affecting SMI variations (adjusted R2 = 0.50 p < 0.001), with colon tumors inversely associated with SM (standardized ß - 2.15(- 3.3; - 0.9) p < 0.001). A third model, considering all the confounders from the directed acyclic graphs, was constructed and the found association remained independent. Our findings highlight significant BC variations in patients with CRC, influenced by tumor location and metastases presence, underscoring the need for location-specific assessment in CRC management.


Body Composition , Colorectal Neoplasms , Neoplasm Staging , Humans , Female , Male , Middle Aged , Colorectal Neoplasms/pathology , Aged , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Intra-Abdominal Fat , Body Mass Index
10.
Glob Heart ; 19(1): 45, 2024.
Article En | MEDLINE | ID: mdl-38737730

Objective: Skeletal muscle mass and cardiac structure change with age. It is unclear whether the loss of skeletal muscle mass (SMM) is accompanied by a decrease in heart mass loss. The aim of this study is to investigate the relationship of left ventricular mass (LVM) with sarcopenia and its severity in elderly inpatients. Methods: Seventy-one sarcopenia subjects and 103 non-sarcopenia controls were enrolled in this study. Bioelectrical impedance analysis, handgrip strength, and 5-time chair stand test were used to evaluate SMM, muscle strength, and physical performance, respectively. Myocardial structure and function were assessed by echocardiography. Sarcopenia was diagnosed according to the Asian Working Group for Sarcopenia criteria 2019. Results: Sarcopenic patients had smaller left ventricular sizes and LVM than non-sarcopenic controls. Severe sarcopenic patients had smaller left ventricular sizes and LVM than non-severe sarcopenic patients. In univariate regression analysis, body mass index (BMI), cardiac size, and LVM were positively correlated with SMM or SMI. In multivariate regression analysis, BMI and LVM were independently correlated with SMM and SMI. The combined measurement of LVM and BMI predicts sarcopenia with 66.0% sensitivity and 88.7% specificity (AUC: 0.825; 95% CI: (0.761, 0.889); p < 0.001). Conclusion: In hospitalized elderly patients, decreased left ventricular mass is associated with sarcopenia and its severity, and the combined measurement of LVM and BMI has a predictive value for sarcopenia.


Echocardiography , Heart Ventricles , Sarcopenia , Severity of Illness Index , Humans , Sarcopenia/physiopathology , Sarcopenia/diagnostic imaging , Sarcopenia/diagnosis , Sarcopenia/epidemiology , Male , Female , Aged , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Inpatients , Aged, 80 and over , Ventricular Function, Left/physiology , Muscle, Skeletal/physiopathology , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Body Mass Index
11.
Skelet Muscle ; 14(1): 10, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760872

Loss-of-function mutations in MEGF10 lead to a rare and understudied neuromuscular disorder known as MEGF10-related myopathy. There are no treatments for the progressive respiratory distress, motor impairment, and structural abnormalities in muscles caused by the loss of MEGF10 function. In this study, we deployed cellular and molecular assays to obtain additional insights about MEGF10-related myopathy in juvenile, young adult, and middle-aged Megf10 knockout (KO) mice. We found fewer muscle fibers in juvenile and adult Megf10 KO mice, supporting published studies that MEGF10 regulates myogenesis by affecting satellite cell differentiation. Interestingly, muscle fibers do not exhibit morphological hallmarks of atrophy in either young adult or middle-aged Megf10 KO mice. We next examined the neuromuscular junction (NMJ), in which MEGF10 has been shown to concentrate postnatally, using light and electron microscopy. We found early and progressive degenerative features at the NMJs of Megf10 KO mice that include increased postsynaptic fragmentation and presynaptic regions not apposed by postsynaptic nicotinic acetylcholine receptors. We also found perisynaptic Schwann cells intruding into the NMJ synaptic cleft. These findings strongly suggest that the NMJ is a site of postnatal pathology in MEGF10-related myopathy. In support of these cellular observations, RNA-seq analysis revealed genes and pathways associated with myogenesis, skeletal muscle health, and NMJ stability dysregulated in Megf10 KO mice compared to wild-type mice. Altogether, these data provide new and valuable cellular and molecular insights into MEGF10-related myopathy.


Disease Models, Animal , Mice, Knockout , Neuromuscular Junction , Animals , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Mice , Membrane Proteins/genetics , Membrane Proteins/metabolism , Muscular Diseases/genetics , Muscular Diseases/pathology , Muscular Diseases/metabolism , Muscular Diseases/physiopathology , Schwann Cells/metabolism , Schwann Cells/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Mice, Inbred C57BL , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Male
12.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38731986

Circadian clock and clock-controlled output pathways exert temporal control in diverse aspects of skeletal muscle physiology, including the maintenance of muscle mass, structure, function, and metabolism. They have emerged as significant players in understanding muscle disease etiology and potential therapeutic avenues, particularly in Duchenne muscular dystrophy (DMD). This review examines the intricate interplay between circadian rhythms and muscle physiology, highlighting how disruptions of circadian regulation may contribute to muscle pathophysiology and the specific mechanisms linking circadian clock dysregulation with DMD. Moreover, we discuss recent advancements in chronobiological research that have shed light on the circadian control of muscle function and its relevance to DMD. Understanding clock output pathways involved in muscle mass and function offers novel insights into the pathogenesis of DMD and unveils promising avenues for therapeutic interventions. We further explore potential chronotherapeutic strategies targeting the circadian clock to ameliorate muscle degeneration which may inform drug development efforts for muscular dystrophy.


Circadian Clocks , Muscle, Skeletal , Muscular Dystrophy, Duchenne , Muscular Dystrophy, Duchenne/therapy , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/physiopathology , Humans , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Circadian Rhythm
13.
BMC Neurol ; 24(1): 144, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724916

BACKGROUND: Restoring shoulder function is critical for upper-extremity rehabilitation following a stroke. The complex musculoskeletal anatomy of the shoulder presents a challenge for safely assisting elevation movements through robotic interventions. The level of shoulder elevation assistance in rehabilitation is often based on clinical judgment. There is no standardized method for deriving an optimal level of assistance, underscoring the importance of addressing abnormal movements during shoulder elevation, such as abnormal synergies and compensatory actions. This study aimed to investigate the effectiveness and safety of a newly developed shoulder elevation exoskeleton robot by applying a novel optimization technique derived from the muscle synergy index. METHODS: Twelve chronic stroke participants underwent an intervention consisting of 100 robot-assisted shoulder elevation exercises (10 × 10 times, approximately 40 min) for 10 days (4-5 times/week). The optimal robot assist rate was derived by detecting the change points using the co-contraction index, calculated from electromyogram (EMG) data obtained from the anterior deltoid and biceps brachii muscles during shoulder elevation at the initial evaluation. The primary outcomes were the Fugl-Meyer assessment-upper extremity (FMA-UE) shoulder/elbow/forearm score, kinematic outcomes (maximum angle of voluntary shoulder flexion and elbow flexion ratio during shoulder elevation), and shoulder pain outcomes (pain-free passive shoulder flexion range of motion [ROM] and visual analogue scale for pain severity during shoulder flexion). The effectiveness and safety of robotic therapy were examined using the Wilcoxon signed-rank sum test. RESULTS: All 12 patients completed the procedure without any adverse events. Two participants were excluded from the analysis because the EMG of the biceps brachii was not obtained. Ten participants (five men and five women; mean age: 57.0 [5.5] years; mean FMA-UE total score: 18.7 [10.5] points) showed significant improvement in the FMA-UE shoulder/elbow/forearm score, kinematic outcomes, and pain-free passive shoulder flexion ROM (P < 0.05). The shoulder pain outcomes remained unchanged or improved in all patients. CONCLUSIONS: The study presents a method for deriving the optimal robotic assist rate. Rehabilitation using a shoulder robot based on this derived optimal assist rate showed the possibility of safely improving the upper-extremity function in patients with severe stroke in the chronic phase.


Electromyography , Exoskeleton Device , Feasibility Studies , Muscle, Skeletal , Shoulder , Stroke Rehabilitation , Humans , Male , Female , Stroke Rehabilitation/methods , Middle Aged , Aged , Shoulder/physiopathology , Shoulder/physiology , Electromyography/methods , Muscle, Skeletal/physiopathology , Muscle, Skeletal/physiology , Range of Motion, Articular/physiology , Exercise Therapy/methods , Stroke/physiopathology , Robotics/methods , Biomechanical Phenomena/physiology , Adult
14.
J Neuroeng Rehabil ; 21(1): 69, 2024 May 09.
Article En | MEDLINE | ID: mdl-38725065

BACKGROUND: In the practical application of sarcopenia screening, there is a need for faster, time-saving, and community-friendly detection methods. The primary purpose of this study was to perform sarcopenia screening in community-dwelling older adults and investigate whether surface electromyogram (sEMG) from hand grip could potentially be used to detect sarcopenia using machine learning (ML) methods with reasonable features extracted from sEMG signals. The secondary aim was to provide the interpretability of the obtained ML models using a novel feature importance estimation method. METHODS: A total of 158 community-dwelling older residents (≥ 60 years old) were recruited. After screening through the diagnostic criteria of the Asian Working Group for Sarcopenia in 2019 (AWGS 2019) and data quality check, participants were assigned to the healthy group (n = 45) and the sarcopenic group (n = 48). sEMG signals from six forearm muscles were recorded during the hand grip task at 20% maximal voluntary contraction (MVC) and 50% MVC. After filtering recorded signals, nine representative features were extracted, including six time-domain features plus three time-frequency domain features. Then, a voting classifier ensembled by a support vector machine (SVM), a random forest (RF), and a gradient boosting machine (GBM) was implemented to classify healthy versus sarcopenic participants. Finally, the SHapley Additive exPlanations (SHAP) method was utilized to investigate feature importance during classification. RESULTS: Seven out of the nine features exhibited statistically significant differences between healthy and sarcopenic participants in both 20% and 50% MVC tests. Using these features, the voting classifier achieved 80% sensitivity and 73% accuracy through a five-fold cross-validation. Such performance was better than each of the SVM, RF, and GBM models alone. Lastly, SHAP results revealed that the wavelength (WL) and the kurtosis of continuous wavelet transform coefficients (CWT_kurtosis) had the highest feature impact scores. CONCLUSION: This study proposed a method for community-based sarcopenia screening using sEMG signals of forearm muscles. Using a voting classifier with nine representative features, the accuracy exceeds 70% and the sensitivity exceeds 75%, indicating moderate classification performance. Interpretable results obtained from the SHAP model suggest that motor unit (MU) activation mode may be a key factor affecting sarcopenia.


Electromyography , Hand Strength , Independent Living , Machine Learning , Sarcopenia , Humans , Sarcopenia/diagnosis , Sarcopenia/physiopathology , Electromyography/methods , Aged , Male , Female , Hand Strength/physiology , China , Middle Aged , Muscle, Skeletal/physiopathology , Support Vector Machine , Aged, 80 and over , East Asian People
15.
Support Care Cancer ; 32(6): 339, 2024 May 11.
Article En | MEDLINE | ID: mdl-38733544

PURPOSE: We aimed to investigate the relationship between pretreatment gynecologic cancer survival and the physical function of patients with myosteatosis. Understanding this relationship prior to treatment would help healthcare providers identify and refer patients with poor muscle quality to an exercise program prior to treatment. METHODS: We conducted a cross-sectional analysis of 73 GC patients. Physical function was quantified using handgrip strength and an adapted version of the Senior Fitness Test (aerobic endurance not included). The EORTC QLC-C30 was used to evaluate general health quality. Myosteatosis (values below the median muscle radiodensity), muscle mass, and adipose tissue variables were calculated from the computed tomography (CT) scan at the third lumbar vertebra using specific software. RESULTS: Seventy patients (50.9 ± 15.2) were included; 41.5% had stage III or IV disease, and 61.4% had cervical cancer. The myosteatosis group was 11.9 years older and showed reduced functioning compared to the normal-radiodensity group. Age and Timed Up and Go (TUG) test results were shown to be the most reliable predictors of muscle radiodensity in pretreatment gynecological patients according to multivariate regression analysis (R2 = 0.314). CONCLUSION: Gynecological healthcare professionals should be aware that prompt exercise programs might be especially beneficial for older patients with reduced TUG performance to preserve muscle function and quality.


Genital Neoplasms, Female , Humans , Female , Cross-Sectional Studies , Middle Aged , Aged , Adult , Hand Strength/physiology , Tomography, X-Ray Computed/methods , Quality of Life , Muscle, Skeletal/physiopathology
16.
Physiol Rep ; 12(9): e16042, 2024 May.
Article En | MEDLINE | ID: mdl-38705872

Myosteatosis, or the infiltration of fatty deposits into skeletal muscle, occurs with advancing age and contributes to the health and functional decline of older adults. Myosteatosis and its inflammatory milieu play a larger role in adipose tissue dysfunction, muscle tissue dysfunction, and increased passive muscle stiffness. Combined with the age-related decline of sex hormones and development of anabolic resistance, myosteatosis also contributes to insulin resistance, impaired muscle mechanics, loss of force production from the muscle, and increased risk of chronic disease. Due to its highly inflammatory secretome and the downstream negative effects on muscle metabolism and mechanics, myosteatosis has become an area of interest for aging researchers and clinicians. Thus far, myosteatosis treatments have had limited success, as many lack the potency to completely rescue the metabolic and physical consequences of myosteatosis. Future research is encouraged for the development of reliable assessment methods for myosteatosis, as well as the continued exploration of pharmacological, nutritional, and exercise-related interventions that may lead to the success in attenuating myosteatosis and its clinical consequences within the aging population.


Aging , Muscle, Skeletal , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Aging/physiology , Aged , Adipose Tissue/metabolism , Adipose Tissue/physiopathology
17.
Lupus Sci Med ; 11(1)2024 May 08.
Article En | MEDLINE | ID: mdl-38724183

OBJECTIVE: This study aimed to evaluate the prevalence of sarcopenia and its clinical significance in Turkish women with SLE, exploring the association between muscle mass, muscle strength and SLE disease activity. METHODS: A cross-sectional study was conducted at Gazi University Hospital's Department of Rheumatology from January to December 2020. It involved 82 patients with SLE, diagnosed according to the 2019 American College of Rheumatology/European Alliance of Associations for Rheumatology criteria, and 69 healthy controls. Sarcopenia was assessed using hand grip dynamometry (hand grip strength (HGS)) and bioelectrical impedance analysis for muscle mass, with sarcopenia defined according to the 2018 European Working Group on Sarcopenia in Older People criteria and specific cut-offs for the Turkish population. The main outcomes measured were the presence of sarcopenia and probable sarcopenia, HGS values, skeletal muscle mass index and SLE Disease Activity Index 2000 (SLEDAI-2K). RESULTS: Among the patients with SLE, 51.2% met the criteria for probable sarcopenia and 12.9% were diagnosed with sarcopenia. The mean HGS was significantly lower in the SLE group (21.7±4.9 kg) compared with controls, indicating reduced muscle strength. The prevalence of anti-double-stranded DNA (anti-dsDNA) antibodies was 82.9%. Multivariate regression analysis identified height and levels of anti-dsDNA antibodies as independent predictors for developing probable sarcopenia. No significant association was found between clinical parameters, including SLEDAI-2K scores, and sarcopenia status. CONCLUSIONS: Sarcopenia is prevalent among Turkish women with SLE, with a significant proportion showing reduced muscle strength. The study found no direct association between sarcopenia and SLE disease activity or clinical parameters. These findings underscore the importance of including muscle strength assessments in the routine clinical evaluation of patients with SLE to potentially improve management and quality of life.


Hand Strength , Lupus Erythematosus, Systemic , Muscle Strength , Sarcopenia , Humans , Sarcopenia/epidemiology , Sarcopenia/physiopathology , Sarcopenia/diagnosis , Female , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/epidemiology , Lupus Erythematosus, Systemic/physiopathology , Cross-Sectional Studies , Turkey/epidemiology , Adult , Middle Aged , Prevalence , Case-Control Studies , Antibodies, Antinuclear/blood , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Severity of Illness Index
18.
Eur J Med Res ; 29(1): 266, 2024 May 03.
Article En | MEDLINE | ID: mdl-38698469

BACKGROUND: Fatigue is a relatively prevalent condition among hemodialysis patients, resulting in diminished health-related quality of life and decreased survival rates. The purpose of this study was to investigate the relationship between fatigue and body composition in hemodialysis patients. METHODS: This cross-sectional study included 92 patients in total. Fatigue was measured by Functional Assessment of Chronic Illness Therapy - Fatigue (FACIT-F) (cut-off ≤ 34). Body composition was measured based on quantitative computed tomography (QCT), parameters including skeletal muscle index (SMI), intermuscular adipose tissue (IMAT), and bone mineral density (BMD). Handgrip strength was also collected. To explore the relationship between fatigue and body composition parameters, we conducted correlation analyses and binary logistic regression. RESULTS: The prevalence of fatigue was 37% (n = 34), abnormal bone density was 43.4% (n = 40). There was a positive correlation between handgrip strength and FACIT-F score (r = 0.448, p < 0.001). Age (r = - 0.411, p < 0.001), IMAT % (r = - 0.424, p < 0.001), negatively associated with FACIT-F score. Multivariate logistic regression analysis shows that older age, lower serum phosphorus, higher IMAT% are associated with a high risk of fatigue. CONCLUSION: The significantly increased incidence and degree of fatigue in hemodialysis patients is associated with more intermuscular adipose tissue in paraspinal muscle.


Body Composition , Fatigue , Muscle Strength , Renal Dialysis , Humans , Renal Dialysis/adverse effects , Male , Female , Middle Aged , Fatigue/physiopathology , Fatigue/etiology , Cross-Sectional Studies , Muscle Strength/physiology , Aged , Hand Strength/physiology , Bone Density , Adult , Muscle, Skeletal/physiopathology , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/physiopathology
19.
Nutrients ; 16(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38794734

BACKGROUND: Low muscle mass quantity/quality is needed to confirm sarcopenia diagnosis; however, no validated cut-off points exist. This study aimed to determine the diagnostic accuracy of sarcopenia through muscle mass quantity/quality parameters, using the bioimpedance analysis (BIA), isokinetic, and ultrasound tools in probable sarcopenic community-dwelling older adults (≥60 years). Also, it aimed to suggest possible new cut-off points to confirm sarcopenia diagnosis. METHODS: A cross-sectional exploratory analysis study was performed with probable sarcopenic and non-sarcopenic older adults. BIA, isokinetic, and ultrasound parameters were evaluated. The protocol was registered on ClinicalTrials.gov (NCT05485402). RESULTS: A total of 50 individuals were included, 38 with probable sarcopenia (69.63 ± 4.14 years; 7 men and 31 women) and 12 non-sarcopenic (67.58 ± 4.54 years; 7 men and 5 women). The phase angle (cut-off: 5.10° men, p = 0.003; 4.95° women, p < 0.001), peak torque (cut-off: 66.75 Newtons-meters (N-m) men, p < 0.001; 48.35 N-m women, p < 0.001), total work (cut-off: 64.00 Joules (J) men, p = 0.007; 54.70 J women, p = 0.001), and mean power (cut-off: 87.8 Watts (W) men, p = 0.003; 48.95 W women, p = 0.008) in leg extension, as well as the the forearm muscle thickness (cut-off: 1.41 cm (cm) men, p = 0.017; 0.94 cm women, p = 0.041), had great diagnostic accuracy in both sexes. CONCLUSIONS: The phase angle, peak torque, total work, and mean power in leg extension, as well as forearm muscle thickness, had great diagnostic accuracy in regard to sarcopenia, and the suggested cut-off points could lead to the confirmation of sarcopenia diagnosis, but more studies are needed to confirm this.


Electric Impedance , Muscle Strength , Muscle, Skeletal , Sarcopenia , Ultrasonography , Humans , Sarcopenia/diagnosis , Male , Aged , Female , Cross-Sectional Studies , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiopathology , Ultrasonography/methods , Geriatric Assessment/methods , Middle Aged , Body Composition , Independent Living
20.
Tunis Med ; 102(5): 296-302, 2024 May 05.
Article Fr | MEDLINE | ID: mdl-38801288

INTRODUCTION: Chronic low back pain is a public health problem in view of its functional repercussions and the functional rehabilitation is an integral part of its management. AIM: To compare the evolution of muscle strentgh of spinal extensors and flexors in chronic low back pain patients after an isokinetic rehabilitation protocol and a conventional rehabilitation one. METHOD: This was a prospective and comparative study carried out in the Physical Medicine Department of the Tunis Military Hospital over a period of 7 months. Fifty patients were included, randomly divided into two groups of 25. The first group (G1) benefited from an isokinetic rehabilitation protocol and the second one (G2) from a classic active physiotherapy. We performed a clinical (Sorensen test and Shirado test) and isokinetic evaluation of the trunk muscles before and after rehabilitation. RESULTS: The mean age of the general population was 42±8.6 years old. Clinical evaluation showed a deficit in the extensor and flexor muscles of the spine, more important in the extensors in both groups. After rehabilitation, there was a significant improvement in clinical tests of muscular endurance in G1 and G2. Isokinetic assessment showed a greater muscle deficit in the extensors in both groups. After isokinetic rehabilitation, peak torque for flexors and extensors increased by 21% and 23% respectively, power was 34% and 37% higher, and total work increased by 26% and 47%. On the other hand, the (F/E) ratios were unchanged for all three speeds. In Group 2, peak torque values for flexors and extensors increased by 22 and 15% respectively, power was higher by 31 and 23% and total work was also up by 29 and 17%, while F/E ratios were also unchanged. Group 1 showed the greatest improvement in extensor strength at 60°/s, and in power at 90°/s for the various muscles. CONCLUSION: In our study, we concluded that endurance and muscular strength improved the most after isokinetic rehabilitation.


Low Back Pain , Muscle Strength , Humans , Low Back Pain/rehabilitation , Low Back Pain/physiopathology , Muscle Strength/physiology , Adult , Male , Female , Middle Aged , Prospective Studies , Chronic Pain/rehabilitation , Chronic Pain/physiopathology , Physical Therapy Modalities , Muscle, Skeletal/physiopathology , Muscle, Skeletal/physiology , Exercise Therapy/methods , Treatment Outcome , Tunisia
...