Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 372
Filter
Add more filters











Publication year range
1.
Cells ; 13(16)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39195231

ABSTRACT

The proper functioning of neural circuits that integrate sensory signals is essential for individual adaptation to an ever-changing environment. Many molecules can modulate neuronal activity, including neurotransmitters, receptors, and even amino acids. Here, we ask whether amino acid transporters expressed by neurons can influence neuronal activity. We found that minidiscs (mnd), which encodes a light chain of a heterodimeric amino acid transporter, is expressed in different cell types of the adult Drosophila brain: in mushroom body neurons (MBs) and in glial cells. Using live calcium imaging, we found that MND expressed in α/ß MB neurons is essential for sensitivity to the L-amino acids: Leu, Ile, Asp, Glu, Lys, Thr, and Arg. We found that the Target Of Rapamycin (TOR) pathway but not the Glutamate Dehydrogenase (GDH) pathway is involved in the Leucine-dependent response of α/ß MB neurons. This study strongly supports the key role of MND in regulating MB activity in response to amino acids.


Subject(s)
Amino Acid Transport Systems , Drosophila Proteins , Drosophila melanogaster , Mushroom Bodies , Neurons , Animals , Amino Acid Transport Systems/metabolism , Amino Acid Transport Systems/genetics , Amino Acids/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Mushroom Bodies/metabolism , Neurons/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
2.
Elife ; 132024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052321

ABSTRACT

Axon projection is a spatial- and temporal-specific process in which the growth cone receives environmental signals guiding axons to their final destination. However, the mechanisms underlying changes in axonal projection direction without well-defined landmarks remain elusive. Here, we present evidence showcasing the dynamic nature of axonal projections in Drosophila's small ventral lateral clock neurons (s-LNvs). Our findings reveal that these axons undergo an initial vertical projection in the early larval stage, followed by a subsequent transition to a horizontal projection in the early-to-mid third instar larvae. The vertical projection of s-LNv axons correlates with mushroom body calyx expansion, while the s-LNv-expressed Down syndrome cell adhesion molecule (Dscam1) interacts with Netrins to regulate the horizontal projection. During a specific temporal window, locally newborn dorsal clock neurons secrete Netrins, facilitating the transition of axonal projection direction in s-LNvs. Our study establishes a compelling in vivo model to probe the mechanisms of axonal projection direction switching in the absence of clear landmarks. These findings underscore the significance of dynamic local microenvironments in the complementary regulation of axonal projection direction transitions.


Subject(s)
Axons , Drosophila Proteins , Drosophila melanogaster , Neurons , Signal Transduction , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Axons/metabolism , Axons/physiology , Neurons/metabolism , Neurons/physiology , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Netrins/metabolism , Netrins/genetics , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Larva/metabolism , Mushroom Bodies/metabolism
3.
Brain Behav Evol ; 99(3): 171-183, 2024.
Article in English | MEDLINE | ID: mdl-38857586

ABSTRACT

INTRODUCTION: Social experience early in life appears to be necessary for the development of species-typical behavior. Although isolation during critical periods of maturation has been shown to impact behavior by altering gene expression and brain development in invertebrates and vertebrates, workers of some ant species appear resilient to social deprivation and other neurobiological challenges that occur during senescence or due to loss of sensory input. It is unclear if and to what degree neuroanatomy, neurochemistry, and behavior will show deficiencies if social experience in the early adult life of worker ants is compromised. METHODS: We reared newly eclosed adult workers of Camponotus floridanus under conditions of social isolation for 2-53 days, quantified brain compartment volumes, recorded biogenic amine levels in individual brains, and evaluated movement and behavioral performance to compare the neuroanatomy, neurochemistry, brood-care behavior, and foraging (predatory behavior) of isolated workers with that of workers experiencing natural social contact after adult eclosion. RESULTS: We found that the volume of the antennal lobe, which processes olfactory inputs, was significantly reduced in workers isolated for an average of 40 days, whereas the size of the mushroom bodies, centers of higher-order sensory processing, increased after eclosion and was not significantly different from controls. Titers of the neuromodulators serotonin, dopamine, and octopamine remained stable and were not significantly different in isolation treatments and controls. Brood care, predation, and overall movement were reduced in workers lacking social contact early in life. CONCLUSION: These results suggest that the behavioral development of isolated workers of C. floridanus is specifically impacted by a reduction in the size of the antennal lobe. Task performance and locomotor ability therefore appear to be sensitive to a loss of social contact through a reduction of olfactory processing ability rather than change in the size of the mushroom bodies, which serve important functions in learning and memory, or the central complex, which controls movement.


Subject(s)
Ants , Brain , Social Isolation , Animals , Ants/physiology , Ants/anatomy & histology , Brain/metabolism , Brain/anatomy & histology , Social Behavior , Behavior, Animal/physiology , Mushroom Bodies/metabolism , Mushroom Bodies/anatomy & histology , Biogenic Amines/metabolism , Dopamine/metabolism
4.
PLoS One ; 19(6): e0304563, 2024.
Article in English | MEDLINE | ID: mdl-38865313

ABSTRACT

Learning an olfactory discrimination task leads to heterogeneous results in honeybees with some bees performing very well and others at low rates. Here we investigated this behavioral heterogeneity and asked whether it was associated with particular gene expression patterns in the bee's brain. Bees were individually conditioned using a sequential conditioning protocol involving several phases of olfactory learning and retention tests. A cumulative score was used to differentiate the tested bees into high and low performers. The rate of CS+ odor learning was found to correlate most strongly with a cumulative performance score extracted from all learning and retention tests. Microarray analysis of gene expression in the mushroom body area of the brains of these bees identified a number of differentially expressed genes between high and low performers. These genes are associated with diverse biological functions, such as neurotransmission, memory formation, cargo trafficking and development.


Subject(s)
Behavior, Animal , Learning , Animals , Bees/genetics , Bees/physiology , Behavior, Animal/physiology , Learning/physiology , Mushroom Bodies/physiology , Mushroom Bodies/metabolism , Brain/physiology , Brain/metabolism , Smell/genetics , Smell/physiology , Odorants , Gene Expression Profiling , Conditioning, Classical/physiology
5.
Learn Mem ; 31(5)2024 May.
Article in English | MEDLINE | ID: mdl-38862167

ABSTRACT

Providing metabolic support to neurons is now recognized as a major function of glial cells that is conserved from invertebrates to vertebrates. However, research in this field has focused for more than two decades on the relevance of lactate and glial glycolysis for neuronal energy metabolism, while overlooking many other facets of glial metabolism and their impact on neuronal physiology, circuit activity, and behavior. Here, we review recent work that has unveiled new features of glial metabolism, especially in Drosophila, in the modulation of behavioral traits involving the mushroom bodies (MBs). These recent findings reveal that spatially and biochemically distinct modes of glucose-derived neuronal fueling are implemented within the MB in a memory type-specific manner. In addition, cortex glia are endowed with several antioxidant functions, whereas astrocytes can serve as pro-oxidant agents that are beneficial to redox signaling underlying long-term memory. Finally, glial fatty acid oxidation seems to play a dual fail-safe role: first, as a mode of energy production upon glucose shortage, and, second, as a factor underlying the clearance of excessive oxidative load during sleep. Altogether, these integrated studies performed in Drosophila indicate that glial metabolism has a deterministic role on behavior.


Subject(s)
Behavior, Animal , Mushroom Bodies , Neuroglia , Animals , Mushroom Bodies/metabolism , Mushroom Bodies/physiology , Neuroglia/metabolism , Neuroglia/physiology , Behavior, Animal/physiology , Drosophila , Energy Metabolism/physiology
6.
Learn Mem ; 31(5)2024 May.
Article in English | MEDLINE | ID: mdl-38862171

ABSTRACT

Across animal species, dopamine-operated memory systems comprise anatomically segregated, functionally diverse subsystems. Although individual subsystems could operate independently to support distinct types of memory, the logical interplay between subsystems is expected to enable more complex memory processing by allowing existing memory to influence future learning. Recent comprehensive ultrastructural analysis of the Drosophila mushroom body revealed intricate networks interconnecting the dopamine subsystems-the mushroom body compartments. Here, we review the functions of some of these connections that are beginning to be understood. Memory consolidation is mediated by two different forms of network: A recurrent feedback loop within a compartment maintains sustained dopamine activity required for consolidation, whereas feed-forward connections across compartments allow short-term memory formation in one compartment to open the gate for long-term memory formation in another compartment. Extinction and reversal of aversive memory rely on a similar feed-forward circuit motif that signals omission of punishment as a reward, which triggers plasticity that counteracts the original aversive memory trace. Finally, indirect feed-forward connections from a long-term memory compartment to short-term memory compartments mediate higher-order conditioning. Collectively, these emerging studies indicate that feedback control and hierarchical connectivity allow the dopamine subsystems to work cooperatively to support diverse and complex forms of learning.


Subject(s)
Dopamine , Mushroom Bodies , Animals , Dopamine/metabolism , Dopamine/physiology , Mushroom Bodies/physiology , Mushroom Bodies/metabolism , Drosophila/physiology , Feedback, Physiological/physiology , Memory Consolidation/physiology , Nerve Net/physiology , Nerve Net/metabolism , Dopaminergic Neurons/physiology , Dopaminergic Neurons/metabolism , Neural Pathways/physiology
7.
Learn Mem ; 31(5)2024 May.
Article in English | MEDLINE | ID: mdl-38862173

ABSTRACT

The intricate molecular and structural sequences guiding the formation and consolidation of memories within neuronal circuits remain largely elusive. In this study, we investigate the roles of two pivotal presynaptic regulators, the small GTPase Rab3, enriched at synaptic vesicles, and the cell adhesion protein Neurexin-1, in the formation of distinct memory phases within the Drosophila mushroom body Kenyon cells. Our findings suggest that both proteins play crucial roles in memory-supporting processes within the presynaptic terminal, operating within distinct plasticity modules. These modules likely encompass remodeling and maturation of existing active zones (AZs), as well as the formation of new AZs.


Subject(s)
Drosophila Proteins , Memory , Mushroom Bodies , Presynaptic Terminals , rab3 GTP-Binding Proteins , Animals , Mushroom Bodies/physiology , Mushroom Bodies/metabolism , Presynaptic Terminals/physiology , Presynaptic Terminals/metabolism , Drosophila Proteins/metabolism , Memory/physiology , rab3 GTP-Binding Proteins/metabolism , rab3 GTP-Binding Proteins/genetics , Nerve Tissue Proteins/metabolism , Drosophila , Synaptic Vesicles/metabolism , Synaptic Vesicles/physiology
8.
Learn Mem ; 31(5)2024 May.
Article in English | MEDLINE | ID: mdl-38862177

ABSTRACT

Associative learning enables the adaptive adjustment of behavioral decisions based on acquired, predicted outcomes. The valence of what is learned is influenced not only by the learned stimuli and their temporal relations, but also by prior experiences and internal states. In this study, we used the fruit fly Drosophila melanogaster to demonstrate that neuronal circuits involved in associative olfactory learning undergo restructuring during extended periods of low-caloric food intake. Specifically, we observed a decrease in the connections between specific dopaminergic neurons (DANs) and Kenyon cells at distinct compartments of the mushroom body. This structural synaptic plasticity was contingent upon the presence of allatostatin A receptors in specific DANs and could be mimicked optogenetically by expressing a light-activated adenylate cyclase in exactly these DANs. Importantly, we found that this rearrangement in synaptic connections influenced aversive, punishment-induced olfactory learning but did not impact appetitive, reward-based learning. Whether induced by prolonged low-caloric conditions or optogenetic manipulation of cAMP levels, this synaptic rearrangement resulted in a reduction of aversive associative learning. Consequently, the balance between positive and negative reinforcing signals shifted, diminishing the ability to learn to avoid odor cues signaling negative outcomes. These results exemplify how a neuronal circuit required for learning and memory undergoes structural plasticity dependent on prior experiences of the nutritional value of food.


Subject(s)
Drosophila melanogaster , Mushroom Bodies , Neuronal Plasticity , Animals , Mushroom Bodies/physiology , Mushroom Bodies/metabolism , Drosophila melanogaster/physiology , Neuronal Plasticity/physiology , Dopaminergic Neurons/physiology , Dopaminergic Neurons/metabolism , Eating/physiology , Optogenetics , Association Learning/physiology , Smell/physiology , Olfactory Perception/physiology , Reward , Animals, Genetically Modified
9.
Biol Open ; 13(7)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38912559

ABSTRACT

Changes in mitochondrial distribution are a feature of numerous age-related neurodegenerative diseases. In Drosophila, reducing the activity of Cdk5 causes a neurodegenerative phenotype and is known to affect several mitochondrial properties. Therefore, we investigated whether alterations of mitochondrial distribution are involved in Cdk5-associated neurodegeneration. We find that reducing Cdk5 activity does not alter the balance of mitochondrial localization to the somatodendritic versus axonal neuronal compartments of the mushroom body, the learning and memory center of the Drosophila brain. We do, however, observe changes in mitochondrial distribution at the axon initial segment (AIS), a neuronal compartment located in the proximal axon involved in neuronal polarization and action potential initiation. Specifically, we observe that mitochondria are partially excluded from the AIS in wild-type neurons, but that this exclusion is lost upon reduction of Cdk5 activity, concomitant with the shrinkage of the AIS domain that is known to occur in this condition. This mitochondrial redistribution into the AIS is not likely due to the shortening of the AIS domain itself but rather due to altered Cdk5 activity. Furthermore, mitochondrial redistribution into the AIS is unlikely to be an early driver of neurodegeneration in the context of reduced Cdk5 activity.


Subject(s)
Axons , Cyclin-Dependent Kinase 5 , Mitochondria , Animals , Mitochondria/metabolism , Cyclin-Dependent Kinase 5/metabolism , Cyclin-Dependent Kinase 5/genetics , Axons/metabolism , Drosophila , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Disease Models, Animal , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Axon Initial Segment/metabolism , Mushroom Bodies/metabolism , Nerve Degeneration , Neurons/metabolism , Drosophila melanogaster/metabolism
10.
J Neurosci ; 44(33)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38937100

ABSTRACT

To visualize the cellular and subcellular localization of neuromodulatory G-protein-coupled receptors in Drosophila, we implement a molecular strategy recently used to add epitope tags to ionotropic receptors at their endogenous loci. Leveraging evolutionary conservation to identify sites more likely to permit insertion of a tag, we generated constitutive and conditional tagged alleles for Drosophila 5-HT1A, 5-HT2A, 5-HT2B, Oct ß 1R, Oct ß 2R, two isoforms of OAMB, and mGluR The conditional alleles allow for the restricted expression of tagged receptor in specific cell types, an option not available for any previous reagents to label these proteins. We show expression patterns for these receptors in female brains and that 5-HT1A and 5-HT2B localize to the mushroom bodies (MBs) and central complex, respectively, as predicted by their roles in sleep. By contrast, the unexpected enrichment of Octß1R in the central complex and of 5-HT1A and 5-HT2A to nerve terminals in lobular columnar cells in the visual system suggest new hypotheses about their functions at these sites. Using an additional tagged allele of the serotonin transporter, a marker of serotonergic tracts, we demonstrate diverse spatial relationships between postsynaptic 5-HT receptors and presynaptic 5-HT neurons, consistent with the importance of both synaptic and volume transmission. Finally, we use the conditional allele of 5-HT1A to show that it localizes to distinct sites within the MBs as both a postsynaptic receptor in Kenyon cells and a presynaptic autoreceptor.


Subject(s)
Drosophila Proteins , Drosophila , Epitopes , Mushroom Bodies , Receptors, G-Protein-Coupled , Animals , Female , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Mushroom Bodies/metabolism , Animals, Genetically Modified , Brain/metabolism
11.
J Neurosci ; 44(24)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38749704

ABSTRACT

General anesthetics disrupt brain network dynamics through multiple pathways, in part through postsynaptic potentiation of inhibitory ion channels as well as presynaptic inhibition of neuroexocytosis. Common clinical general anesthetic drugs, such as propofol and isoflurane, have been shown to interact and interfere with core components of the exocytic release machinery to cause impaired neurotransmitter release. Recent studies however suggest that these drugs do not affect all synapse subtypes equally. We investigated the role of the presynaptic release machinery in multiple neurotransmitter systems under isoflurane general anesthesia in the adult female Drosophila brain using live-cell super-resolution microscopy and optogenetic readouts of exocytosis and neural excitability. We activated neurotransmitter-specific mushroom body output neurons and imaged presynaptic function under isoflurane anesthesia. We found that isoflurane impaired synaptic release and presynaptic protein dynamics in excitatory cholinergic synapses. In contrast, isoflurane had little to no effect on inhibitory GABAergic or glutamatergic synapses. These results present a distinct inhibitory mechanism for general anesthesia, whereby neuroexocytosis is selectively impaired at excitatory synapses, while inhibitory synapses remain functional. This suggests a presynaptic inhibitory mechanism that complements the other inhibitory effects of these drugs.


Subject(s)
Brain , Drosophila Proteins , Isoflurane , SNARE Proteins , Synapses , Animals , Synapses/drug effects , Synapses/metabolism , Synapses/physiology , Female , SNARE Proteins/metabolism , Isoflurane/pharmacology , Brain/metabolism , Brain/drug effects , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila , Anesthetics, Inhalation/pharmacology , Synaptic Transmission/physiology , Synaptic Transmission/drug effects , Mushroom Bodies/drug effects , Mushroom Bodies/metabolism , Mushroom Bodies/physiology
12.
Biochem Biophys Res Commun ; 720: 150072, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38749187

ABSTRACT

The Eph receptor, a prototypically large receptor protein tyrosine kinase, interacts with ephrin ligands, forming a bidirectional signaling system that impacts diverse brain functions. Eph receptors and ephrins mediate forward and reverse signaling, affecting neurogenesis, axon guidance, and synaptic signaling. While mammalian studies have emphasized their roles in neurogenesis and synaptic plasticity, the Drosophila counterparts are less studied, especially in glial cells, despite structural similarities. Using RNAi to modulate Eph/ephrin expression in Drosophila neurons and glia, we studied their roles in brain development and sleep and circadian behavior. Knockdown of neuronal ephrin disrupted mushroom body development, while glial knockdown had minimal impact. Surprisingly, disrupting ephrin in neurons or glial cells altered sleep and circadian rhythms, indicating a direct involvement in these behaviors independent from developmental effects. Further analysis revealed distinct sleep phenotypes between neuronal and glial knockdowns, underscoring the intricate interplay within the neural circuits that govern behavior. Glia-specific knockdowns showed altered sleep patterns and reduced circadian rhythmicity, suggesting an intricate role of glia in sleep regulation. Our findings challenge simplistic models of Eph/ephrin signaling limited to neuron-glia communication and emphasize the complexity of the regulatory networks modulating behavior. Future investigations targeting specific glial subtypes will enhance our understanding of Eph/ephrin signaling's role in sleep regulation across species.


Subject(s)
Circadian Rhythm , Ephrins , Mushroom Bodies , Neuroglia , Neurons , Signal Transduction , Sleep , Animals , Neuroglia/metabolism , Sleep/physiology , Sleep/genetics , Circadian Rhythm/physiology , Neurons/metabolism , Ephrins/metabolism , Ephrins/genetics , Mushroom Bodies/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Receptors, Eph Family/metabolism , Receptors, Eph Family/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/physiology , Drosophila melanogaster/genetics , Drosophila/metabolism
13.
Curr Biol ; 34(9): 1904-1917.e6, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38642548

ABSTRACT

Neurons have differential and fluctuating energy needs across distinct cellular compartments, shaped by brain electrochemical activity associated with cognition. In vitro studies show that mitochondria transport from soma to axons is key to maintaining neuronal energy homeostasis. Nevertheless, whether the spatial distribution of neuronal mitochondria is dynamically adjusted in vivo in an experience-dependent manner remains unknown. In Drosophila, associative long-term memory (LTM) formation is initiated by an early and persistent upregulation of mitochondrial pyruvate flux in the axonal compartment of neurons in the mushroom body (MB). Through behavior experiments, super-resolution analysis of mitochondria morphology in the neuronal soma and in vivo mitochondrial fluorescence recovery after photobleaching (FRAP) measurements in the axons, we show that LTM induction, contrary to shorter-lived memories, is sustained by the departure of some mitochondria from MB neuronal soma and increased mitochondrial dynamics in the axonal compartment. Accordingly, impairing mitochondrial dynamics abolished the increased pyruvate consumption, specifically after spaced training and in the MB axonal compartment, thereby preventing LTM formation. Our results thus promote reorganization of the mitochondrial network in neurons as an integral step in elaborating high-order cognitive processes.


Subject(s)
Memory, Long-Term , Mitochondrial Dynamics , Mushroom Bodies , Animals , Axons/metabolism , Axons/physiology , Drosophila melanogaster/physiology , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Memory, Long-Term/physiology , Mitochondria/metabolism , Mitochondria/physiology , Mitochondrial Dynamics/physiology , Mushroom Bodies/physiology , Mushroom Bodies/metabolism , Neurons/metabolism , Neurons/physiology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism
14.
Biochemistry (Mosc) ; 89(3): 393-406, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38648760

ABSTRACT

Courtship suppression is a behavioral adaptation of the fruit fly. When majority of the females in a fly population are fertilized and non-receptive for mating, a male, after a series of failed attempts, decreases its courtship activity towards all females, saving its energy and reproductive resources. The time of courtship decrease depends on both duration of unsuccessful courtship and genetically determined features of the male nervous system. Thereby, courtship suppression paradigm can be used for studying molecular mechanisms of learning and memory. p-Cofilin, a component of the actin remodeling signaling cascade and product of LIM-kinase 1 (LIMK1), regulates Drosophila melanogaster forgetting in olfactory learning paradigm. Previously, we have shown that limk1 suppression in the specific types of nervous cells differently affects fly courtship memory. Here, we used Gal4 > UAS system to induce limk1 overexpression in the same types of neurons. limk1 activation in the mushroom body, glia, and fruitless neurons decreased learning index compared to the control strain or the strain with limk1 knockdown. In cholinergic and dopaminergic/serotoninergic neurons, both overexpression and knockdown of limk1 impaired Drosophila short-term memory. Thus, proper balance of the limk1 activity is crucial for normal cognitive activity of the fruit fly.


Subject(s)
Courtship , Drosophila Proteins , Drosophila melanogaster , Lim Kinases , Memory , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Male , Lim Kinases/metabolism , Lim Kinases/genetics , Female , Mushroom Bodies/metabolism , Mushroom Bodies/physiology , Sexual Behavior, Animal
15.
PLoS Biol ; 22(4): e3002585, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38648719

ABSTRACT

Orb2 the Drosophila homolog of cytoplasmic polyadenylation element binding (CPEB) protein forms prion-like oligomers. These oligomers consist of Orb2A and Orb2B isoforms and their formation is dependent on the oligomerization of the Orb2A isoform. Drosophila with a mutation diminishing Orb2A's prion-like oligomerization forms long-term memory but fails to maintain it over time. Since this prion-like oligomerization of Orb2A plays a crucial role in the maintenance of memory, here, we aim to find what regulates this oligomerization. In an immunoprecipitation-based screen, we identify interactors of Orb2A in the Hsp40 and Hsp70 families of proteins. Among these, we find an Hsp40 family protein Mrj as a regulator of the conversion of Orb2A to its prion-like form. Mrj interacts with Hsp70 proteins and acts as a chaperone by interfering with the aggregation of pathogenic Huntingtin. Unlike its mammalian homolog, we find Drosophila Mrj is neither an essential gene nor causes any gross neurodevelopmental defect. We observe a loss of Mrj results in a reduction in Orb2 oligomers. Further, Mrj knockout exhibits a deficit in long-term memory and our observations suggest Mrj is needed in mushroom body neurons for the regulation of long-term memory. Our work implicates a chaperone Mrj in mechanisms of memory regulation through controlling the oligomerization of Orb2A and its association with the translating ribosomes.


Subject(s)
Drosophila Proteins , HSP40 Heat-Shock Proteins , Memory, Long-Term , Animals , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Memory, Long-Term/physiology , mRNA Cleavage and Polyadenylation Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , Mushroom Bodies/metabolism , Protein Multimerization , Transcription Factors/metabolism , Transcription Factors/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism
16.
Neurotoxicol Teratol ; 102: 107331, 2024.
Article in English | MEDLINE | ID: mdl-38301979

ABSTRACT

Bisphenol F (BPF) is a potential neurotoxicant used as a replacement for bisphenol A (BPA) in polycarbonate plastics and epoxy resins. We investigated the neurodevelopmental impacts of BPF exposure using Drosophila melanogaster as a model. Our transcriptomic analysis indicated that developmental exposure to BPF caused the downregulation of neurodevelopmentally relevant genes, including those associated with synapse formation and neuronal projection. To investigate the functional outcome of BPF exposure, we evaluated neurodevelopmental impacts across two genetic strains of Drosophila- w1118 (control) and the Fragile X Syndrome (FXS) model-by examining both behavioral and neuronal phenotypes. We found that BPF exposure in w1118 Drosophila caused hypoactive larval locomotor activity, decreased time spent grooming by adults, reduced courtship activity, and increased the severity but not frequency of ß-lobe midline crossing defects by axons in the mushroom body. In contrast, although BPF reduced peristaltic contractions in FXS larvae, it had no impact on other larval locomotor phenotypes, grooming activity, or courtship activity. Strikingly, BPF exposure reduced both the severity and frequency of ß-lobe midline crossing defects in the mushroom body of FXS flies, a phenotype previously observed in FXS flies exposed to BPA. This data indicates that BPF can affect neurodevelopment and its impacts vary depending on genetic background. Further, BPF may elicit a gene-environment interaction with Drosophila fragile X messenger ribonucleoprotein 1 (dFmr1)-the ortholog of human FMR1, which causes fragile X syndrome and is the most common monogenetic cause of intellectual disability and autism spectrum disorder.


Subject(s)
Autism Spectrum Disorder , Drosophila Proteins , Fragile X Syndrome , Phenols , Animals , Humans , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Fragile X Syndrome/chemically induced , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Autism Spectrum Disorder/metabolism , Mushroom Bodies/metabolism , Disease Models, Animal , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Drosophila , Benzhydryl Compounds/toxicity , Gene Expression
17.
Biochem Biophys Res Commun ; 682: 77-84, 2023 11 19.
Article in English | MEDLINE | ID: mdl-37804590

ABSTRACT

A LIM homeodomain transcription factor Apterous (Ap) regulates embryonic and larval neurodevelopment in Drosophila. Although Ap is still expressed in the adult brain, it remains elusive whether Ap is involved in neurodevelopmental events in the adult brain because flies homozygous for ap mutations are usually lethal before they reach the adult stage. In this study, using adult escapers of ap knockout (KO) homozygotes, we examined whether the complete lack of ap expression affects the morphology of the mushroom body (MB) neurons and Pigment-dispersing factor (Pdf)-positive clock neurons in the adult brain. Although ap KO escapers showed severe structural defects of MB neurons, no clear morphological defects were found in Pdf-positive clock neurons. These results suggest that Ap in the adult brain is essential for the neurodevelopment of specific ap-positive neurons, but it is not necessarily involved in the development of all ap-positive neurons.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Homeodomain Proteins/metabolism , LIM-Homeodomain Proteins , Mushroom Bodies/metabolism
18.
J Neurosci ; 43(49): 8294-8305, 2023 12 06.
Article in English | MEDLINE | ID: mdl-37429719

ABSTRACT

Dopamine neurons (DANs) are extensively studied in the context of associative learning, in both vertebrates and invertebrates. In the acquisition of male and female Drosophila olfactory memory, the PAM cluster of DANs provides the reward signal, and the PPL1 cluster of DANs sends the punishment signal to the Kenyon cells (KCs) of mushroom bodies, the center for memory formation. However, thermo-genetical activation of the PPL1 DANs after memory acquisition impaired aversive memory, and that of the PAM DANs impaired appetitive memory. We demonstrate that the knockdown of glutamate decarboxylase, which catalyzes glutamate conversion to GABA in PAM DANs, potentiated the appetitive memory. In addition, the knockdown of glutamate transporter in PPL1 DANs potentiated aversive memory, suggesting that GABA and glutamate co-transmitters act in an inhibitory manner in olfactory memory formation. We also found that, in γKCs, the Rdl receptor for GABA and the mGluR DmGluRA mediate the inhibition. Although multiple-spaced training is required to form long-term aversive memory, a single cycle of training was sufficient to develop long-term memory when the glutamate transporter was knocked down, in even a single subset of PPL1 DANs. Our results suggest that the mGluR signaling pathway may set a threshold for memory acquisition to allow the organisms' behaviors to adapt to changing physiological conditions and environments.SIGNIFICANCE STATEMENT In the acquisition of olfactory memory in Drosophila, the PAM cluster of dopamine neurons (DANs) mediates the reward signal, while the PPL1 cluster of DANs conveys the punishment signal to the Kenyon cells of the mushroom bodies, which serve as the center for memory formation. We found that GABA co-transmitters in the PAM DANs and glutamate co-transmitters in the PPL1 DANs inhibit olfactory memory formation. Our findings demonstrate that long-term memory acquisition, which typically necessitates multiple-spaced training sessions to establish aversive memory, can be triggered with a single training cycle in cases where the glutamate co-transmission is inhibited, even within a single subset of PPL1 DANs, suggesting that the glutamate co-transmission may modulate the threshold for memory acquisition.


Subject(s)
Drosophila , Smell , Animals , Female , Male , Drosophila/physiology , Smell/physiology , Dopamine/metabolism , Dopaminergic Neurons/physiology , Penicillins/metabolism , Glutamates , Amino Acid Transport System X-AG/metabolism , gamma-Aminobutyric Acid/metabolism , Mushroom Bodies/metabolism , Drosophila melanogaster/metabolism
19.
PLoS Genet ; 19(6): e1010802, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37307281

ABSTRACT

The formation of long-term memories requires changes in the transcriptional program and de novo protein synthesis. One of the critical regulators for long-term memory (LTM) formation and maintenance is the transcription factor CREB. Genetic studies have dissected the requirement of CREB activity within memory circuits, however less is known about the genetic mechanisms acting downstream of CREB and how they may contribute defining LTM phases. To better understand the downstream mechanisms, we here used a targeted DamID approach (TaDa). We generated a CREB-Dam fusion protein using the fruit fly Drosophila melanogaster as model. Expressing CREB-Dam in the mushroom bodies (MBs), a brain center implicated in olfactory memory formation, we identified genes that are differentially expressed between paired and unpaired appetitive training paradigm. Of those genes we selected candidates for an RNAi screen in which we identified genes causing increased or decreased LTM.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Mushroom Bodies/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Neurons/metabolism , Drosophila/metabolism
20.
Mol Brain ; 16(1): 42, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37194019

ABSTRACT

Dysregulation of HDAC4 expression and/or nucleocytoplasmic shuttling results in impaired neuronal morphogenesis and long-term memory in Drosophila melanogaster. A recent genetic screen for genes that interact in the same molecular pathway as HDAC4 identified the cytoskeletal adapter Ankyrin2 (Ank2). Here we sought to investigate the role of Ank2 in neuronal morphogenesis, learning and memory. We found that Ank2 is expressed widely throughout the Drosophila brain where it localizes predominantly to axon tracts. Pan-neuronal knockdown of Ank2 in the mushroom body, a region critical for memory formation, resulted in defects in axon morphogenesis. Similarly, reduction of Ank2 in lobular plate tangential neurons of the optic lobe disrupted dendritic branching and arborization. Conditional knockdown of Ank2 in the mushroom body of adult Drosophila significantly impaired long-term memory (LTM) of courtship suppression, and its expression was essential in the γ neurons of the mushroom body for normal LTM. In summary, we provide the first characterization of the expression pattern of Ank2 in the adult Drosophila brain and demonstrate that Ank2 is critical for morphogenesis of the mushroom body and for the molecular processes required in the adult brain for the formation of long-term memories.


Subject(s)
Ankyrins , Drosophila Proteins , Drosophila melanogaster , Animals , Ankyrins/metabolism , Courtship , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Memory, Long-Term/physiology , Morphogenesis , Mushroom Bodies/metabolism , Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL