Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
Sci Rep ; 14(1): 12705, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38831025

ABSTRACT

Fifty-nine diverse Brassica juncea (Indian mustard) genotypes were used to find an effective screening method to identify salt tolerance at the germination and seedling stages. Salinity stress limits crop productivity and is difficult to simulate on farms, hindering parental selection for hybridization programmes and the development of tolerant cultivars. To estimate an optimum salt concentration for screening, seeds of 15 genotypes were selected randomly and grown in vitro at 0 mM/L, 75 mM/L, 150 mM/L, 225 mM/L, and 300 mM/L concentrations of NaCl in 2 replications in a complete randomized design. Various morphological parameters, viz., length of seedling, root and shoot length, fresh weight, and dry weight, were observed to determine a single concentration using the Salt Injury Index. Then, this optimum concentration (225 mM/L) was used to assess the salt tolerance of all the 59 genotypes in 4 replications while observing the same morphological parameters. With the help of Mean Membership Function Value evaluation criteria, the genotypes were categorized into 5 grades: 4 highly salt-tolerant (HST), 6 salt-tolerant (ST), 19 moderately salt-tolerant (MST), 21 salt-sensitive (SS), and 9 highly salt-sensitive (HSS). Seedling fresh weight (SFW) at 225 mM/L was found to be an ideal trait, which demonstrates the extent to which B. juncea genotypes respond to saline conditions. This is the first report that establishes a highly efficient and reliable method for evaluating the salinity tolerance of Indian mustard at the seedling stage and will facilitate breeders in the development of salt-tolerant cultivars.


Subject(s)
Genotype , Mustard Plant , Salt Stress , Salt Tolerance , Seedlings , Mustard Plant/genetics , Mustard Plant/growth & development , Mustard Plant/drug effects , Mustard Plant/physiology , Seedlings/growth & development , Seedlings/drug effects , Seedlings/genetics , Salt Tolerance/genetics , Germination/drug effects , Sodium Chloride/pharmacology , Plant Roots/growth & development , Plant Roots/drug effects
2.
Appl Biochem Biotechnol ; 195(1): 693-721, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35986841

ABSTRACT

Agricultural productivity is negatively impacted by drought stress. Brassica is an important oilseed crop, and its productivity is often limited by drought. Biostimulants are known for their role in plant growth promotion, increased yields, and tolerance to environmental stresses. Silicon in its soluble form of orthosilicic acid (OSA) has been established to alleviate deteriorative effects of drought. Seaweed extract (SWE) also positively influence plant survival and provide dehydration tolerance under stressed environments. The present study was conducted to evaluate the efficacy of OSA and SWE on mitigating adverse effects of drought stress on Brassica genotype RH-725. Foliar application of OSA (2 ml/L and 4 ml/L) and SWE of Ascophyllum nodosum (3 ml/L and 4 ml/L) in vegetative stages in Brassica variety RH 725 under irrigated and rainfed condition revealed an increase in photosynthetic rate, stomatal conductance, transpirational rate, relative water content, water potential, osmotic potential, chlorophyll fluorescence, chlorophyll stability index, total soluble sugars, total protein content, and antioxidant enzyme activity; and a decrease in canopy temperature depression, proline, glycine-betaine, H2O2, and MDA content. Application of 2 ml/L OSA and 3 ml/L SWE at vegetative stage presented superior morpho-physiological and biochemical characteristics and higher yields. The findings of the present study will contribute to developing a sustainable cropping system by harnessing the benefits of OSA and seaweed extract as stress mitigators.


Subject(s)
Droughts , Mustard Plant , Seaweed , Antioxidants/metabolism , Chlorophyll/metabolism , Hydrogen Peroxide , Mustard Plant/physiology , Plant Extracts/pharmacology , Seaweed/chemistry , Water , Silicic Acid
3.
Sci Rep ; 11(1): 23448, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34873217

ABSTRACT

Exposure of plants to environmental stressors can modify their metabolism, interactions with other organisms and reproductive success. Tropospheric ozone is a source of plant stress. We investigated how an acute exposure to ozone at different times of plant development affects reproductive performance, as well as the flowering patterns and the interactions with pollinators and herbivores, of wild mustard plants. The number of open flowers was higher on plants exposed to ozone at earlier ages than on the respective controls, while plants exposed at later ages showed a tendency for decreased number of open flowers. The changes in the number of flowers provided a good explanation for the ozone-induced effects on reproductive performance and on pollinator visitation. Ozone exposure at earlier ages also led to either earlier or extended flowering periods. Moreover, ozone tended to increase herbivore abundance, with responses depending on herbivore taxa and the plant age at the time of ozone exposure. These results suggest that the effects of ozone exposure depend on the developmental stage of the plant, affecting the flowering patterns in different directions, with consequences for pollination and reproduction of annual crops and wild species.


Subject(s)
Mustard Plant/physiology , Ozone/chemistry , Plant Physiological Phenomena , Pollination , Ecology , Flowers/growth & development , Germany , Herbivory , Plants , Pollen , Reproduction
4.
Nat Plants ; 7(10): 1347-1353, 2021 10.
Article in English | MEDLINE | ID: mdl-34650263

ABSTRACT

Plants have evolved plastic defence strategies to deal with the uncertainty of when, by which species and in which order attack by herbivores will take place1-3. However, the responses to current herbivore attack may come with a cost of compromising resistance to other, later arriving herbivores. Due to antagonistic cross-talk between physiological regulation of plant resistance to phloem-feeding and leaf-chewing herbivores4-8, the feeding guild of the initial herbivore is considered to be the primary factor determining whether resistance to subsequent attack is compromised. We show that, by investigating 90 pairwise insect-herbivore interactions among ten different herbivore species, resistance of the annual plant Brassica nigra to a later arriving herbivore species is not explained by feeding guild of the initial attacker. Instead, the prevalence of herbivore species that arrive on induced plants as approximated by three years of season-long insect community assessments in the field explained cross-resistance. Plants maintained resistance to prevalent herbivores in common patterns of herbivore arrival and compromises in resistance especially occurred for rare patterns of herbivore attack. We conclude that plants tailor induced defence strategies to deal with common patterns of sequential herbivore attack and anticipate arrival of the most prevalent herbivores.


Subject(s)
Adaptation, Biological , Herbivory , Insecta/physiology , Mustard Plant/physiology , Plant Defense Against Herbivory , Animals , Phloem/physiology , Species Specificity
5.
Int J Mol Sci ; 22(16)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34445145

ABSTRACT

The main goal of growing plants under various photoperiods is to optimize photosynthesis for using the effect of day length that often acts on plants in combination with biotic and/or abiotic stresses. In this study, Brassica juncea plants were grown under four different day-length regimes, namely., 8 h day/16 h night, 12 h day/12 h night, 16 h day/8 h night, and continuous light, and were infected with a necrotrophic fungus Alternaria brassicicola. The development of necroses on B. juncea leaves was strongly influenced by leaf position and day length. The largest necroses were formed on plants grown under a 16 h day/8 h night photoperiod at 72 h post-inoculation (hpi). The implemented day-length regimes had a great impact on leaf morphology in response to A. brassicicola infection. They also influenced the chlorophyll and carotenoid contents and photosynthesis efficiency. Both the 1st (the oldest) and 3rd infected leaves showed significantly higher minimal fluorescence (F0) compared to the control leaves. Significantly lower values of other investigated chlorophyll a fluorescence parameters, e.g., maximum quantum yield of photosystem II (Fv/Fm) and non-photochemical quenching (NPQ), were observed in both infected leaves compared to the control, especially at 72 hpi. The oldest infected leaf, of approximately 30% of the B. juncea plants, grown under long-day and continuous light conditions showed a 'green island' phenotype in the form of a green ring surrounding an area of necrosis at 48 hpi. This phenomenon was also reflected in changes in the chloroplast's ultrastructure and accelerated senescence (yellowing) in the form of expanding chlorosis. Further research should investigate the mechanism and physiological aspects of 'green islands' formation in this pathosystem.


Subject(s)
Alternaria/pathogenicity , Mustard Plant/microbiology , Mustard Plant/physiology , Necrosis/microbiology , Necrosis/pathology , Photosynthesis/physiology , Plant Diseases/microbiology , Carotenoids/metabolism , Chlorophyll/metabolism , Chlorophyll A/metabolism , Fluorescence , Mustard Plant/metabolism , Necrosis/metabolism , Photoperiod , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Plant Leaves/microbiology
6.
Plant Cell Environ ; 44(8): 2729-2743, 2021 08.
Article in English | MEDLINE | ID: mdl-33908644

ABSTRACT

GTR1 and GTR2 transporters are components of the source to sink translocation network of glucosinolates, which are major defence metabolites in the Brassicaceae. These transporters can be genetically manipulated for reduction of seed-glucosinolates without inhibiting glucosinolate biosynthesis, thereby maintaining the inherent defence potential of plants. However, the different roles of GTRs in influencing tissue-specific distribution of glucosinolates in agriculturally important Brassica crops are yet unknown. Here, we report functional characterization of two groups of glucosinolate transporters (GTR1 and GTR2) from Brassica juncea based on gene expression data, biochemical analysis, gene-complementation studies in GTR-deficient mutants and RNAi-based knockdown followed by insect feeding experiments. Although both GTRs showed ubiquitous expression patterns and broad substrate specificity, the single-gene knockdown lines displayed different phenotypes. The GTR2-knockdown plants showed a significant reduction of glucosinolates in seeds and a higher accumulation in leaves and pods, while the GTR1-knockdown plants displayed a smaller reduction of glucosinolates in seeds and significantly lower glucosinolate levels in leaves. Consequently, knockdown of GTR2 resulted in higher resistance towards the generalist pest, Spodoptera litura. Overall, our study highlights the distinctive roles of B. juncea GTRs in tissue-specific accumulation of glucosinolates and the potential for manipulating GTR2 for enhanced nutrition and plant defence.


Subject(s)
Carrier Proteins/metabolism , Glucosinolates/metabolism , Mustard Plant/physiology , Plant Proteins/metabolism , Animals , Arabidopsis/genetics , Carrier Proteins/genetics , Crops, Agricultural/metabolism , Crops, Agricultural/physiology , Evolution, Molecular , Gene Expression Regulation, Plant , Gene Silencing , Gossypium/cytology , Gossypium/genetics , Mustard Plant/metabolism , Plant Proteins/genetics , Plants, Genetically Modified , Seeds/genetics , Seeds/metabolism , Spodoptera
7.
Plant Mol Biol ; 106(1-2): 109-122, 2021 May.
Article in English | MEDLINE | ID: mdl-33638768

ABSTRACT

KEY MESSAGE: Recombinations between the parental genomes produced a novel mitochondrial genome in the cytoplasmic male sterile Brassica juncea cybrid Og1. A mitochondrial stoichiometric shift greatly reduced the molecule containing male-sterility-inducing orf138 gene leading to reversion to male fertility. An improved, chlorosis-corrected, cytoplasmic male sterile Brassica juncea cybrid Og1 derived from Ogura cytoplasm shows frequent reversion to male fertility. To determine the nature of mitochondrial recombination in the cybrid and to uncover the molecular mechanism of male fertility reversion, we sequenced the mitochondrial genomes of Og1, its isonuclear parental lines (OgRLM and Brassica juncea RLM198) and the revertant line (Og1-rt). Assembly of Og1 mitochondrial genome gave two circular molecules, Og1a (250.999 kbp) and Og1b (96.185 kbp) sharing two large direct repeat regions capable of recombining to form a single circular molecule. Og1a contains all essential mitochondrial genes, but the male-sterility-causing orf138 was uniquely present in Og1b along with 16 other complete or partial genes already represented in Og1a. Eleven and four recombinations between the parental mitochondrial genomes produced the Og1a and the Og1b molecules, respectively. Five genes were duplicated within Og1a, of which trnfM was inherited from both the parents while the other four genes, atp4, cox1 nad4L and trnM, were inherited from RLM198. RFLP analysis revealed that orf138-containing molecules were less abundant than Og1a in the male-sterile plants while og1b bearing molecules were undetectable in the revertant line. However, orf138 transcripts were amplified in RT-PCR and were also detected in northern blots revealing that Og1b molecules are not completely lost in the revertant plants. This is the first report where the mitochondrial genome of a cybrid is compared with its actual parents. The findings are discussed in the light of previous reports on mitochondrial genome recombination in cybrids.


Subject(s)
Mitochondria/genetics , Mustard Plant/genetics , Mustard Plant/physiology , Plant Infertility/genetics , Recombination, Genetic , DNA, Mitochondrial/genetics , Fertility/genetics , Gene Expression Regulation, Plant , Genes, Mitochondrial , Genome, Mitochondrial , Genome, Plant , Polymorphism, Restriction Fragment Length
8.
Sci Rep ; 11(1): 4278, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33608616

ABSTRACT

Timely transition to flowering, maturity and plant height are important for agronomic adaptation and productivity of Indian mustard (B. juncea), which is a major edible oilseed crop of low input ecologies in Indian subcontinent. Breeding manipulation for these traits is difficult because of the involvement of multiple interacting genetic and environmental factors. Here, we report a genetic analysis of these traits using a population comprising 92 diverse genotypes of mustard. These genotypes were evaluated under deficient (N75), normal (N100) or excess (N125) conditions of nitrogen (N) application. Lower N availability induced early flowering and maturity in most genotypes, while high N conditions delayed both. A genotyping-by-sequencing approach helped to identify 406,888 SNP markers and undertake genome wide association studies (GWAS). 282 significant marker-trait associations (MTA's) were identified. We detected strong interactions between GWAS loci and nitrogen levels. Though some trait associated SNPs were detected repeatedly across fertility gradients, majority were identified under deficient or normal levels of N applications. Annotation of the genomic region (s) within ± 50 kb of the peak SNPs facilitated prediction of 30 candidate genes belonging to light perception, circadian, floral meristem identity, flowering regulation, gibberellic acid pathways and plant development. These included over one copy each of AGL24, AP1, FVE, FRI, GID1A and GNC. FLC and CO were predicted on chromosomes A02 and B08 respectively. CDF1, CO, FLC, AGL24, GNC and FAF2 appeared to influence the variation for plant height. Our findings may help in improving phenotypic plasticity of mustard across fertility gradients through marker-assisted breeding strategies.


Subject(s)
Flowers/genetics , Genome-Wide Association Study , Mustard Plant/physiology , Nitrogen/metabolism , Quantitative Trait Loci , Quantitative Trait, Heritable , Genetic Linkage , Genome, Plant , Genotype , Plant Breeding , Polymorphism, Single Nucleotide
9.
J Chem Ecol ; 47(2): 175-191, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33507456

ABSTRACT

Plants in the flowering stage need to ensure reproduction by protecting themselves from attack and by preserving interactions with mutualist pollinators. When different plant mutualists are using the same type of cues, such as volatile compounds, attraction of parasitoids and pollinators may trade off. To explore this, we compared volatile emission of Brassica nigra plants in response to single or dual attack on their inflorescences. Additionally, we recorded flower visitation by pollinators and the attraction of parasitoids in the greenhouse and/or field. Brassica nigra were exposed in the flowering stage to one or two of the following three attackers: Brevicoryne brassicae aphids, Pieris brassicae caterpillars, and Xanthomonas campestris pv. raphani bacteria. We found that single attack by caterpillars, and dual attack by caterpillars plus aphids, induced the strongest changes in plant volatile emission. The caterpillars' parasitoid C. glomerata did not exhibit preference for plants exposed to caterpillars only vs. plants exposed to caterpillars plus aphids or plus bacteria. However, the composition of the pollinator community associated with flowers of B. nigra was affected by plant exposure to the attackers, but the total number of pollinators visiting the plants did not change upon attack. We conclude that, when B. nigra were exposed to single or dual attack on their inflorescences, the plants maintained interactions with natural enemies of the insect attackers and with pollinators. We discuss how chemical diversity may contribute to plant resilience upon attack.


Subject(s)
Aphids/physiology , Butterflies/physiology , Herbivory , Mustard Plant/physiology , Pollination , Wasps/physiology , Animals , Butterflies/parasitology , Female , Genetic Fitness , Host-Parasite Interactions , Larva/parasitology , Larva/physiology , Mustard Plant/chemistry , Oviposition , Seeds/growth & development , Volatile Organic Compounds/analysis
10.
Chemosphere ; 262: 128384, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33182105

ABSTRACT

Arsenic (As) polluted food chain has become a serious issue for the growth and development of humans, animals and plants. Nitric oxide (NO) or silicon (Si) may mitigate As toxicity. However, the combined application of NO and Si in mitigating As uptake and phytotoxicity in Brassica juncea is unknown. Hence, the collegial effect of sodium nitroprusside (SNP), a NO donor and Si application on B. juncea growth, gas exchange parameters, antioxidant system and As uptake was examined in a greenhouse experiment. Arsenic toxicity injured cell membrane as signposted by the elevated level of malondialdehyde (MDA) and hydrogen peroxide (H2O2), thus decreasing the growth of stressed plants. Moreover, As stress negatively affected gas exchange parameters and antioxidative system of plants. However, NO or/and Si alleviated As induced oxidative stress through increasing the activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), glutathione S-transferase (GST), glutathione (GSH), along with thiol and proline synthesis. Furthermore, plants treated with co-application of NO and Si showed improved growth, gas attributes and decreased As uptake under As regimes. The current study highlights that NO and Si synergistically interact to mitigate detrimental effects of As stress through reducing As uptake. Our findings recommend combined NO and Si application in As spiked soils for improvement of plant growth and stress alleviation.


Subject(s)
Arsenic/metabolism , Mustard Plant/physiology , Nitric Oxide/chemistry , Silicon/chemistry , Soil Pollutants/metabolism , Antioxidants/metabolism , Arsenic/toxicity , Ascorbate Peroxidases/metabolism , Glutathione/metabolism , Glutathione Reductase/metabolism , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Mustard Plant/metabolism , Nitric Oxide Donors/metabolism , Nitric Oxide Donors/pharmacology , Nitroprusside/pharmacology , Oxidative Stress/drug effects , Seedlings/drug effects , Soil Pollutants/toxicity , Superoxide Dismutase/metabolism
11.
Plant Physiol Biochem ; 157: 47-59, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33075710

ABSTRACT

Soil salinity and drought stress (DS) are the massive problem for worldwide agriculture. Both stresses together become more toxic to the plant growth and development. Silicon (Si) being the second most abundant element in the earth's crust, exerts beneficial effects on plants under both stress and non-stress conditions. However, limited information is available to substantiate the beneficial role of Si in delaying the premature leaf senescence and imparting tolerance of mustard (Brassica juncea L.) plants to salinity and DS. Therefore, the present study aimed to explore the role of Si (source K2SiO3) in chlorophyll (Chl) biosynthesis, nutrients uptake, relative water content (RWC), proline (Pro) metabolism, antioxidant system and delaying of premature leaf senescence in mustard plants under sodium chloride (NaCl) and DS conditions. Results of this study show that exogenous Si (1.7 mM) significantly delayed the salt plus DS-induced premature leaf senescence. This was further accompanied by the enhanced nutrients accumulation and activity of chlorophyll metabolizing enzymes [δ-aminolevulinic acid (δ-ALA) dehydratase and porphobilinogen deaminase] and levels of δ-ALA, and Chls a and b and also by decreased the Chl degradation and Chl degrading enzymes (Chlorophyllase, Chl-degrading peroxidase, pheophytinase) activity. Exogenous Si treatment induced redox homoeostasis in B. juncea L. plants, which is evident by a reduced generation of reactive oxygen species (ROS) resulting due to suppressed activity of their generating enzymes (glycolate oxidase and NADPH oxidase) and enhanced defence system. Furthermore, application of Si inhibited the activity of protease and triggered the activity of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) and plasma membrane H+-ATPase activity. In conclusion, all these results reveal that Si could help in the modulation of Chl metabolism, redox hemostasis, and the regulation of nutrients (nitrogen, phosphorus, Si and potassium) uptake in the mustard plants that lead to the postponement of premature leaf senescence under salinity plus DS.


Subject(s)
Antioxidants/physiology , Droughts , Mustard Plant/physiology , Salinity , Silicon/pharmacology , Stress, Physiological , Homeostasis , Mustard Plant/drug effects , Plant Leaves/physiology , Seedlings
12.
Plant Physiol Biochem ; 155: 626-636, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32858425

ABSTRACT

Brassica genus comprises many prominent species valuable for human nutrition including vegetable crops and oilseed. Production of B. juncea is challenged by many abiotic and biotic stresses, Alternaria blight caused by a necrotrophic fungal pathogen Alternaria brassicae is one of the most prominent diseases of cruciferous crops including B. juncea. However, some closely related wild species like Sinapis alba and Camelina sativa exhibit a variable level of resistance towards the pathogen. Apart from the host resistance, intra-specific pathogen variability also influences disease severity to a larger extent. In this study, we identified and isolated two strains of A. brassicae viz ABS1 and ABS2 exhibiting morphological and pathological variability. These isolates were further used to artificially inoculate B. juncea and two of its wild relatives under in-vitro as well as in-vivo conditions to inspect their pathogenicity in a susceptible, a moderately resistant and a highly resistant host. virulent isolate (ABS2) was able to readily establish infection in all the three species whereas the less virulent isolate (ABS1) readily infected susceptible species B. juncea but delayed and mild infection was noticed in tolerant hosts. Variable physiological and molecular host response towards the differential level of virulence of pathogen were established with many confirmatory experiments like DAB staining study, Disease severity index and microscopic analysis. Real-time PCR results confirm that these two isolates induce a variable level of induction in genes PR1 and PDF1.2 within 48 h of the artificial inoculation in B. juncea and its wild relatives.


Subject(s)
Alternaria/pathogenicity , Brassicaceae/microbiology , Plant Diseases/microbiology , Virulence , Brassicaceae/physiology , Disease Resistance , Mustard Plant/microbiology , Mustard Plant/physiology , Sinapis/microbiology , Sinapis/physiology
13.
Plant J ; 104(3): 706-717, 2020 11.
Article in English | MEDLINE | ID: mdl-32772441

ABSTRACT

The swollen stem is a determinant of yield for the stem-type vegetable Brassica juncea that is representative of vegetative organ formation. However, the genetic mechanism underlying swollen stem formation and its regulation remains unknown. In this study, we identified a casein kinase 2 ß subunit 1 (CK2B1) and revealed its role in swollen stem formation. Genotyping analysis revealed that a homozygous variation in the CK2B1 promoter is responsible for swollen stem formation, and the promoter activity of CK2B1 was significantly associated with the variations between swollen stem and non-swollen stem types. CK2B1 was exclusively located in the nucleus and expressed in the stem nodes of the plant. Swollen stem formation was blocked when CK2B1 expression was silenced, and induced in a backcross population carrying a swollen stem genotype, which indicates that CK2B1 is required for swollen stem formation. Cell numbers were increased during swollen stem formation and decreased in CK2B1-silenced expression plant, indicating that CK2B1 regulates swollen stem formation via cell division. CK2B1 directly interacted with E2Fa, a regulator of G1/S transition in the cell cycle, in which CK2 phosphorylates E2Fa. Our results revealed that CK2B1 affects swollen stem formation via the control of the cell cycle. These findings help to elucidate the signals that control swollen stem formation and provide a promising molecular target to enhance the yield of vegetative organ formation.


Subject(s)
Casein Kinase II/metabolism , Mustard Plant/physiology , Plant Proteins/metabolism , Plant Stems/physiology , Casein Kinase II/genetics , Cell Cycle , E2F Transcription Factors/genetics , E2F Transcription Factors/metabolism , Gene Expression Regulation, Plant , Genome-Wide Association Study , Phosphorylation , Phylogeny , Plant Proteins/genetics , Plant Stems/cytology , Plants, Genetically Modified , Polymorphism, Single Nucleotide , Promoter Regions, Genetic
14.
BMC Microbiol ; 20(1): 244, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32762653

ABSTRACT

BACKGROUND: Endophytic bacteria are considered as symbionts living within plants and are influenced by abiotic and biotic environments. Pathogen cause biotic stress, which may change physiology of plants and may affect the endophytic bacterial communiy. Here, we reveal how endophytic bacteria in tumorous stem mustard (Brassica juncea var. tumida) are affected by plant physiological changes caused by Plasmodiophora brassicae using 16S rRNA high-throughput sequencing. RESULTS: The results showed that Proteobacteria was the dominant group in both healthy roots and clubroots, but their abundance differed. At the genus level, Pseudomonas was dominant in clubroots, whereas Rhodanobacter was the dominant in healthy roots. Hierarchical clustering, UniFrac-weighted principal component analysis (PCA), non-metric multidimensional scaling (NMDS) and analysis of similarities (ANOSIM) indicated significant differences between the endophytic bacterial communities in healthy roots and clubroots. The physiological properties including soluble sugar, soluble protein, methanol, peroxidase (POD) and superoxide dismutase (SOD) significantly differed between healthy roots and clubroots. The distance-based redundancy analysis (db-RDA) and two-factor correlation network showed that soluble sugar, soluble protein and methanol were strongly related to the endophytic bacterial community in clubroots, whereas POD and SOD correlated with the endophytic bacterial community in healthy roots. CONCLUSIONS: Our results illustrate that physiologcial changes caused by P. brassicae infection may alter the endophytic bacterial community in clubroots of tumorous stem mustard.


Subject(s)
Bacteria/isolation & purification , Microbiota , Mustard Plant/microbiology , Mustard Plant/physiology , Plant Diseases/microbiology , Plasmodiophorida/physiology , Bacteria/classification , Bacteria/genetics , Methanol/metabolism , Mustard Plant/parasitology , Peroxidase/metabolism , Plant Diseases/parasitology , Plant Roots/microbiology , Plant Roots/parasitology , Plant Roots/physiology , Proteins/metabolism , RNA, Ribosomal, 16S/genetics , Sugars/metabolism , Superoxide Dismutase/metabolism
15.
Chemosphere ; 260: 127661, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32688327

ABSTRACT

Phytostabilization of mine soils contaminated by potentially toxic elements (PTEs) requires plants tolerant to PTE toxicity and to the poor soil physico-chemical characteristics of these areas. A pot experiment was carried out to assess the phytostabilization potential of Brassica juncea and Dactylis glomerata in mine soils amended with compost and biochar. Furthermore, the Environmental Risk of the soils and the effects of the phytostabilization process on the microbiological population size and activity in the soils were also determined. According to the Ecological Risk Index (ERI) the soils studied presented "very high risk" and As, Cd and Pb were the target elements for phytostabilization. Both amendments improved soil conditions (e.g., increasing total-N and total organic-C concentrations) and contributed to PTE (Cd, Pb and Zn) immobilization in the soil. Compost showed a more marked effect on soil microbial biomass and nutrients release in soil, which led to higher B. juncea and D. glomerata biomass in compost treated soils. Biochar treatment showed a positive effect only on D. glomerata growth, despite it provoked strong PTE immobilization in both soils. The addition of both amendments resulted in an overall reduction of PTE concentration in the plants compared to the control treatment. In addition, both plant species showed higher accumulation of PTE in the roots than in the shoots (transfer factor<1) independently of the treatment received. Therefore, they can be considered as good candidates for the phytostabilization of PTE contaminated mine soils in combination with organic amendments like biochar and compost.


Subject(s)
Biodegradation, Environmental , Mustard Plant/physiology , Soil Pollutants/metabolism , Biomass , Charcoal , Composting , Dactylis , Plant Roots/chemistry , Soil , Soil Pollutants/analysis
16.
J Biotechnol ; 313: 29-38, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32151644

ABSTRACT

The involvement of two extremely important signalling molecules, nitric oxide (NO) and abscisic acid (ABA) has been employed by plants to facilitate the adaptive/tolerate response during stressful conditions. However, the interactive role of exogenously applied NO and ABA is very less studied at physiological, biochemical and molecular levels. The present study therefore, evaluated the effects of individual and simultaneous addition of exogenous NO donor SNP (100µM) and ABA (10µM) on photosynthesis, Calvin-Benson cycle enzymes, S-assimilation enzymes, oxidative stress components, and genotoxicity in Brassica juncea cv. Varuna, exposed to polyethylene glycol (PEG)-induced drought stress. Results showed that a loss induced by PEG was significantly surpassed by the application of NO or/and ABA with PEG for chlorophyll content, net photosynthestic rate (Pn), internal CO2 concentration (Ci), stomatal conductance (gs), transpiration rate (Tr), maximum photosystem II (PSII) efficiency (Fv/Fm), actual PSII efficiency (ΦPSII), intrinsic PSII efficiency (Fv´/ Fm´), photochemical quenching (qP), non-photochemical quenching (NPQ), electron transport chain (ETC), ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCo), glyceraldehyde-3-phosphate dehydrogenase (GapDH), phosphoribulokinase (PRK), ATP-sulfurylase (ATP-S), and serine acetyltransferase (SAT) activities. The genomic template stability (GTS) (measured as changes in RAPD profiles) was significantly affected and showed varying degrees of DNA polymorphism, highest in PEG and lowest in PEG + NO and PEG + NO + ABA. Furthermore, the changes in RAPD profiles showed consistent results when compared with various photosynthetic and oxidative parameters. Altogether, this study concluded that supplementation of individual NO and together with ABA was more effective than individual ABA in alleviating PEG-induced drought stress in B. juncea L. seedlings.


Subject(s)
Abscisic Acid/pharmacology , Mustard Plant/physiology , Nitric Oxide/pharmacology , Photosynthesis/drug effects , Plant Growth Regulators/pharmacology , Signal Transduction/drug effects , Chlorophyll/metabolism , Droughts , Fluorescence , Mustard Plant/drug effects , Mustard Plant/genetics , Polyethylene Glycols/pharmacology , Random Amplified Polymorphic DNA Technique , Seedlings/drug effects , Seedlings/physiology , Stress, Physiological
17.
Plant Cell Environ ; 43(8): 1815-1826, 2020 08.
Article in English | MEDLINE | ID: mdl-32096568

ABSTRACT

Plants can enhance their defence against herbivorous insects by responding to insect egg depositions preceding larval feeding. The similarity of plant responses to insect eggs with those to phytopathogens gave rise to the hypothesis that egg-associated microbes might act as elicitors. We tested this hypothesis by investigating first if elimination of microbes in the butterfly Pieris brassicae changes the responses of Brassica nigra and Arabidopsis thaliana to eggs and larvae of this insect species. An antibiotic treatment of butterflies mitigated the plant transcriptional response to the eggs and the egg-mediated enhancement of the plant's defence against larvae. However, application of cultivated microbial isolates from the eggs onto Arabidopsis thaliana did not enhance the plant's anti-herbivore defence. Instead, application of an egg-associated glandular secretion, which is attaching the eggs to the leaves, elicited the enhancing effect on the plant's defence against larvae. However, this effect was only achieved when the secretion was applied in similar quantities as released by control butterflies, but not when applied in the reduced quantity as released by antibiotic-treated butterflies. We conclude that glandular secretions rather than egg-associated microbes act in a dose-dependent manner as elicitor of the egg-mediated enhancement of the plant's defence against insect larvae.


Subject(s)
Arabidopsis/physiology , Butterflies/physiology , Mustard Plant/physiology , Ovum/microbiology , Animals , Anti-Bacterial Agents/pharmacology , Arabidopsis/microbiology , Exocrine Glands/metabolism , Female , Gene Expression Regulation, Plant , Larva , Mustard Plant/microbiology , Ovum/drug effects , Ovum/physiology , Plant Leaves
18.
Chemosphere ; 243: 125361, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31760287

ABSTRACT

The present experiment unravels how exogenous jasmonic acid regulates photosynthesis, clastogenecity, AsA-GSH cycle and phytochelatins in Brassica juncea L. in response to Pb-subcellular distribution. The plants were evaluated for leaf gas exchange parameters, Fv/Fm, lipid peroxidation, leaf epidermal structures and ABA content. Besides lead accumulation in root, shoot and its subcellular distribution pattern, its role as clastogen and/or aneuploidogen via DNA damage, genome size and ploidy variations, AsA-GSH cycle and quantification of PC2 and PC3 were performed as well. Results revealed that Pb inhibited plant growth, disturbed epidermal and guard cells and consequently worsen leaf gas exchange parameters (E, GH2O, A), Fv/Fm and photosynthetic pigments. For clastogenecity, results revealed considerable DNA damage and analysis for genome size showed that differences between unstressed, Pb-stress and JA application were not significant (P ≤ 0.05), however, ploidy ratio analysis proved partial aneuploidogenic role of Pb. The highest Pb exposure affected AsA-GSH cycle negatively but increased PC2 and PC3 contents uniformly in roots and leaves. Surprisingly, exogenous JA inhibits plant growth under non-stress but positively regulates growth, photosynthesis, AsA-GSH cycle, PC2 and PC3 contents and DNA damage but has no significant effect on variations in total genome size and ploidy under Pb-stress.


Subject(s)
Cyclopentanes/metabolism , Lead/toxicity , Mustard Plant/physiology , Oxylipins/metabolism , Soil Pollutants/toxicity , DNA Damage , Lead/metabolism , Lipid Peroxidation/drug effects , Mustard Plant/metabolism , Photosynthesis/drug effects , Photosynthesis/physiology , Phytochelatins/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism , Soil Pollutants/metabolism
19.
Physiol Plant ; 168(2): 490-510, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31794052

ABSTRACT

Nitric oxide (NO) is a hormone that connects numerous reactions in plant cells under normal and environmental stress conditions. The application of 100 µM NO as sodium nitroprusside (SNP; NO donor) applied individually or in combination with N or S in different combinations (i.e. 100 mg N or S kg-1 soil applied at the time of sowing [100 N + 100S]0d or with split, 50 mg N or S kg-1 soil at the time of sowing and similar dose at 20 d after sowing [50 N + 50S]0d + [50 N + 50S]20d ) was tested to alleviate salt stress in mustard (Brassica juncea L.). Application of 100 µM NO plus split application of N and S more significantly promoted stomatal behavior, photosynthetic and growth performance in the absence of salt stress and maximally alleviated effects of salt stress through increased N- and S-use efficiency, proline and antioxidant system. The combined application of N and S at the time of sowing was lesser effective in promoting photosynthesis and growth under salt or no salt stress conditions in presence or absence of NO. The study suggests that salt stress effects on the photosynthetic performance are mitigated more efficiently when NO was applied together with the split application of N and S given at two stages, and the photosynthetic activity was promoted under salt stress through increased N and S assimilation and antioxidant system. This strategy may be adopted in agricultural system for overcoming salt stress effects on performance of mustard.


Subject(s)
Mustard Plant/physiology , Nitric Oxide/pharmacology , Nitrogen/pharmacology , Photosynthesis , Salt Stress , Sulfur/physiology , Mustard Plant/drug effects , Plant Stomata/physiology
20.
PLoS One ; 14(9): e0222530, 2019.
Article in English | MEDLINE | ID: mdl-31539385

ABSTRACT

Quantitative real-time PCR (qRT-PCR) is an efficient method to estimate the gene expression levels but the accuracy of its result largely depends on the stability of the reference gene. Many studies have reported considerable variation in the expression of reference genes (RGs) in different tissue and conditions. Therefore, screening for appropriate RGs with stable expression is crucial for functional analysis of the target gene. Two closely related crucifers Brassica juncea (cultivated) and Camelina sativa (wild) respond differently towards various abiotic and biotic stress where C. sativa exhibits higher tolerance to various stress. Comparative gene expression analysis of the target genes between two such species is the key approach to understand the mechanism of a plant's response to stress. However, using an unsuitable RG can lead to misinterpretation of expression levels of the target gene in such studies. In this investigation, the stability of seven candidate RGs including traditional housekeeping genes (HKGs) and novel candidate RGs were identified across diverse sample sets of B. juncea and C. sativa representing- hormone treated, wounded, Alternaria brassicae inoculated and combination treated samples (exogenous hormone treatment followed by A. brassicae inoculation). In this investigation, we identified stable RGs in both the species and the most suitable RGs to perform an unbiased comparative gene expression analysis between B. juncea and C. sativa. Results revealed that TIPS41 and PP2A were identified as the overall best performing RGs in both the species. However, the most suitable RG for each sample subset representing different condition must be individually selected. In Hormone treated and wounded samples TIPS41 expressed stably in both the species and in A. brassicae inoculated and combination treatment performance of PP2A was the best. In this study, for the first time, we have identified and validated stable reference gene in C. sativa for accurate normalization of gene expression data.


Subject(s)
Brassicaceae/genetics , Genes, Plant/genetics , Mustard Plant/genetics , Brassicaceae/physiology , Genes, Essential/genetics , Genes, Essential/physiology , Genes, Plant/physiology , Mustard Plant/physiology , Real-Time Polymerase Chain Reaction , Stress, Physiological/genetics , Stress, Physiological/physiology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...