ABSTRACT
Cildáñez stream (in Matanza-Riachuelo basin, Buenos Aires) is one of the most polluted watercourses of Argentina, containing a mixed contamination from agricultural and industrial wastes. The application of water bioremediation processes for this kind of effluent will require microorganisms with a high tolerance to contamination. In this sense, obtaining higher contaminant-resistant microalgae lines is widely desired. In this study, adaptive laboratory evolution (ALE) and random mutagenesis were used to obtain Chlorella vulgaris LMPA-40 strains adapted to grow in polluted water from the Cildáñez stream. The ALE process was performed by 22 successive subcultures under selective pressure (Cildáñez wastewater alone or with the addition of phenol or H2O2) while random mutagenesis was performed with UV-C radiation at 275nm. Not all the cell lines obtained after ALE could adapt enough to overcome the stress caused by the Cildáñez wastewater, indicating that the process is quite random and depends on the stressor used. The best results were obtained for the Cildáñez wastewater adapted cells (Cild 3 strain) that were more resistant than the original strain. The concentration of protein, Chlorophyll A, Chlorophyll B, and carotenoids in the Cild 3 ALE evolved strain was higher than that of the control strain. However, this strain exhibited half of the lipid content compared to the same control strain. Interestingly, these alterations and the acquired tolerance may be reversed over time during storage. These findings suggest that the acquisition of novel cell lines could not be permanent, a fact that must be considered for future trials.
Subject(s)
Chlorella vulgaris , Chlorella vulgaris/genetics , Wastewater/microbiology , Argentina , Biodegradation, Environmental , Directed Molecular Evolution , Mutagenesis , Chlorophyll A , Chlorophyll/analysis , Hydrogen Peroxide/pharmacologyABSTRACT
Random mutagenesis, such as error-prone PCR (epPCR), is a technique capable of generating a wide variety of a single gene. However, epPCR can produce a large number of mutated gene variants, posing a challenge in ligating these mutated PCR products into plasmid vectors. Typically, the primers for mutagenic PCRs incorporate artificial restriction enzyme sites compatible with chosen plasmids. Products are cleaved and ligated to linearized plasmids, then recircularized by DNA ligase. However, this cut-and-paste method known as ligation-dependent process cloning (LDCP), has limited efficiency, as the loss of potential mutants is inevitable leading to a significant reduction in the library's breadth. An alternative to LDCP is the circular polymerase extension cloning (CPEC) method. This technique involves a reaction where a high-fidelity DNA polymerase extends the overlapping regions between the insert and vector, forming a circular molecule. In this study, our objective was to compare the traditional cut-and-paste enzymatic method with CPEC in producing a variant library from the gene encoding the red fluorescent protein (DsRed2) obtained by epPCR. Our findings suggest that CPEC can accelerate the cloning process in gene library generation, enabling the acquisition of a greater number of gene variants compared to methods reliant on restriction enzymes.
Subject(s)
Cloning, Molecular , Gene Library , Mutagenesis , Polymerase Chain Reaction , Polymerase Chain Reaction/methods , Cloning, Molecular/methods , Genetic Vectors/genetics , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Plasmids/geneticsABSTRACT
Gamma radiation (60Co)-induced mutagenesis offers an alternative to develop rice lines by accelerating the spontaneous mutation process and increasing the pool of allelic variants available for breeding. Ionizing radiation works by direct or indirect damage to DNA and subsequent mutations. The technique can take advantage of in vitro protocols to optimize resources and accelerate the development of traits. This is achieved by exposing mutants to a selection agent of interest in controlled conditions and evaluating large numbers of plants in reduced areas. This chapter describes the protocol for establishing gamma radiation dosimetry and in vitro protocols for optimization at the laboratory level using seeds as the starting material, followed by embryogenic cell cultures, somatic embryogenesis, and regeneration. The final product of the protocol is a genetically homogeneous population of Oryza sativa that can be evaluated for breeding against abiotic and biotic stresses.
Subject(s)
Gamma Rays , Mutagenesis , Oryza , Seeds , Oryza/genetics , Oryza/radiation effects , Oryza/growth & development , Mutagenesis/radiation effects , Seeds/genetics , Seeds/radiation effects , Seeds/growth & development , Regeneration/genetics , Plant Somatic Embryogenesis Techniques/methodsABSTRACT
SUMMARYThe metabolic conditions that prevail during bacterial growth have evolved with the faithful operation of repair systems that recognize and eliminate DNA lesions caused by intracellular and exogenous agents. This idea is supported by the low rate of spontaneous mutations (10-9) that occur in replicating cells, maintaining genome integrity. In contrast, when growth and/or replication cease, bacteria frequently process DNA lesions in an error-prone manner. DNA repairs provide cells with the tools needed for maintaining homeostasis during stressful conditions and depend on the developmental context in which repair events occur. Thus, different physiological scenarios can be anticipated. In nutritionally stressed bacteria, different components of the base excision repair pathway may process damaged DNA in an error-prone approach, promoting genetic variability. Interestingly, suppressing the mismatch repair machinery and activating specific DNA glycosylases promote stationary-phase mutations. Current evidence also suggests that in resting cells, coupling repair processes to actively transcribed genes may promote multiple genetic transactions that are advantageous for stressed cells. DNA repair during sporulation is of interest as a model to understand how transcriptional processes influence the formation of mutations in conditions where replication is halted. Current reports indicate that transcriptional coupling repair-dependent and -independent processes operate in differentiating cells to process spontaneous and induced DNA damage and that error-prone synthesis of DNA is involved in these events. These and other noncanonical ways of DNA repair that contribute to mutagenesis, survival, and evolution are reviewed in this manuscript.
Subject(s)
Bacillus subtilis , DNA Repair , Mutagenesis , DNA Repair/genetics , Bacillus subtilis/genetics , Bacillus subtilis/physiology , Stress, Physiological/genetics , DNA Damage , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA Replication , DNA, Bacterial/genetics , Spores, Bacterial/genetics , Spores, Bacterial/growth & developmentABSTRACT
We used N-ethyl-N-nitrosurea-induced germline mutagenesis combined with automated meiotic mapping to identify specific systolic blood pressure (SBP) and heart rate (HR) determinant loci. We analyzed 43,627 third-generation (G3) mice from 841 pedigrees to assess the effects of 45,378 variant alleles within 15,760 genes, in both heterozygous and homozygous states. We comprehensively tested 23% of all protein-encoding autosomal genes and found 87 SBP and 144 HR (with 7 affecting both) candidates exhibiting detectable hypomorphic characteristics. Unexpectedly, only 18 of the 87 SBP genes were previously known, while 26 of the 144 genes linked to HR were previously identified. Furthermore, we confirmed the influence of two genes on SBP regulation and three genes on HR control through reverse genetics. This underscores the importance of our research in uncovering genes associated with these critical cardiovascular risk factors and illustrate the effectiveness of germline mutagenesis for defining key determinants of polygenic phenotypes that must be studied in an intact organism.
Subject(s)
Ethylnitrosourea , Mice , Animals , Blood Pressure/genetics , Heart Rate/genetics , Mutagenesis , Ethylnitrosourea/toxicity , AllelesABSTRACT
8-oxo-Guanine is a mutagenic lesion produced by reactions involving reactive oxygen species and guanine in DNA. Its production induces mispairing between the canonical nucleobases during DNA replication such that various types of cancers are associated with the DNA lesion. Since radiation therapy is used in some cases, the interaction of low-energy electrons with 8-oxo-guanine can in turn produce other reactive species, which in principle could have either a detrimental or protective effect on the organism. Motivated by these facts, we report a comparative experimental study of electron-induced fragmentation of guanine and 8-oxo-guanine, along with a theoretical study of the π* shape resonances and bound anion states, which may trigger those dissociation reactions. The electron-induced fragmentation of 8-oxo-guanine is remarkably distinct from the native form. More complex reactions were observed for the oxidized species, which may produce several anion fragments at very low energies (â¼0 eV). The dehydrogenated parent anion, which is already a minor fragment in guanine, was completely suppressed in 8-oxo-guanine. The calculated thermodynamical thresholds also suggest that NH2 elimination in guanine, at sub-excitation energies, proceeds via a complex reaction involving rearrangement steps.
Subject(s)
DNA , Electrons , Guanine , Mutagenesis , Reactive Oxygen SpeciesABSTRACT
CONTEXT: Despite high abundance of small indels in human genomes, their precise roles and underlying mechanisms of mutagenesis in Mendelian disorders require further investigation. OBJECTIVE: To profile the distribution, functional implications, and mechanisms of small indels in the androgen receptor (AR) gene in individuals with androgen insensitivity syndrome (AIS). METHODS: We conducted a systematic review of previously reported indels within the coding region of the AR gene, including 3 novel indels. Distribution throughout the AR coding region was examined and compared with genomic population data. Additionally, we assessed their impact on the AIS phenotype and investigated potential mechanisms driving their occurrence. RESULTS: A total of 82 indels in AIS were included. Notably, all frameshift indels exhibited complete AIS. The distribution of indels across the AR gene showed a predominance in the N-terminal domain, most leading to frameshift mutations. Small deletions accounted for 59.7%. Most indels occurred in nonrepetitive sequences, with 15.8% situated within triplet regions. Gene burden analysis demonstrated significant enrichment of frameshift indels in AIS compared with controls (P < .00001), and deletions were overrepresented in AIS (P < .00001). CONCLUSION: Our findings underscore a robust genotype-phenotype relationship regarding small indels in the AR gene in AIS, with a vast majority presenting complete AIS. Triplet regions and homopolymeric runs emerged as prone loci for small indels within the AR. Most were frameshift indels, with polymerase slippage potentially explaining half of AR indel occurrences. Complex frameshift indels exhibited association with palindromic runs. These discoveries advance understanding of the genetic basis of AIS and shed light on potential mechanisms underlying pathogenic small indel events.
Subject(s)
Androgen-Insensitivity Syndrome , Receptors, Androgen , Humans , Male , Androgen-Insensitivity Syndrome/genetics , Genome, Human , Mutagenesis , Mutation , Phenotype , Receptors, Androgen/geneticsABSTRACT
Double strand break (DSB) repair is critical to maintaining the integrity of the genome. DSB repair deficiency underlies multiple pathologies, including cancer, chromosome instability syndromes, and, potentially, neurodevelopmental defects. DSB repair is mainly handled by two pathways: highly accurate homologous recombination (HR), which requires a sister chromatid for template-based repair, limited to S/G2 phases of the cell cycle, and canonical non-homologous end joining (c-NHEJ), available throughout the cell cycle in which minimum homology is sufficient for highly efficient yet error-prone repair. Some circumstances, such as cancer, require alternative highly mutagenic DSB repair pathways like microhomology-mediated end-joining (MMEJ) and single-strand annealing (SSA), which are triggered to attend to DNA damage. These non-canonical repair alternatives are emerging as prominent drivers of resistance in drug-based tumor therapies. Multiple DSB repair options require tight inter-pathway regulation to prevent unscheduled activities. In addition to this complexity, epigenetic modifications of the histones surrounding the DSB region are emerging as critical regulators of the DSB repair pathway choice. Modeling approaches to understanding DSBs repair pathway choice are advantageous to perform simulations and generate predictions on previously uncharacterized aspects of DSBs response. In this work, we present a Boolean network model of the DSB repair pathway choice that incorporates the knowledge, into a dynamic system, of the inter-pathways regulation involved in DSB repair, i.e., HR, c-NHEJ, SSA, and MMEJ. Our model recapitulates the well-characterized HR activity observed in wild-type cells in response to DSBs. It also recovers clinically relevant behaviors of BRCA1/FANCS mutants, and their corresponding drug resistance mechanisms ascribed to DNA repair gain-of-function pathogenic variants. Since epigenetic modifiers are dynamic and possible druggable targets, we incorporated them into our model to better characterize their involvement in DSB repair. Our model predicted that loss of the TIP60 complex and its corresponding histone acetylation activity leads to activation of SSA in response to DSBs. Our experimental validation showed that TIP60 effectively prevents activation of RAD52, a key SSA executor, and confirms the suitable use of Boolean network modeling for understanding DNA DSB repair.
Subject(s)
DNA Damage , DNA Repair , Cell Cycle , Mutagenesis , Cell DivisionABSTRACT
Twenty-two atypical enteroaggregative Escherichia coli isolates from a previous epidemiological study harboring EAEC virulence genes were examined for their adhesion properties. Nine strains showed a typical aggregative adherence (AA) pattern, while 13 strains showed variant AA, such as AA with lined up cells characteristic of the chain-like adhesion (CLA) and AA mainly to HeLa cells characteristic of the diffuse adherence (DA). The aggregative forming pilus (AFP) genes afpA2 and afpR were detected only in strain Q015B, which exhibited an AA/DA pattern. Using Tn5-based transposon mutagenesis on Q015B strain, we identified a 5517-bp open reading frame (ORF) encoding a predicted 1838-amino-acid polypeptide that is genetically related to a putative filamentous hemagglutinin identified in E. coli strain 7-233-03_S3_C2. Therefore, the ORF was named orfHA. The regions flanking orfHA were sequenced and two ORFs were found; upstream, an ORF that encodes a 603-amino-acid polypeptide with 99% identity to hemolysin secretion/activation proteins of the ShlB/FhaC/HecB family, and downstream, another ORF, which encodes a 632-amino-acid polypeptide with 72% identity to the glycosyltransferase EtpC. An orfHA mutant (Q015BΔorfHA) was constructed from strain Q015B. Q015BΔorfHA strain did not adhere to HeLa cells, whereas Q015BΔ orfHA transformed with a pACYC184 plasmid carrying orfHA restored the AA/DA phenotype of strain Q015B. Furthermore, the Q015ΔorfHA mutant had a marked effect on the ability of strain Q015B to kill the larvae of Galleria mellonella. Our results suggest that the AA/DA pattern of strain Q015B is mediated by a hemagglutinin-associated protein which also contributes to its virulence in the G. mellonella model.
Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Humans , Escherichia coli/metabolism , Hemagglutinins/metabolism , HeLa Cells , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Virulence/genetics , Cell Adhesion , Bacterial Adhesion/genetics , Escherichia coli Infections/genetics , MutagenesisABSTRACT
Pollution generated by the mining industry can cause harm to wildlife. This study aimed to evaluate the cytotoxicity, genotoxicity and mutagenicity in bats environmentally exposed to open pit mining. Thus, 62 bats of the following species, Carollia perspicillata, Glossophaga soricina, Phyllostomus hastatus, and Desmodus rotundus exposed to mining activities (ferronickel) were used in the analysis. The animals were obtained in samplings in July and November of 2021, totaling 8 days of sampling in the field. The results indicated that species differ in the frequency of genotoxic damage between sampling points within the mining landscape. Cytotoxicity was observed by scoring of karyorrhexis, pyknosis and karyolysis. The most captured species, C. perspicillata, showed differences in DNA damage between exposed and unexposed populations, but no differences were observed between males (n = 14) and females (n = 20). G. soricina was also a sensitive species for indicating a high frequency of DNA damages compared to the omnivore P. hastatus. Elements such as Mn, Cr, Pb, and Zn observed in water samples were at high levels in the mining area. We conclude that bats in mining areas are susceptible to increased DNA damage as already identified for other species.
Subject(s)
Antineoplastic Agents , Chiroptera , Animals , Female , Male , Mutagens/toxicity , Mutagenesis , Animals, Wild , DNA DamageABSTRACT
Mesenchymal stromal/stem cells stem (MSC) have been widely studied due to their great potential for application in tissue engineering and regenerative and translational medicine. In MSC-based therapy for human diseases, cell proliferation is required to obtain a large and adequate number of cells to ensure therapeutic efficacy. During in vitro culture, cells are under an artificial environment and manipulative stress that can affect genetic stability. Several regulatory agencies have established guidelines to ensure greater safety in cell-based regenerative and translational medicine, but there is no specific definition about the maximum number of passages that ensure the lowest possible risk in MSC-based regenerative medicine. In this context, the aim of this study was to analyze DNA damage and chromosome alterations in adipose-derived mesenchymal stromal cells (ADMSC) until the eleventh passage and to provide additional subsidies to regulatory agencies related to number of passages in these cells. Thus, two methods in genetic toxicology were adopted: comet assay and micronucleus test. The comet assay results showed an increase in DNA damage from the fifth passage onwards. The micronucleus test showed a statistically significant increase of micronucleus from the seventh passage onwards, indicating a possible mutagenic effect associated with the increase in the number of passages. Based on these results, it is important to emphasize the need to assess genetic toxicology and inclusion of new guidelines by regulatory agencies to guarantee the safety of MSC-based therapies for human diseases.
Subject(s)
Mesenchymal Stem Cells , Humans , Tissue Engineering , Genomic Instability , Cell Proliferation , Mutagenesis , Cell Differentiation , Stromal CellsABSTRACT
Tacaribe virus (TCRV) is the prototype of New World mammarenaviruses, a group that includes several members that cause hemorrhagic fevers in humans. The TCRV genome comprises two RNA segments, named S (small) and L (large). Both genomic segments contain noncoding regions (NCRs) at their 5' and 3' ends. While the 5'- and 3'-terminal 19-nucleotide sequences are known to be essential for promoter function, the role of their neighboring internal noncoding region (iNCR) sequences remains poorly understood. To analyze the relevance of the 5' and 3' iNCRs in TCRV S RNA synthesis, mutant S-like minigenomes and miniantigenomes were generated. Using a minireplicon assay, Northern blotting, and reverse transcription-quantitative PCR, we demonstrated that the genomic 5' iNCR is specifically engaged in minigenome replication yet is not directly involved in minigenome transcription, and we showed that the S genome 3' iNCR is barely engaged in this process. Analysis of partial deletions and point mutations, as well as total or partial substitution of the 5' iNCR sequence, led us to conclude that the integrity of the whole genomic 5' iNCR is essential and that a local predicted secondary structure or RNA-RNA interactions between the 5' and 3' iNCRs are not strictly required for viral S RNA synthesis. Furthermore, we employed a TCRV reverse genetic approach to ask whether manipulation of the S genomic 5' iNCR sequence may be suitable for viral attenuation. We found that mutagenesis of the 5' promoter-proximal subregion slightly impacted recombinant TCRV virulence in vivo. IMPORTANCE The Mammarenavirus genus of the Arenaviridae family includes several members that cause severe hemorrhagic fevers associated with high morbidity and mortality rates, for which no FDA-approved vaccines and limited therapeutic resources are available. We provide evidence demonstrating the specific involvement of the TCRV S 5' noncoding sequence adjacent to the viral promoter in replication. In addition, we examined the relevance of this region in the context of an in vivo infection. Our findings provide insight into the mechanism through which this 5' viral RNA noncoding region assists the L polymerase for efficient viral S RNA synthesis. Also, these findings expand our understanding of the effect of genetic manipulation of New World mammarenavirus sequences aimed at the rational design of attenuated recombinant virus vaccine platforms.
Subject(s)
Arenaviruses, New World , Genome, Viral , RNA Replication , Humans , Arenaviruses, New World/genetics , Arenaviruses, New World/pathogenicity , RNA, Viral/genetics , RNA Replication/genetics , Mutagenesis , Promoter Regions, Genetic/geneticsABSTRACT
This review examined the mutagenicity and genotoxicity associated with exposure to outdoor air pollutants in Brazil. A search was performed on the Web of Science database using a combination of keywords that resulted in 134 articles. After applying exclusion criteria, a total of 75 articles were obtained. The articles were classified into three categories: (1) studies with plants and animals, (2) in vitro studies, and (3) human biomonitoring. The investigations were conducted in 11 of 27 Brazilian states with the highest prevalence in the southeast and south regions. Only 5 investigations focused on the effects of burning biomass on the quality of outdoor air. Plants, especially Tradescantia pallida, were the main air pollution biomonitoring tool. When available, a significant association between levels of air pollutants and genetic damage was described. Among the in vitro studies, Salmonella/microsome is the most used test to evaluate mutagenesis of outdoor air in Brazil (n = 26). Human biomonitoring studies were the least frequent category (n = 18). Most of the investigations utilized micronucleus bioassay, in oral mucosa cells (n = 15) and lymphocytes (n = 5), and the comet assay (n = 6). The analysis in this study points to the existence of gaps in genotoxicity studies and our findings indicate that future studies need to address the variety of potential sources of pollution existing in Brazil. In addition to extent of the impacts, consideration should be given to the enormous Brazilian biodiversity, as well as the determination of the role of socioeconomic inequality of the population in the observed outcomes.
Subject(s)
Air Pollutants , Air Pollution , Animals , Humans , Brazil , Mutagens/toxicity , Environmental Monitoring/methods , Air Pollutants/toxicity , Mutagenesis , Plants , Particulate Matter/toxicity , Mutagenicity TestsABSTRACT
El objetivo del presente estudio fue analizar el efecto del ácido clorogénico, uno de los compuestos polifenólicos con mayor concentración en la infusión de Ilex paraguariensis, sobre el daño celular y molecular inducido por el benzo(a)pireno. La infusión de Ilex paraguariensis ("mate") es bebida por la mayoría de los habitantes de Argentina, Paraguay, sur de Brasil y Uruguay. La levadura Saccharomyces cerevisiae (cepas SC7K lys2-3; SX46A y SX46Arad14() se utilizó como modelo eucariota. Las células en crecimiento exponencial se expusieron a concentraciones crecientes de benzo(a)pireno y a tratamientos combinados con una concentración de 250 ng/mL de benzo(a)pireno y ácido clorogénico a una concentración igual a la encontrada en la infusión de yerba mate. Luego de los tratamientos se determinaron fracciones de sobrevida, frecuencia mutagénica y roturas de doble cadena de ADN así como la modulación en la expresión de la proteína Rad14 a través de un análisis de Western Blot. Se observó un aumento significativo en las fracciones de sobrevida así como una disminución en la frecuencia mutagénica después de la exposición combinada con benzo(a)pireno y ácido clorogénico en comparación con los tratamientos con benzo(a)pireno como único agente. En la cepa mutante deficiente en la proteína Rad14 se observó un aumento significativo en la sensibilidad a benzo(a)pireno en comparación con la cepa SC7K lys2-3. En los tratamientos combinados de benzo(a)pireno y ácido clorogénico se observó una importante disminución de la letalidad. Con respecto a la determinación de roturas de doble cadena de ADN no se observó fraccionamiento cromosómico a la concentración de benzo(a)pireno utilizada en los experimentos. Los análisis de Western Blot mostraron un aumento en la expresión de la proteína Rad14 en las muestras tratadas con benzo(a)pireno como único agente en comparación con la muestra control. Adicionalmente se observó una disminución en la expresión de la proteína cuando en los tratamientos se utilizaron benzo(a)pireno y ácido clorogénico combinados. Los resultados indican que el ácido clorogénico disminuye significativamente la actividad mutagénica producida por el benzo(a)pireno, la cual no se encuentra relacionada con un incremento en la remoción de las lesiones inducidas por el sistema de reparación por escisión de nucleótidos.
The aim of this study was to analyze the effect of chlorogenic acid, a polyphenolic compound found at high concentrations in Ilex paraguariensis infusions, on cellular and molecular damage induced by benzo(a)pyrene. Ilex paraguariensis infusions ("mate") are consumed by most of the population in Argentina, Paraguay, southern Brazil and Uruguay. Saccharomyces cerevisiae yeast (SC7K lys2-3; SX46A and SX46Arad14( strains) were used as eukaryotic model organisms. Cells in an exponential growth phase were exposed to increasing concentrations of benzo(a)pyrene, as well as combined treatments of benzo(a)pyrene at a concentration of 250 ng/mL and chlorogenic acid at a concentration matching that which is commonly found in mate. Determinations of surviving fraction, mutagenic frequency and double strand DNA breaks induction were performed, along with the assessment of the modulation of the expression of protein Rad14 by Western Blot. A significant increase of surviving fractions and a decrease in mutagenic frequency were observed after exposure to benzo(a)pyrene plus chlorogenic acid, contrary to benzo(a)pyrene alone. A substantial increase in sensitivity to benzo(a)pyrene was observed for the Rad14 protein-deficient mutating strain when compared to the SC7K lys2-3 strain. An important decrease in lethality was observed when combined benzo(a)pyrene and chlorogenic acid treatments were applied. As for the determination of DSBs, no chromosomic fractionation was observed at the benzo(a)pyrene concentration tested in the experiments. Western Blot analysis showed an increase in the expression of protein Rad14 for samples treated with benzo(a)pyrene as a single agent when compared against the control sample. Additionally, the expression of this protein was observed to diminish when combined treatments with benzo(a)pyrene and chlorogenic acid were used. Results obtained indicate that chlorogenic acid significantly decreases the mutagenic activity of benzo(a)pyrene, which is not related to an increase in the removal of lesions induced by nucleotide excision repair system.
O objetivo deste estudo foi analisar o efeito do ácido clorogênico, um dos compostos polifenólicos com maior concentração na infusão de Ilex paraguariensis, sobre o dano celular e molecular induzido pelo benzopireno. A infusão de Ilex paraguariensis ("mate") é consumida pela maioria dos habitantes da Argentina, Paraguai, sul do Brasil e Uruguai. A levedura Saccharomyces cerevisiae (cepas SC7K lys2-3; SX46A e SX46Arad14() foi utilizada como modelo eucariótico. Células em crescimento exponencial foram expostas a concentrações crescentes de benzopireno e tratamentos combinados foram realizados com uma concentração de 250 ng/mL de benzo(a)pireno e ácido clorogênico, igual à encontrada na infusão de erva-mate. Após os tratamentos, foram determinadas as frações de sobrevivência, frequência mutagênica e quebras de fita dupla do DNA, bem como a modulação na expressão da proteína Rad14 por meio de análise de Western Blot. Um aumento significativo nas frações de sobrevivência, bem como uma diminuição na frequência mutagênica foram observados após a exposição combinada de benzo(a)pireno e ácido clorogênico em comparação com tratamentos de agente único de benzo(a)pireno. Um aumento significativo na sensibilidade ao benzo(a)pireno foi observado na cepa mutante deficiente em proteína Rad14 em comparação com a cepa SC7K lys2-3. Nos tratamentos combinados de benzo(a)pireno e ácido clorogênico, observou-se uma diminuição significativa na letalidade. Com relação à determinação das quebras de fita dupla de DNA, não foi observado fracionamento cromossômico na concentração de benzo(a)pireno utilizada nos experimentos. A partir da análise de Western Blot, observou-se um aumento na expressão da proteína Rad14 nas amostras tratadas com benzo(a)pireno como agente único em relação à amostra controle. Além disso, uma diminuição na expressão da proteína foi observada quando combinados de benzo(a)pireno e ácido clorogênico foram usados âânos tratamentos. Os resultados obtidos neste trabalho indicam que o ácido clorogênico diminui significativamente a atividade mutagênica produzida pelo benzo(a)pireno, a qual não está relacionada a um aumento na remoção de lesões induzidas pelo sistema de reparo por excisão de nucleotídeos.
Subject(s)
Benzo(a)pyrene/pharmacology , Chlorogenic Acid/pharmacology , Cell Death/drug effects , Saccharomyces cerevisiae Proteins/adverse effects , DNA Repair Enzymes/genetics , Benzo(a)pyrene/toxicity , Mutagenesis/drug effects , Cell Death/genetics , Antimutagenic Agents/pharmacology , Saccharomyces cerevisiae Proteins/genetics , DNA Breaks, Double-Stranded/drug effects , Mutation RateABSTRACT
The Ames mutagenicity test constitutes the most frequently used assay to estimate the mutagenic potential of drug candidates. While this test employs experimental results using various strains of Salmonella typhimurium, the vast majority of the published in silico models for predicting mutagenicity do not take into account the test results of the individual experiments conducted for each strain. Instead, such QSAR models are generally trained employing overall labels (i.e., mutagenic and nonmutagenic). Recently, neural-based models combined with multitask learning strategies have yielded interesting results in different domains, given their capabilities to model multitarget functions. In this scenario, we propose a novel neural-based QSAR model to predict mutagenicity that leverages experimental results from different strains involved in the Ames test by means of a multitask learning approach. To the best of our knowledge, the modeling strategy hereby proposed has not been applied to model Ames mutagenicity previously. The results yielded by our model surpass those obtained by single-task modeling strategies, such as models that predict the overall Ames label or ensemble models built from individual strains. For reproducibility and accessibility purposes, all source code and datasets used in our experiments are publicly available.
Subject(s)
Mutagens , Neural Networks, Computer , Mutagens/toxicity , Reproducibility of Results , Mutagenesis , Computer Simulation , Mutagenicity Tests/methodsABSTRACT
UV-induced mutagenesis is, to greater extent, a phenomenon dependent on translesion synthesis (TLS) and regulated by the SOS response in bacteria. Caulobacter crescentus, like many bacterial species, employs the ImuABC (ImuAB DnaE2) pathway in TLS. To have a better understanding of the characteristics of UV-induced mutagenesis in this organism, we performed a whole genome analysis of mutations present in survivors after an acute UVC exposure (300 J/m2). We found an average of 3.2 mutations/genome in irradiated samples, distributed in a mutational spectrum consisting exclusively of base substitutions, including tandem mutations. Although limited in conclusions by the small number of mutations identified, our study points to the feasibility of using whole-genome sequencing to study mutagenesis occurring in experiments involving a single acute exposure to genotoxic agents.
Subject(s)
Caulobacter crescentus , Caulobacter crescentus/genetics , Caulobacter crescentus/metabolism , Bacterial Proteins/genetics , Mutagenesis , DNA Damage/genetics , DNA Repair/geneticsABSTRACT
Millions of tons of feathers produced annually by the poultry industry cause environmental pollution and waste a significant source of protein. In the present study, three keratinolytic Bacillus strains, Bacillus sp. MK1, MK2, and MK3 were isolated. Some of the enzymatic properties of these keratinases were determined. The effects of some chemicals on enzyme activities were investigated. The specific activities of MK1, MK2, and MK3 were 2.76, 0.77, and 5.48 U/mg protein at 40°C, respectively, and mutant varieties were overexpressed after EtBr treatment. A comparison of keratinase activity between native and improved isolates showed that mutant variants exhibited higher activity ranging from 116 to 214%. According to BLAST analysis, the Bacillus sp. MK1 rDNA sequence was 96.83% similar to that of B. subtilis subsp. stercoris strain 153, B. subtilis strain FR10, B. tequilensis strain P12, and B. subtilis strain SRR21, and Bacillus sp. MK2 and MK3 16S rDNA sequences were 99.54% similar to those of B. subtilis strain 21M and B. subtilis strain NX17 sequences. The results of the enzymatic analysis of the enzymes and overexpressed mutant varieties are promising for application in the industrial production and application of the enzymes decomposition of feathers in poultry sector.
Subject(s)
Bacillus , Animals , Bacillus/genetics , Hydrogen-Ion Concentration , Keratins/genetics , Mutagenesis , Peptide Hydrolases/genetics , TemperatureABSTRACT
Trypanosoma cruzi is a flagellated protozoan parasite that causes Chagas disease, which represents a serious health problem in the Americas. Nucleoside diphosphate kinases (NDPKs) are key enzymes that are implicated in cellular energy management. TcNDPK1 is the canonical isoform in the T. cruzi parasite. TcNDPK1 has a cytosolic, perinuclear and nuclear distribution. It is also found in non-membrane-bound filaments adjacent to the nucleus. In the present work, X-ray diffraction and in vivo studies of TcNDPK1 are described. The structure reveals a novel, multi-hexameric, left-handed helical oligomer structure. The results of directed mutagenesis studies led to the conclusion that the microscopic TcNDPK1 granules observed in vivo in T. cruzi parasites are made up by the association of TcNDPK1 oligomers. In the absence of experimental data, analysis of the interactions in the X-ray structure of the TcNDPK1 oligomer suggests the probable assembly and disassembly steps: dimerization, assembly of the hexamer as a trimer of dimers, hexamer association to generate the left-handed helical oligomer structure and finally oligomer association in a parallel manner to form the microscopic TcNDPK1 filaments that are observed in vivo in T. cruzi parasites. Oligomer disassembly takes place on the binding of substrate in the active site of TcNDPK1, leading to dissociation of the hexamers. This study constitutes the first report of such a protein arrangement, which has never previously been seen for any protein or NDPK. Further studies are needed to determine its physiological role. However, it may suggest a paradigm for protein storage reflecting the complex mechanism of action of TcNDPK1.
Subject(s)
Nucleoside-Diphosphate Kinase/chemistry , Trypanosoma cruzi/chemistry , X-Ray Diffraction/methods , Amino Acid Sequence , Animals , Catalytic Domain , Cloning, Molecular , Models, Molecular , Molecular Structure , Mutagenesis , Nucleoside-Diphosphate Kinase/genetics , Protozoan Proteins , Trypanosoma cruzi/geneticsABSTRACT
A previous proteomic study uncovered a relationship between nutritional stress and fluctuations in levels of diadenylate cyclases (DACs) and other proteins that regulate DAC activity, degrade, or interact with c-di-AMP, suggesting a possible role of this second messenger in B. subtilis stress-associated mutagenesis (SAM). Here, we investigated a possible role of c-di-AMP in SAM and growth-associated mutagenesis (GAM). Our results showed that in growing cells of B. subtilis YB955 (hisC952, metB25 and leuC427), the DACs CdaA and DisA, which play crucial roles in cell wall homeostasis and chromosomal fidelity, respectively, counteracted spontaneous and Mitomycin-C-induced mutagenesis. However, experiments in which hydrogen peroxide was used to induce mutations showed that single deficiencies in DACs caused opposite effects compared to each other. In contrast, in the stationary-phase, DACs promoted mutations in conditions of nutritional stress. These results tracked with intracellular levels of c-di-AMP, which are significantly lower in cdaA- and disA-deficient strains. The restoration of DAC-deficient strains with single functional copies of the cdaA and/or disA returned SAM and GAM levels to those observed in the parental strain. Taken together, these results reveal a role for c-di-AMP in promoting genetic diversity in growth-limiting conditions in B. subtilis. Finally, we postulate that this novel function of c-di-AMP can be exerted through proteins that possess binding domains for this second messenger and play roles in DNA repair, ion transport, transcriptional regulation, as well as oxidative stress protection.
Subject(s)
Bacillus subtilis , Phosphorus-Oxygen Lyases , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Mutagenesis , Phosphorus-Oxygen Lyases/metabolism , ProteomicsABSTRACT
Nucleotide excision repair (NER) is one of the main pathways for genome protection against structural DNA damage caused by sunlight, which in turn is extensively related to skin cancer development. The mutation spectra induced by UVB were investigated by whole-exome sequencing of randomly selected clones of NER-proficient and XP-C-deficient human skin fibroblasts. As a model, a cell line unable to recognize and remove lesions (XP-C) was used and compared to the complemented isogenic control (COMP). As expected, a significant increase of mutagenesis was observed in irradiated XP-C cells, mainly C>T transitions, but also CC>TT and C>A base substitutions. Remarkably, the C>T mutations occur mainly at the second base of dipyrimidine sites in pyrimidine-rich sequence contexts, with 5'TC sequence the most mutated. Although T>N mutations were also significantly increased, they were not directly related to pyrimidine dimers. Moreover, the large-scale study of a single UVB irradiation on XP-C cells allowed recovering the typical mutation spectrum found in human skin cancer tumors. Eventually, the data may be used for comparison with the mutational profiles of skin tumors obtained from XP-C patients and may help to understand the mutational process in nonaffected individuals.