Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 540
Filter
1.
EBioMedicine ; 105: 105231, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38959848

ABSTRACT

BACKGROUND: The clinical heterogeneity of myasthenia gravis (MG), an autoimmune disease defined by antibodies (Ab) directed against the postsynaptic membrane, constitutes a challenge for patient stratification and treatment decision making. Novel strategies are needed to classify patients based on their biological phenotypes aiming to improve patient selection and treatment outcomes. METHODS: For this purpose, we assessed the serum proteome of a cohort of 140 patients with anti-acetylcholine receptor-Ab-positive MG and utilised consensus clustering as an unsupervised tool to assign patients to biological profiles. For in-depth analysis, we used immunogenomic sequencing to study the B cell repertoire of a subgroup of patients and an in vitro assay using primary human muscle cells to interrogate serum-induced complement formation. FINDINGS: This strategy identified four distinct patient phenotypes based on their proteomic patterns in their serum. Notably, one patient phenotype, here named PS3, was characterised by high disease severity and complement activation as defining features. Assessing a subgroup of patients, hyperexpanded antibody clones were present in the B cell repertoire of the PS3 group and effectively activated complement as compared to other patients. In line with their disease phenotype, PS3 patients were more likely to benefit from complement-inhibiting therapies. These findings were validated in a prospective cohort of 18 patients using a cell-based assay. INTERPRETATION: Collectively, this study suggests proteomics-based clustering as a gateway to assign patients to a biological signature likely to benefit from complement inhibition and provides a stratification strategy for clinical practice. FUNDING: CN and CBS were supported by the Forschungskommission of the Medical Faculty of the Heinrich Heine University Düsseldorf. CN was supported by the Else Kröner-Fresenius-Stiftung (EKEA.38). CBS was supported by the Deutsche Forschungsgemeinschaft (DFG-German Research Foundation) with a Walter Benjamin fellowship (project 539363086). The project was supported by the Ministry of Culture and Science of North Rhine-Westphalia (MODS, "Profilbildung 2020" [grant no. PROFILNRW-2020-107-A]).


Subject(s)
Autoantibodies , Myasthenia Gravis , Phenotype , Proteomics , Receptors, Cholinergic , Humans , Myasthenia Gravis/blood , Myasthenia Gravis/diagnosis , Myasthenia Gravis/immunology , Myasthenia Gravis/metabolism , Receptors, Cholinergic/immunology , Receptors, Cholinergic/metabolism , Autoantibodies/blood , Autoantibodies/immunology , Proteomics/methods , Female , Male , Middle Aged , Adult , Cluster Analysis , Proteome , Aged , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , Complement Activation
2.
Acta Neuropathol ; 147(1): 102, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38888758

ABSTRACT

Myasthenia gravis is a chronic antibody-mediated autoimmune disease disrupting neuromuscular synaptic transmission. Informative biomarkers remain an unmet need to stratify patients with active disease requiring intensified monitoring and therapy; their identification is the primary objective of this study. We applied mass spectrometry-based proteomic serum profiling for biomarker discovery. We studied an exploration and a prospective validation cohort consisting of 114 and 140 anti-acetylcholine receptor antibody (AChR-Ab)-positive myasthenia gravis patients, respectively. For downstream analysis, we applied a machine learning approach. Protein expression levels were confirmed by ELISA and compared to other myasthenic cohorts, in addition to myositis and neuropathy patients. Anti-AChR-Ab levels were determined by a radio receptor assay. Immunohistochemistry and immunofluorescence of intercostal muscle biopsies were employed for validation in addition to interactome studies of inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3). Machine learning identified ITIH3 as potential serum biomarker reflective of disease activity. Serum levels correlated with disease activity scores in the exploration and validation cohort and were confirmed by ELISA. Lack of correlation between anti-AChR-Ab levels and clinical scores underlined the need for biomarkers. In a subgroup analysis, ITIH3 was indicative of treatment responses. Immunostaining of muscle specimens from these patients demonstrated ITIH3 localization at the neuromuscular endplates in myasthenia gravis but not in controls, thus providing a structural equivalent for our serological findings. Immunoprecipitation of ITIH3 and subsequent proteomics lead to identification of its interaction partners playing crucial roles in neuromuscular transmission. This study provides data on ITIH3 as a potential pathophysiological-relevant biomarker of disease activity in myasthenia gravis. Future studies are required to facilitate translation into clinical practice.


Subject(s)
Biomarkers , Myasthenia Gravis , Humans , Myasthenia Gravis/blood , Myasthenia Gravis/diagnosis , Myasthenia Gravis/pathology , Myasthenia Gravis/metabolism , Biomarkers/blood , Biomarkers/metabolism , Male , Female , Middle Aged , Adult , Aged , Autoantibodies/blood , Receptors, Cholinergic/immunology , Receptors, Cholinergic/metabolism , Proteomics/methods , Cohort Studies , Young Adult , Proteinase Inhibitory Proteins, Secretory/blood , Machine Learning
3.
Autoimmunity ; 57(1): 2347379, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38723105

ABSTRACT

Thymoma is closely associated with myasthenia gravis (MG). However, due to the heterogeneity of thymoma and the intricate pathogenesis of MG, it remains unclear why some patients with thymoma develop MG and others do not. In this study, we conducted a comparative phenotype analysis of thymocytes in type B thymomas in patients with MG (MG (+) thymomas) and without MG (MG (-) thymomas) via fluorescence-activated cell sorting (FACS). Our results show that the developmental stages defined by the expression of CD3, CD4, and CD8 were largely maintained in both MG (+) and MG (-) thymomas, with CD4+CD8+ cells constituting the majority of thymocytes in type B thymoma, and no significant difference between this cell population was observed in MG (+) and MG (-) thymomas.We discovered that CD4+CD8+ thymocytes in MG (+) thymomas expressed low levels of αß TCR and high levels of IL-7 receptor α (IL-7Rα), whereas in MG (-) thymomas, CD4+CD8+ thymocytes exhibited the opposite pattern of αß TCR and IL-7Rα expression. These results suggest that the positive and negative selection processes of CD4+CD8+ thymocytes might differ between MG (+) thymomas and MG (-) thymomas. The expression of the Helios transcription factor is induced during negative selection and marks a group of T cells that have undergone negative selection and are likely to be deleted due to strong TCR binding with self-peptides/MHC ligands. We observed that the percentage of Helios-positive CD4SP T cells was greater in MG (-) than in MG (+) thymomas. Thus, the differentially regulated selection process of CD4+CD8+ thymocytes, which involves TCR and IL-7/IL-7Rα signaling, is associated with the presence of MG in type B thymomas.


Subject(s)
Myasthenia Gravis , Receptors, Antigen, T-Cell, alpha-beta , Thymocytes , Thymoma , Humans , Thymoma/immunology , Thymoma/pathology , Thymoma/metabolism , Myasthenia Gravis/immunology , Myasthenia Gravis/pathology , Myasthenia Gravis/metabolism , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Male , Thymocytes/immunology , Thymocytes/metabolism , Female , Middle Aged , Receptors, Interleukin-7/metabolism , Receptors, Interleukin-7/immunology , Adult , Aged , Thymus Neoplasms/immunology , Thymus Neoplasms/pathology , Thymus Neoplasms/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Immunophenotyping
4.
Eur J Neurosci ; 59(12): 3292-3308, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38650308

ABSTRACT

Muscle-specific kinase myasthenia gravis (MuSK MG) is caused by autoantibodies against MuSK in the neuromuscular junction (NMJ). MuSK MG patients have fluctuating, fatigable skeletal muscle weakness, in particular of bulbar muscles. Severity differs greatly between patients, in spite of comparable autoantibody levels. One explanation for inter-patient and inter-muscle variability in sensitivity might be variations in compensatory muscle responses. Previously, we developed a passive transfer mouse model for MuSK MG. In preliminary ex vivo experiments, we observed that muscle contraction of some mice, in particular those with milder myasthenia, had become partially insensitive to inhibition by µ-Conotoxin-GIIIB, a blocker of skeletal muscle NaV1.4 voltage-gated sodium channels. We hypothesised that changes in NaV channel expression profile, possibly co-expression of (µ-Conotoxin-GIIIB insensitive) NaV1.5 type channels, might lower the muscle fibre's firing threshold and facilitate neuromuscular synaptic transmission. To test this hypothesis, we here performed passive transfer in immuno-compromised mice, using 'high', 'intermediate' and 'low' dosing regimens of purified MuSK MG patient IgG4. We compared myasthenia levels, µ-Conotoxin-GIIIB resistance and muscle fibre action potential characteristics and firing thresholds. High- and intermediate-dosed mice showed clear, progressive myasthenia, not seen in low-dosed animals. However, diaphragm NMJ electrophysiology demonstrated almost equal myasthenic severities amongst all regimens. Nonetheless, low-dosed mouse diaphragms showed a much higher degree of µ-Conotoxin-GIIIB resistance. This was not explained by upregulation of Scn5a (the NaV1.5 gene), lowered muscle fibre firing thresholds or histologically detectable upregulated NaV1.5 channels. It remains to be established which factors are responsible for the observed µ-Conotoxin-GIIIB insensitivity and whether the NaV repertoire change is compensatory beneficial or a bystander effect.


Subject(s)
Muscle, Skeletal , Animals , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Receptor Protein-Tyrosine Kinases/metabolism , Humans , Myasthenia Gravis/metabolism , Myasthenia Gravis/physiopathology , Myasthenia Gravis/immunology , Disease Models, Animal , Female , Receptors, Cholinergic/metabolism , Receptors, Cholinergic/immunology , Voltage-Gated Sodium Channels/metabolism , Neuromuscular Junction/metabolism , Neuromuscular Junction/drug effects , Autoantibodies , Male , Conotoxins/pharmacology , Immunization, Passive
5.
Cell Commun Signal ; 22(1): 215, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570836

ABSTRACT

More than 80% of patients with myasthenia gravis (MG) are positive for anti-acetylcholine receptor (AChR) antibodies. Regulatory T cells (Tregs) suppress overproduction of these antibodies, and patients with AChR antibody-positive MG (AChR MG) exhibit impaired Treg function and reduced Treg numbers. The gut microbiota and their metabolites play a crucial role in maintaining Treg differentiation and function. However, whether impaired Tregs correlate with gut microbiota activity in patients with AChR MG remains unknown. Here, we demonstrate that butyric acid-producing gut bacteria and serum butyric acid level are reduced in patients with AChR MG. Butyrate supplementation effectively enhanced Treg differentiation and their suppressive function of AChR MG. Mechanistically, butyrate activates autophagy of Treg cells by inhibiting the mammalian target of rapamycin. Activation of autophagy increased oxidative phosphorylation and surface expression of cytotoxic T-lymphocyte-associated protein 4 on Treg cells, thereby promoting Treg differentiation and their suppressive function in AChR MG. This observed effect of butyrate was blocked using chloroquine, an autophagy inhibitor, suggesting the vital role of butyrate-activated autophagy in Tregs of patients with AChR MG. We propose that gut bacteria derived butyrate has potential therapeutic efficacy against AChR MG by restoring impaired Tregs.


Subject(s)
Gastrointestinal Microbiome , Myasthenia Gravis , Humans , Receptors, Cholinergic/metabolism , T-Lymphocytes, Regulatory , Butyric Acid/pharmacology , Butyric Acid/metabolism , Myasthenia Gravis/metabolism , Autoantibodies/metabolism
6.
Autophagy ; 20(7): 1473-1482, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38346408

ABSTRACT

Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ) that results from autoantibodies against nicotinic acetylcholine receptors (nAchRs) at NMJs. These autoantibodies are mainly originated from autoreactive B cells that bind and destroy nAchRs at NMJs preventing nerve impulses from activating the end-plates of skeletal muscle. Indeed, immune dysregulation plays a crucial role in the pathogenesis of MG. Autoreactive B cells are increased in MG due to the defect in the central and peripheral tolerance mechanisms. As well, autoreactive T cells are augmented in MG due to the diversion of regulatory T (Treg) cells or a defect in thymic anergy leading to T cell-mediated autoimmunity. Furthermore, macroautophagy/autophagy, which is a conserved cellular catabolic process, plays a critical role in autoimmune diseases by regulating antigen presentation, survival of immune cells and cytokine-mediated inflammation. Abnormal autophagic flux is associated with different autoimmune disorders. Autophagy regulates the connection between innate and adaptive immune responses by controlling the production of cytokines and survival of Tregs. As autophagy is involved in autoimmune disorders, it may play a major role in the pathogenesis of MG. Therefore, this mini-review demonstrates the potential role of autophagy and autophagy activators in MG.Abbreviations: Ach, acetylcholine; Breg, regulatory B; IgG, immunoglobulin G; MG, myasthenia gravis; NMJ, neuromuscular junction; ROS, reactive oxygen species; Treg, regulatory T; Ubl, ubiquitin-like.


Subject(s)
Autophagy , Myasthenia Gravis , Myasthenia Gravis/immunology , Myasthenia Gravis/pathology , Myasthenia Gravis/metabolism , Humans , Animals , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Autoantibodies/immunology
7.
J Neuroinflammation ; 21(1): 10, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178152

ABSTRACT

Myasthenia gravis is an autoimmune disease characterized by pathogenic antibodies that target structures of the neuromuscular junction. However, some patients also experience autonomic dysfunction, anxiety, depression, and other neurological symptoms, suggesting the complex nature of the neurological manifestations. With the aim of explaining the symptoms related to the central nervous system, we utilized a rat model to investigate the impact of dopamine signaling in the central nervous and peripheral circulation. We adopted several screening methods, including western blot, quantitative PCR, mass spectrum technique, immunohistochemistry, immunofluorescence staining, and flow cytometry. In this study, we observed increased and activated dopamine signaling in both the central nervous system and peripheral circulation of myasthenia gravis rats. Furthermore, changes in the expression of two key molecules, Claudin5 and CD31, in endothelial cells of the blood-brain barrier were also examined in these rats. We also confirmed that dopamine incubation reduced the expression of ZO1, Claudin5, and CD31 in endothelial cells by inhibiting the Wnt/ß-catenin signaling pathway. Overall, this study provides novel evidence suggesting that pathologically elevated dopamine in both the central nervous and peripheral circulation of myasthenia gravis rats impair brain-blood barrier integrity by inhibiting junction protein expression in brain microvascular endothelial cells through the Wnt/ß-catenin pathway.


Subject(s)
Dopamine , Myasthenia Gravis , Humans , Rats , Animals , Dopamine/metabolism , Endothelial Cells/metabolism , Brain , Blood-Brain Barrier/metabolism , Wnt Signaling Pathway/physiology , Myasthenia Gravis/metabolism
8.
Front Biosci (Landmark Ed) ; 28(11): 306, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38062805

ABSTRACT

BACKGROUND: Myasthenia gravis (MG) is an autoantibodies-mediated autoimmune disease with the complications of neuromuscular junction transmission. In this study, we aimed to investigate the molecular regulatory roles of pentaxin 3 (PTX3) in patients and in animal model with MG and to explore its underlying mechanism. METHODS: Patients with MG were identified and enrolled at our designated hospital and animal model was utilized for the proposed study. Enzyme-linked immunosorbent assay (ELISA) kit were used to quantify the IL-1ß, IL-6, INF-γ, IL-17, TNF-α, anti-TAChR IgG/IgG1/IgG2b/IgG2c levels. RESULTS: Serum PTX3 expression level in patients with MG was up-regulated as compared to normal. Furthermore, we found increased expression level of mRNA and protein product of PTX3 in the mice with MG. PTX3 promoted inflammation, pyroptosis in patients as well as in the MG mouse model. In addition, PTX3 induced the STAT3/NLRP3 inflammasome and promoted gene synthesis of STAT3. We found that METTL3-mediated m6A modification decreases PTX3 stability. CONCLUSIONS: Our study suggests that the PTX3 is associated with the enhancement of inflammation and pyroptosis through regulating the STAT3/NLRP3 inflammasome signaling pathway at the early stage of the disease. The pro-inflammatory PTX3 facilitates the development of MG and it can be used as a potantial MG-associated diagnostic biomarker for MG.


Subject(s)
Inflammasomes , Myasthenia Gravis , Animals , Humans , Mice , Inflammasomes/metabolism , Inflammation , Methyltransferases , Myasthenia Gravis/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis
9.
Sci Rep ; 13(1): 7478, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37156800

ABSTRACT

Muscle-specific kinase (MuSK) is crucial for acetylcholine receptor (AChR) clustering and thereby neuromuscular junction (NMJ) function. NMJ dysfunction is a hallmark of several neuromuscular diseases, including MuSK myasthenia gravis. Aiming to restore NMJ function, we generated several agonist monoclonal antibodies targeting the MuSK Ig-like 1 domain. These activated MuSK and induced AChR clustering in cultured myotubes. The most potent agonists partially rescued myasthenic effects of MuSK myasthenia gravis patient IgG autoantibodies in vitro. In an IgG4 passive transfer MuSK myasthenia model in NOD/SCID mice, MuSK agonists caused accelerated weight loss and no rescue of myasthenic features. The MuSK Ig-like 1 domain agonists unexpectedly caused sudden death in a large proportion of male C57BL/6 mice (but not female or NOD/SCID mice), likely caused by a urologic syndrome. In conclusion, these agonists rescued pathogenic effects in myasthenia models in vitro, but not in vivo. The sudden death in male mice of one of the tested mouse strains revealed an unexpected and unexplained role for MuSK outside skeletal muscle, thereby hampering further (pre-) clinical development of these clones. Future research should investigate whether other Ig-like 1 domain MuSK antibodies, binding different epitopes, do hold a safe therapeutic promise.


Subject(s)
Myasthenia Gravis , Receptor Protein-Tyrosine Kinases , Male , Animals , Mice , Mice, SCID , Receptor Protein-Tyrosine Kinases/metabolism , Mice, Inbred C57BL , Mice, Inbred NOD , Myasthenia Gravis/metabolism , Receptors, Cholinergic/metabolism , Autoantibodies , Muscle Weakness , Acetylcholine
10.
Clin Immunol ; 245: 109184, 2022 12.
Article in English | MEDLINE | ID: mdl-36372318

ABSTRACT

The pathogenesis and progression of myasthenia gravis (MG), an autoimmune disease, involve abnormal function and composition of several immune cell populations. However, details of this dysregulation remain unclear. We performed a cross-section analysis using cytometry time-of-flight on blood samples from 12 generalized MG without glucocorticoid or other immunosuppressant treatment, and 10 sex- and age-matched healthy controls. Combining data from an external validation cohort (MG n = 38, control n = 21), bulk-RNA sequencing and single-cell RNA sequencing, alterations in immune cell populations and differential expression of immune check point were revealed. Several switched memory B cell subsets (CD3- CD19+ CD27+ IgD- CD38+/-) were increased in MG patients. The number of HLA- DQ- CD38+ naïve B cells was higher in MG patients and correlated with the quantitative MG score (QMG). Among NK cells, the number of CD56+ CD16+ NK cells and CD56+ CD16+ CD8+ NK cells were decreased in MG patients and positively correlated with QMG. VISTA+ monocytes were increased in MG patients. Classical T cell subsets showed no significant change; however, the expression of VISTA, LAG3, CTLA4, and CXCR5 was higher in T cells from MG patients. The expression of CD38 was higher in neutrophils from MG patients. The external validation cohort validated the dysregulation of NK cell subtypes, and differences were also observed in subgroups of patients. Bulk-RNA sequencing also revealed increased mRNA expression of VSIR in monocytes of MG patients compared to those from healthy controls, and the antigen presentation and processing pathway was identified as enriched in the functional characterization of VISTA+ monocytes via single-cell RNA sequencing. Our study revealed alterations in several immune cell subsets and identified potential cellular biomarkers for MG diagnosis and disease severity assessment. In addition, the abnormal expression of multiple immune checkpoints in MG provides further rationale for the investigation of immune-checkpoint-related therapy.


Subject(s)
Monocytes , Myasthenia Gravis , Humans , Flow Cytometry , T-Lymphocyte Subsets , Killer Cells, Natural , Myasthenia Gravis/metabolism
13.
J Immunol Res ; 2022: 4337399, 2022.
Article in English | MEDLINE | ID: mdl-35265719

ABSTRACT

Background: A previous study on thymomas in myasthenia gravis (MG) patients indicated that OX40 expression may be upregulated in thymic tissues adjacent to germinal centers (GCs) and thymomas, and OX40 may interact with OX40L in GCs to enhance anti-acetylcholine receptor antibody production. However, little is known about the clinical significance of the expression of OX40 and OX40L in the peripheral blood of patients with MG. We aimed to characterize the expression of membrane-bound and soluble OX40 and OX40L in the peripheral blood of patients with MG and to identify their clinical significance. Methods: For membrane molecules, we collected peripheral blood (PB) from 39 MG patients at baseline, 22 patients in relapse, and 42 patients in remission, as well as from 36 healthy participants as controls. For soluble molecules, plasma from 37 MG patients at baseline, 34 patients in relapse, and 30 patients in remission, as well as plasma from 36 healthy controls (HC), was retrospectively collected from the sample bank of the First Hospital of Soochow University. The expression of membrane-bound OX40 and OX40L (mOX40 and mOX40L) by immune cells was measured using flow cytometry. Plasma levels of soluble OX40 and OX40L (sOX40 and sOX40L) were measured by ELISA. Results: (1) The expression of OX40 on CD4+ T cells and that of OX40L on B cells and monocytes were significantly increased, and the levels of sOX40 were significantly decreased in MG patients at baseline compared with HC, while the expression of sOX40L was not significantly different between the two groups. (2) Dynamic observation of the molecules showed significantly higher expression of OX40 on CD4+ T cells and higher levels of sOX40 in MG patients in relapse than in MG patients at baseline and MG patients in remission. Furthermore, the expression levels of sOX40 were significantly elevated in MG patients in remission compared with MG patients at baseline, and the expression of sOX40L was significantly lower in MG patients in remission than in MG patients at baseline and MG patients in relapse. (3) Plasma levels of sOX40 and sOX40L were significantly decreased in 13 patients with relapsed MG after immunosuppressive treatment compared with those before treatment. (4) Correlation analysis showed that the expression of OX40 on CD4+ T cells in patients with relapsed MG was positively correlated with the concentration of acetylcholine receptor antibodies (AchR-Ab), whereas the expression of OX40L on CD19+ B cells and CD14+ monocytes was negatively correlated with disease duration. (5) Binary regression analysis showed that patients with high CD4+ OX40 expression and high sOX40L levels had an increased risk of relapse. Conclusions: OX40 and OX40L are abnormally expressed in the peripheral blood of patients with MG and may be closely associated with disease status and treatment. The OX40/OX40L pathway may be involved in the immunopathological process of MG and may play a role mainly in the later stage of MG.


Subject(s)
Myasthenia Gravis , OX40 Ligand , Receptors, OX40 , Humans , Myasthenia Gravis/diagnosis , Myasthenia Gravis/metabolism , Neoplasm Recurrence, Local , OX40 Ligand/blood , OX40 Ligand/metabolism , Receptors, OX40/blood , Receptors, OX40/metabolism , Retrospective Studies
14.
Sci Rep ; 11(1): 23920, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34907261

ABSTRACT

Myasthenia gravis (MG) is a complex neurological autoimmune disease with a pathogenetic mechanism that has yet to be elucidated. Emerging evidence has revealed that genes, non-coding RNAs and genetic variants play significant roles in the pathogenesis of MG. However, the molecular mechanisms of single nucleotide polymorphisms (SNPs) located on lncRNAs could disturb lncRNA-mediated ceRNA regulatory functions still unclear in MG. In this study, we collated 276 experimentally confirmed MG risk genes and 192 MG risk miRNAs. We then constructed a lncRNA-mediated ceRNA network for MG based on multi-step computational strategies. Next, we systematically integrated risk pathways and identified candidate SNPs in lncRNAs for MG based on data acquired from public databases. In addition, we constructed a pathway-based lncRNA-SNP mediated network (LSPN) that contained 128 lncRNAs targeting 8 MG risk pathways. By analyzing network, we propose a latent mechanism for how the "lncRNA-SNP-mRNA-pathway" axis affects the pathogenesis of MG. Moreover, 25 lncRNAs and 51 SNPs on lncRNAs were extracted from the "lncRNA-SNP-mRNA-pathway" axis. Finally, functional analyses demonstrated lncRNA-SNPs mediated ceRNA regulation pairs associated with MG participated in the MAPK signaling pathway. In summary, we constructed MG-specific lncRNA-SNPs mediated ceRNA regulatory networks based on pathway in the present study, which was helpful to elucidate the roles of lncRNA-SNPs in the pathogenesis of MG and provide novel insights into mechanism of lncRNA-SNPs as potential genetic risk biomarkers of MG.


Subject(s)
Biomarkers, Tumor , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Polymorphism, Single Nucleotide , RNA, Long Noncoding , Biomarkers, Tumor/biosynthesis , Biomarkers, Tumor/genetics , Humans , Myasthenia Gravis/genetics , Myasthenia Gravis/metabolism , RNA, Long Noncoding/biosynthesis , RNA, Long Noncoding/genetics , Risk Factors
15.
Biomed Res Int ; 2021: 5854056, 2021.
Article in English | MEDLINE | ID: mdl-34912892

ABSTRACT

OBJECTIVE: The purpose of the study was to investigate the clinical effect of high-dose glucocorticoids (GCS) combined with immunosuppressants on the treatment of myasthenia gravis (MG) with video-assisted thoracoscopic surgery (VATS). METHODS: A total of 106 MG patients admitted to the neurology department of our hospital from February 2016 to February 2020 were selected as the study subjects and divided into experimental group (n = 53) and control group (n = 53). The patients in the control group underwent VATS, while the patients in the experimental group were treated with high-dose GCS combined with immunosuppressants on the basis of VATS treatment. The clinical efficacy of different MG treatment methods was analyzed. RESULTS: No significant differences were observed in visual analogue score (VAS) at T1 between the two groups (P > 0.05), while VAS scores at T2, T3, and T4 in the experimental group were significantly lower than those in the control group (P < 0.001). In the experimental group, the overall response rate was significantly higher than the control group (P < 0.05). Cytotoxic T-lymphocyte-associated protein 4 (CTLA4) level in regulatory T (Treg) cells in experimental groups after treatment was significantly higher, compared to that in before treatment and the control group (P < 0.05). Similar results of each quantitative MG score were displayed in both groups after treatment, compared to before treatment and the control group (P < 0.05). Clinical performance of patients with lower incidence of adverse reactions in the experimental groups after treatment was significantly higher than those in the control group (P < 0.001). CONCLUSION: GCS combined with immunosuppressants can effectively relieve patients' clinical symptoms and improve their quality of life, with significant clinical efficacy and high safety, which is worthy of application and promotion.


Subject(s)
Glucocorticoids/administration & dosage , Immunosuppressive Agents/administration & dosage , Myasthenia Gravis/drug therapy , CTLA-4 Antigen/metabolism , Female , Humans , Male , Middle Aged , Myasthenia Gravis/metabolism , Quality of Life , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Thoracic Surgery, Video-Assisted/methods
16.
J Neuroinflammation ; 18(1): 270, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34789272

ABSTRACT

Predisposition to autoimmunity and inflammatory disorders is observed in patients with fragile X-associated syndromes. These patients have increased numbers of CGG triplets in the 5' UTR region of FMR1 (Fragile X Mental Retardation 1) gene, that affects its expression. FMR1 is decreased in the thymus of myasthenia gravis (MG) patients, a prototypical autoimmune disease. We thus analyzed the number of CGG triplets in FMR1 in MG, and explored the regulatory mechanisms affecting thymic FMR1 expression. We measured the number of CGGs using thymic DNA from MG and controls, but no abnormalities in CGGs were found in MG that could explain thymic decrease of FMR1. We next analyzed by RT-PCR the expression of FMR1 and its transcription factors in thymic samples, and in thymic epithelial cell cultures in response to inflammatory stimuli. In control thymuses, FMR1 expression was higher in males than females, and correlated with CTCF (CCCTC-binding factor) expression. In MG thymuses, decreased expression of FMR1 was correlated with both CTCF and MAX (Myc-associated factor X) expression. Changes in FMR1 expression were supported by western blot analyses for FMRP. In addition, we demonstrated that FMR1, CTCF and MAX expression in thymic epithelial cells was also sensitive to inflammatory signals. Our results suggest that FMR1 could play a central role in the thymus and autoimmunity. First, in relation with the higher susceptibility of females to autoimmune diseases. Second, due to the modulation of its expression by inflammatory signals that are known to be altered in MG thymuses.


Subject(s)
Fragile X Mental Retardation Protein/biosynthesis , Myasthenia Gravis/metabolism , Thymus Gland/metabolism , Adolescent , Adult , Autoimmunity/genetics , CCCTC-Binding Factor/biosynthesis , CCCTC-Binding Factor/genetics , Cells, Cultured , DNA/chemistry , DNA/genetics , Epithelial Cells/metabolism , Female , Humans , Male , Middle Aged , Sex Characteristics , Young Adult
17.
Front Immunol ; 12: 740047, 2021.
Article in English | MEDLINE | ID: mdl-34659232

ABSTRACT

Thymic epithelial cells (TECs) are essential in supporting the development of mature T cells from hematopoietic progenitor cells and facilitate their lineage-commitment, proliferation, T-cell receptor repertoire selection and maturation. While animal model systems have greatly aided in elucidating the contribution of stromal cells to these intricate processes, human tissue has been more difficult to study, partly due to a lack of suitable surface markers comprehensively defining human TECs. Here, we conducted a flow cytometry based surface marker screen to reliably identify and quantify human TECs and delineate medullary from cortical subsets. These findings were validated by transcriptomic and histologic means. The combination of EpCAM, podoplanin (pdpn), CD49f and CD200 comprehensively identified human TECs and not only allowed their reliable distinction in medullary and cortical subsets but also their detailed quantitation. Transcriptomic profiling of each subset in comparison to fibroblasts and endothelial cells confirmed the identity of the different stromal cell subsets sorted according to the proposed strategy. Our dataset not only demonstrated transcriptional similarities between TEC and cells of mesenchymal origin but furthermore revealed a subset-specific distribution of a specific set of extracellular matrix-related genes in TECs. This indicates that TECs significantly contribute to the distinct compartmentalization - and thus function - of the human thymus. We applied the strategy to quantify TEC subsets in 31 immunologically healthy children, which revealed sex-specific differences of TEC composition early in life. As the distribution of mature CD4- or CD8-single-positive thymocytes was correspondingly altered, the composition of the thymic epithelial compartment may directly impact on the CD4-CD8-lineage choice of thymocytes. We prove that the plain, reliable strategy proposed here to comprehensively identify human TEC subpopulations by flow cytometry based on surface marker expression is suitable to determine their frequency and phenotype in health and disease and allows sorting of live cells for downstream analysis. Its use reaches from a reliable diagnostic tool for thymic biopsies to improved phenotypic characterization of thymic grafts intended for therapeutic use.


Subject(s)
Cell Separation , Epithelial Cells/metabolism , Flow Cytometry , Gene Expression Profiling , Stromal Cells/metabolism , Thymus Gland/metabolism , Transcriptome , 22q11 Deletion Syndrome/genetics , 22q11 Deletion Syndrome/immunology , 22q11 Deletion Syndrome/metabolism , Adolescent , Age Factors , Biomarkers/metabolism , Child , Child, Preschool , Chromosome Deletion , Chromosomes, Human, Pair 22 , Epithelial Cells/immunology , Female , Humans , Infant , Infant, Newborn , Male , Myasthenia Gravis/genetics , Myasthenia Gravis/immunology , Myasthenia Gravis/metabolism , Phenotype , Sex Factors , Stromal Cells/immunology , Thymus Gland/cytology , Thymus Gland/immunology
18.
J Immunol ; 207(8): 2005-2014, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34544801

ABSTRACT

Elevated N-linked glycosylation of IgG V regions (IgG-VN-Glyc) is an emerging molecular phenotype associated with autoimmune disorders. To test the broader specificity of elevated IgG-VN-Glyc, we studied patients with distinct subtypes of myasthenia gravis (MG), a B cell-mediated autoimmune disease. Our experimental design focused on examining the B cell repertoire and total IgG. It specifically included adaptive immune receptor repertoire sequencing to quantify and characterize N-linked glycosylation sites in the circulating BCR repertoire, proteomics to examine glycosylation patterns of the total circulating IgG, and an exploration of human-derived recombinant autoantibodies, which were studied with mass spectrometry and Ag binding assays to respectively confirm occupation of glycosylation sites and determine whether they alter binding. We found that the frequency of IgG-VN-Glyc motifs was increased in the total BCR repertoire of patients with MG when compared with healthy donors. The elevated frequency was attributed to both biased V gene segment usage and somatic hypermutation. IgG-VN-Glyc could be observed in the total circulating IgG in a subset of patients with MG. Autoantigen binding, by four patient-derived MG autoantigen-specific mAbs with experimentally confirmed presence of IgG-VN-Glyc, was not altered by the glycosylation. Our findings extend prior work on patterns of Ig V region N-linked glycosylation in autoimmunity to MG subtypes.


Subject(s)
Autoantibodies/metabolism , B-Lymphocytes/immunology , Immunoglobulin G/metabolism , Immunoglobulin Variable Region/metabolism , Myasthenia Gravis/metabolism , Adult , Aged , Female , Glycosylation , Humans , Male , Middle Aged , Myasthenia Gravis/diagnosis , Phenotype , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Young Adult
19.
Front Immunol ; 12: 715036, 2021.
Article in English | MEDLINE | ID: mdl-34456922

ABSTRACT

Myasthenia gravis (MG) is an autoimmune disease primarily mediated by acetylcholine receptor antibodies (AChR-Ab), cellular immune dependence, and complement system involvement. Since the AChR on the postsynaptic membrane is destroyed by an immune attack, sufficient endplate potential cannot be generated, resulting in the development of a synaptic transmission disorder at the neuromuscular junction and in muscle weakness. The role of the complement system in MG has been demonstrated in animal models and clinical tests, and it has been determined that complement inhibition in patients with MG can prevent disease induction and reverse its progression. Eculizumab is a humanized monoclonal antibody that inhibits the cleavage of complement protein C5 and prevents autoimmune damage; additionally, it has received subsequent approval by the Federal Drug Administration of the United States for MG treatment. However, various concerns regarding the use of eculizumab persist. In this review, we have discussed the treatment time, cost effectiveness, long-term efficacy, and tolerability of eculizumab for MG treatment. We have also summarized historical information and have presented perspectives on this new therapeutic modality.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Complement Inactivating Agents/therapeutic use , Myasthenia Gravis/drug therapy , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Clinical Trials as Topic , Combined Modality Therapy , Complement Inactivating Agents/pharmacology , Complement System Proteins/immunology , Disease Management , Disease Susceptibility/immunology , Drug Development , Humans , Myasthenia Gravis/diagnosis , Myasthenia Gravis/etiology , Myasthenia Gravis/metabolism , Treatment Outcome
20.
Cell Biol Int ; 45(11): 2287-2293, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34363272

ABSTRACT

Myasthenia gravis (MG) is a disease involving neuromuscular transmission that causes fatigue of skeletal muscles and fluctuating weakness. It has been shown that impairment of myogenic differentiation and myofiber maturation may be the underlying cause of MG. In this study, we detected the abnormal expression of circular RNA (circRNA) using next-generation sequencing in patients with MG. We then investigated the regulatory mechanism and the relationship among circRNA, microRNA, and messenger RNA using quantitative reverse-transcription polymerase chain reaction, bioinformatics analysis, and luciferase report analysis. The expression of inflammatory cytokines and regulatory T lymphocytes was shown to be increased. Circ-FBL was significantly increased in MG patients. Bioinformatics and luciferase report analyses confirmed that miR-133 and PAX7 were the downstream targets of circ-FBL. Overexpression of circ-FBL promoted myoblast proliferation by regulation of miR-133/PAX7. Taken together, our study showed that upregulation of circ-FBL promoted myogenic proliferation in patients with MG by regulating miR-133/PAX7.


Subject(s)
MicroRNAs/genetics , Myasthenia Gravis/genetics , PAX7 Transcription Factor/genetics , Animals , Apoptosis/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Humans , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Muscle Development/genetics , Myasthenia Gravis/metabolism , PAX7 Transcription Factor/metabolism , RNA, Circular/genetics , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL
...