Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.682
Filter
1.
Infect Immun ; 92(7): e0021724, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38884474

ABSTRACT

Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that survives and grows in macrophages. A mechanism used by Mtb to achieve intracellular survival is to secrete effector molecules that arrest the normal process of phagosome maturation. Through phagosome maturation arrest (PMA), Mtb remains in an early phagosome and avoids delivery to degradative phagolysosomes. One PMA effector of Mtb is the secreted SapM phosphatase. Because the host target of SapM, phosphatidylinositol-3-phosphate (PI3P), is located on the cytosolic face of the phagosome, SapM needs to not only be released by the mycobacteria but also travel out of the phagosome to carry out its function. To date, the only mechanism known for Mtb molecules to leave the phagosome is phagosome permeabilization by the ESX-1 secretion system. To understand this step of SapM function in PMA, we generated identical in-frame sapM mutants in both the attenuated Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccine strain, which lacks the ESX-1 system, and Mtb. Characterization of these mutants demonstrated that SapM is required for PMA in BCG and Mtb. Further, by establishing a role for SapM in PMA in BCG, and subsequently in a Mtb mutant lacking the ESX-1 system, we demonstrated that the role of SapM does not require ESX-1. We further determined that ESX-2 or ESX-4 is also not required for SapM to function in PMA. These results indicate that SapM is a secreted effector of PMA in both BCG and Mtb, and that it can function independent of the known mechanism for Mtb molecules to leave the phagosome.


Subject(s)
Bacterial Proteins , Mycobacterium bovis , Mycobacterium tuberculosis , Phagosomes , Phagosomes/microbiology , Phagosomes/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Mycobacterium bovis/genetics , Mycobacterium bovis/metabolism , Macrophages/microbiology , Macrophages/immunology , Macrophages/metabolism , Humans , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Animals , Mice
2.
Microbiol Spectr ; 12(7): e0382923, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38771094

ABSTRACT

Mycobacterium bovis causes animal tuberculosis in livestock and wildlife, with an impact on animal health and production, wildlife management, and public health. In this work, we sampled a multi-host tuberculosis community from the official hotspot risk area of Portugal over 16 years, generating the largest available data set in the country. Using phylogenetic and ecological modeling, we aimed to reconstruct the history of circulating lineages across the livestock-wildlife interface to inform intervention and the implementation of genomic surveillance within the official eradication plan. We find evidence for the co-circulation of M. bovis European 1 (Eu1), Eu2, and Eu3 clonal complexes, with Eu3 providing sufficient temporal signal for further phylogenetic investigation. The Eu3 most recent common ancestor (bovine) was dated in the 1990s, subsequently transitioning to wildlife (red deer and wild boar). Isolate clustering based on sample metadata was used to inform phylogenetic inference, unravelng frequent transmission between two clusters that represent an ecological corridor of previously unrecognized importance in Portugal. The latter was associated with transmission at the livestock-wildlife interface toward locations with higher temperature and precipitation, lower agriculture and road density, and lower host densities. This is the first analysis of M. bovis Eu3 complex in Iberia, shedding light on background ecological factors underlying long-term transmission and informing where efforts could be focused within the larger hotspot risk area of Portugal. IMPORTANCE: Efforts to strengthen surveillance and control of animal tuberculosis (TB) are ongoing worlwide. Here, we developed an eco-phylodynamic framework based on discrete phylogenetic approaches informed by M. bovis whole-genome sequence data representing a multi-host transmission system at the livestock-wildlife interface, within a rich ecological landscape in Portugal, to understand transmission processes and translate this knowledge into disease management benefits. We find evidence for the co-circulation of several M. bovis clades, with frequent transmission of the Eu3 lineage among cattle and wildlife populations. Most transition events between different ecological settings took place toward host, climate and land use gradients, underscoring animal TB expansion and a potential corridor of unrecognized importance for M. bovis maintenance. Results stress that animal TB is an established wildlife disease without ecological barriers, showing that control measures in place are insufficient to prevent long-distance transmission and spillover across multi-host communities, demanding new interventions targeting livestock-wildlife interactions.


Subject(s)
Animals, Wild , Mycobacterium bovis , Phylogeny , Portugal/epidemiology , Animals , Mycobacterium bovis/genetics , Mycobacterium bovis/classification , Mycobacterium bovis/isolation & purification , Cattle , Animals, Wild/microbiology , Livestock/microbiology , Tuberculosis, Bovine/transmission , Tuberculosis, Bovine/microbiology , Tuberculosis, Bovine/epidemiology , Deer/microbiology , Sus scrofa/microbiology , Tuberculosis/transmission , Tuberculosis/microbiology , Tuberculosis/epidemiology , Tuberculosis/veterinary
3.
Microbiol Spectr ; 12(7): e0425923, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38757975

ABSTRACT

Currently, tuberculosis immunoprophylaxis is based solely on Bacillus Calmette-Guérin (BCG) vaccination, and some of the new potential tuberculosis vaccines are based on the BCG genome. Therefore, it is reasonable to analyze the genomes of individual BCG substrains. The aim of this study was the genetic characterization of the BCG-Moreau Polish (PL) strain used for the production of the BCG vaccine in Poland since 1955. Sequencing of different BCG lots showed that the strain was stable over a period of 59 years. As a result of comparison, BCG-Moreau PL with BCG-Moreau Rio de Janeiro (RDJ) 143 single nucleotide polymorphisms (SNPs) and 32 insertion/deletion mutations (INDELs) were identified. However, the verification of these mutations showed that the most significant were accumulated in the BCG-Moreau RDJ genome. The mutations unique to the Polish strain genome are 1 SNP and 2 INDEL. The strategy of combining short-read sequencing with long-read sequencing is currently the most optimal approach for sequencing bacterial genomes. With this approach, the only available genomic sequence of BCG-Moreau PL was obtained. This sequence will primarily be a reference point in the genetic control of the stability of the vaccine strain in the future. The results enrich knowledge about the microevolution and attenuation of the BCG vaccine substrains. IMPORTANCE: The whole genome sequence obtained is the only genomic sequence of the strain that has been used for vaccine production in Poland since 1955. Sequencing of different BCG lots showed that the strain was stable over a period of 59 years. The comprehensive genomic analysis performed not only enriches knowledge about the microevolution and attenuation of the BCG vaccine substrains but also enables the utilization of identified markers as a reference point in the genetic control and identity tests of the stability of the vaccine strain in the future.


Subject(s)
BCG Vaccine , Genome, Bacterial , Mycobacterium bovis , Polymorphism, Single Nucleotide , Whole Genome Sequencing , BCG Vaccine/genetics , BCG Vaccine/immunology , Mycobacterium bovis/genetics , Mycobacterium bovis/classification , Poland , Humans , Tuberculosis/prevention & control , Tuberculosis/microbiology , INDEL Mutation , Mutation
4.
Acta Trop ; 256: 107257, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38761833

ABSTRACT

Bovine tuberculosis (bTB) is a chronic infectious-contagious disease with worldwide distribution, caused by the zoonotic pathogen Mycobacterium bovis. It is believed that the existence of wild cycles may hamper the success of bTB control strategies worldwide, where wildlife species could be reservoirs of this bacterial agent across their native (e.g., European badgers, wild boars) or non-indigenous (e.g., brushtail possum in New Zealand) ranges. However, further studies are required to understand the potential risk posed by non-native wildlife in becoming carriers of M. bovis in other neglected latitudes, such as the Southern Cone of South America. In this study, we performed a specific M. bovis-RD4 real-time PCR (qPCR) assay to detect bacterial DNA in tissues from the invasive American mink (Neogale vison) in Los Ríos region, Chile. We detected M. bovis DNA in blood samples collected from 13 out of 186 (7 %) minks with known sex and age. We did not find any significant differences in bacterial DNA detection according to mink sex and age. We found that 92 % (12/13) of specimens were positive in lung, 39 % (5/13) in mediastinal lymph node, and 15 % (2/13) in mesenteric lymph node, which suggest that both respiratory and digestive pathways as possible routes of transmission between infected hosts and minks. Our study is the first report on M. bovis molecular detection in invasive minks in an area where the largest cattle population in the country is located. Furthermore, this area is characterized by a low within-herd prevalence of M. bovis infection in cattle, with a relatively low number of infected herds, and so far, no attempts at eradicating the disease have been successful.


Subject(s)
Mink , Mycobacterium bovis , Real-Time Polymerase Chain Reaction , Tuberculosis , Animals , Mycobacterium bovis/genetics , Mycobacterium bovis/isolation & purification , Mink/microbiology , Chile/epidemiology , Female , Male , Tuberculosis/veterinary , Tuberculosis/microbiology , Tuberculosis/epidemiology , Tuberculosis/transmission , DNA, Bacterial/genetics , Carrier State/veterinary , Carrier State/microbiology , Carrier State/epidemiology , Disease Reservoirs/microbiology , Lung/microbiology
5.
Ecohealth ; 21(1): 71-82, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38727761

ABSTRACT

Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex (MTC) and non-tuberculous Mycobacteria (NTM), may infect wild and domestic mammals, including humans. Although cattle are the main hosts and spreaders of M. bovis, many wildlife hosts play an important role worldwide. In Argentina, wild boar and domestic pigs are considered important links in mammalian tuberculosis (mTB) transmission. The aim of this work was to investigate the presence of M. bovis in wild pigs from different regions of Argentina, to characterize isolates of M. bovis obtained, and to compare those with other previously found in vertebrate hosts. A total of 311 samples from wild pigs were obtained, and bacteriological culture, molecular identification and genotyping were performed, obtaining 63 isolates (34 MTC and 29 NTM). Twelve M. bovis spoligotypes were detected. Our findings suggest that wild pigs have a prominent role as reservoirs of mTB in Argentina, based on an estimated prevalence of 11.2 ± 1.8% (95% CI 8.0-14.8) for MTC and the frequency distribution of spoligotypes shared by cattle (75%), domestic pigs (58%) and wildlife (50%). Argentina has a typical scenario where cattle and pigs are farm-raised extensively, sharing the environment with wildlife, creating conditions for effective transmission of mTB in the wildlife-livestock-human interface.


Subject(s)
Animals, Wild , Mycobacterium bovis , Swine Diseases , Tuberculosis , Animals , Argentina/epidemiology , Animals, Wild/microbiology , Tuberculosis/epidemiology , Tuberculosis/veterinary , Tuberculosis/microbiology , Mycobacterium bovis/isolation & purification , Mycobacterium bovis/genetics , Swine , Swine Diseases/microbiology , Swine Diseases/epidemiology , Sus scrofa/microbiology , Disease Reservoirs/microbiology , Disease Reservoirs/veterinary , Prevalence , Genotype
6.
Anal Methods ; 16(20): 3220-3230, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38717230

ABSTRACT

Tuberculosis caused by Mycobacterium bovis poses a global infectious threat to humans and animals. Therefore, there is an urgent need to develop a sensitive, precise, and easy-to-readout strategy. Here, a novel tandem combination of a CRISPR/Cas12a system with dual HCR (denoted as CRISPR/Cas12a-D-HCR) was constructed for detecting Mycobacterium bovis. Based on the efficient trans-cleavage activity of the active CRISPR/Cas12a system, tandem-dsDNA with PAM sites was established using two flexible hairpins, providing multiple binding sites with CRISPR/Cas12a for further amplification. Furthermore, the activation of Cas12a initiated the second hybridization chain reaction (HCR), which integrated complete G-quadruplex sequences to assemble the hemin/G-quadruplex DNAzyme. With the addition of H2O2 and ABTS, a colorimetric signal readout strategy was achieved. Consequently, CRISPR/Cas12a-D-HCR achieved a satisfactory detection linear range from 20 aM to 50 fM, and the limit of detection was as low as 2.75 aM with single mismatched recognition capability, demonstrating good discrimination of different bacterial species. Notably, the practical application performance was verified via the standard addition method, with the recovery ranging from 96.0% to 105.2% and the relative standard deviations (RSD) ranging from 0.95% to 6.45%. The proposed CRISPR/Cas12a-D-HCR sensing system served as a promising application for accurate detection in food safety and agricultural fields.


Subject(s)
CRISPR-Cas Systems , Colorimetry , G-Quadruplexes , Mycobacterium bovis , Mycobacterium bovis/genetics , CRISPR-Cas Systems/genetics , Colorimetry/methods , Nucleic Acid Hybridization/methods , Limit of Detection , Animals , DNA, Catalytic/chemistry , Biosensing Techniques/methods , CRISPR-Associated Proteins/genetics , DNA, Bacterial/genetics
7.
Sci Rep ; 14(1): 11898, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789479

ABSTRACT

We have previously reported the transcriptomic and lipidomic profile of the first-generation, hygromycin-resistant (HygR) version of the BCGΔBCG1419c vaccine candidate, under biofilm conditions. We recently constructed and characterized the efficacy, safety, whole genome sequence, and proteomic profile of a second-generation version of BCGΔBCG1419c, a strain lacking the BCG1419c gene and devoid of antibiotic markers. Here, we compared the antibiotic-less BCGΔBCG1419c with BCG. We assessed their colonial and ultrastructural morphology, biofilm, c-di-GMP production in vitro, as well as their transcriptomic and lipidomic profiles, including their capacity to activate macrophages via Mincle and Myd88. Our results show that BCGΔBCG1419c colonial and ultrastructural morphology, c-di-GMP, and biofilm production differed from parental BCG, whereas we found no significant changes in its lipidomic profile either in biofilm or planktonic growth conditions. Transcriptomic profiling suggests changes in BCGΔBCG1419c cell wall and showed reduced transcription of some members of the DosR, MtrA, and ArgR regulons. Finally, induction of TNF-α, IL-6 or G-CSF by bone-marrow derived macrophages infected with either BCGΔBCG1419c or BCG required Mincle and Myd88. Our results confirm that some differences already found to occur in HygR BCGΔBCG1419c compared with BCG are maintained in the antibiotic-less version of this vaccine candidate except changes in production of PDIM. Comparison with previous characterizations conducted by OMICs show that some differences observed in BCGΔBCG1419c compared with BCG are maintained whereas others are dependent on the growth condition employed to culture them.


Subject(s)
BCG Vaccine , Biofilms , Cyclic GMP , Lipidomics , Macrophages , Mycobacterium bovis , Myeloid Differentiation Factor 88 , Transcriptome , Animals , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Mice , Macrophages/metabolism , Macrophages/immunology , BCG Vaccine/immunology , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Mycobacterium bovis/genetics , Mycobacterium bovis/immunology , Biofilms/growth & development , Cytokines/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Gene Expression Profiling , Lectins, C-Type
8.
J Hazard Mater ; 472: 134473, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38703681

ABSTRACT

Spreading of Mycobacterium bovis causing animal tuberculosis (TB) at livestock-wildlife-environment interfaces remains a significant problem. Recently, we provided evidence of widespread environmental contamination of an endemic animal TB setting with viable and dormant M. bovis cells able to recover metabolic activity, making indirect transmission via environmental contamination plausible. We now report the first whole genome sequences of M. bovis recovered from the environment. We establish epidemiological links at the environment-animal interface by phylogenomic comparison of these M. bovis genomes with those isolated from livestock and wild ungulates from the same area. Environmental and animal genomes are highly intertwined and distribute similarly into the same M. bovis lineages, supporting several instances of environmental contamination. This study provides compelling evidence of M. bovis excretion into the environment and viability maintenance, supporting the environment as a potential source of new infection. These insights have clear implications for policy formulation, advocating environmental surveillance and an ecosystem perspective in TB control programs. ENVIRONMENTAL IMPLICATION: We report the first whole genome sequences of M. bovis from the environment and establish epidemiological links at the environment-animal interface, demonstrating close phylogenomic relatedness of animal and environmental M. bovis. Definitive evidence of M. bovis excretion into the environment with viability maintenance is provided, supporting the environment as a potential source of new infection. Implications of this work include methodological innovations offering a tool to resolve indirect transmission chains and support customized biosecurity measures. Policy formulation aiming at the control of animal tuberculosis and cost mitigation should consider these findings, encouraging environmental surveillance in official eradication programmes.


Subject(s)
Mycobacterium bovis , Phylogeny , Whole Genome Sequencing , Mycobacterium bovis/genetics , Animals , Genome, Bacterial , Tuberculosis, Bovine/transmission , Tuberculosis, Bovine/microbiology , Tuberculosis/transmission , Tuberculosis/microbiology , Cattle , Environmental Microbiology , Animals, Wild/microbiology
9.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612609

ABSTRACT

Approximately 75% of bladder cancer cases originate as non-muscle-invasive bladder cancer (NMIBC). Despite initial diagnosis, NMIBC commonly recurs, with up to 45% advancing to muscle-invasive bladder cancer (MIBC) and metastatic disease. Treatment for high-risk NMIBC typically includes procedures like transurethral resection and, depending on recurrence risk, intravesical chemotherapy or immunotherapy such as Bacillus Calmette-Guérin (BCG). However, persistent shortages of BCG necessitate alternative first-line treatments. We aim to use a multi-gene signature in high-risk NMIBC patients to determine whether patients may benefit from immune checkpoint inhibitors (ICIs) as an alternative to BCG and to evaluate their clinical utility. The multi-gene signature obtained from the three independent NMIBC cohorts was applied to stratify the UROMOL2016 cohort (n = 476) using consensus clustering. Each subtype was distinguished by biological pathway analysis. Validation analysis using a machine learning algorithm was performed in six independent cohorts including the BRS (n = 283) cohort treated with BCG and the IMvigor210 (n = 298) clinical trials treated with PD-L1 inhibitors. Based on consensus cluster analysis, NMIBC patients in the UROMOL2016 cohort were classified into three classes exhibiting distinguished characteristics, including DNA damage repair (DDR). Survival analysis showed that the NMIBC-DDR class had the highest rates of disease progression (progression-free survival, p = 0.002 by log-rank test) in the UROMOL cohort and benefited from BCG and ICIs (respectively, p = 0.02 and p = 0.03 by log-rank test). This study suggests that the multi-gene signature may have a role in identifying high-risk NMIBC patients and improving the responsiveness of ICIs. Additionally, we propose immunotherapy as a new first-line treatment for patients with high-risk NMIBC because of the shortage of BCG supply. It is important to help more patients prioritize cancer immunotherapy.


Subject(s)
Mycobacterium bovis , Non-Muscle Invasive Bladder Neoplasms , Urinary Bladder Neoplasms , Humans , Immune Checkpoint Inhibitors/therapeutic use , BCG Vaccine/therapeutic use , Immunotherapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/therapy , Mycobacterium bovis/genetics
10.
Int J Mol Sci ; 25(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38612679

ABSTRACT

Epidemiological surveillance of animal tuberculosis (TB) based on whole genome sequencing (WGS) of Mycobacterium bovis has recently gained track due to its high resolution to identify infection sources, characterize the pathogen population structure, and facilitate contact tracing. However, the workflow from bacterial isolation to sequence data analysis has several technical challenges that may severely impact the power to understand the epidemiological scenario and inform outbreak response. While trying to use archived DNA from cultured samples obtained during routine official surveillance of animal TB in Portugal, we struggled against three major challenges: the low amount of M. bovis DNA obtained from routinely processed animal samples; the lack of purity of M. bovis DNA, i.e., high levels of contamination with DNA from other organisms; and the co-occurrence of more than one M. bovis strain per sample (within-host mixed infection). The loss of isolated genomes generates missed links in transmission chain reconstruction, hampering the biological and epidemiological interpretation of data as a whole. Upon identification of these challenges, we implemented an integrated solution framework based on whole genome amplification and a dedicated computational pipeline to minimize their effects and recover as many genomes as possible. With the approaches described herein, we were able to recover 62 out of 100 samples that would have otherwise been lost. Based on these results, we discuss adjustments that should be made in official and research laboratories to facilitate the sequential implementation of bacteriological culture, PCR, downstream genomics, and computational-based methods. All of this in a time frame supporting data-driven intervention.


Subject(s)
Coinfection , Mycobacterium bovis , Tuberculosis , Animals , Mycobacterium bovis/genetics , Tuberculosis/epidemiology , Tuberculosis/veterinary , DNA , Genomics
11.
Prev Vet Med ; 226: 106190, 2024 May.
Article in English | MEDLINE | ID: mdl-38574490

ABSTRACT

Bovine tuberculosis (bovine TB) is a chronic wasting disease of cattle caused primarily by Mycobacterium bovis. Controlling bovine TB requires highly sensitive, specific, quick, and reliable diagnostic methods. This systematic review and meta-analysis evaluated molecular diagnostic tests for M. bovis detection to inform the selection of the most viable assay. On a per-test basis, loop-mediated isothermal amplification (LAMP) showed the highest overall sensitivity of 99.0% [95% CI: 86.2%-99.9%] and specificity of 99.8% [95% CI: 96.2%-100.00%]. Quantitative real-time polymerase chain reaction (qPCR) outperformed conventional PCR and nested PCR (nPCR) with a diagnostic specificity of 96.6% [95% CI: 88.9%-99.0%], while the diagnostic sensitivity of 70.8% [95% CI: 58.6-80.5%] was comparable to that of nPCR at 71.4% [95% CI: 60.7-80.2%]. Test sensitivity was higher with the input of milk samples (90.9% [95% CI: 56.0%-98.7%]), while specificity improved with tests based on major M. bovis antigens (97.8% [95% CI: 92.3%-99.4%]), the IS6110 insertion sequence (95.4% [95% CI: 87.6%-98.4%]), and the RD4 gene (90.7% [95% CI: 52.2%-98.9%]). The design of the currently available molecular diagnostic assays, while mostly based on nonspecific gene targets, prevents them from being accurate enough to diagnose M. bovis infections in cattle, despite their promise. Future assay development should focus on the RD4 region since it is the only target identified by genome sequence data as being distinctive for detecting M. bovis. The availability of a sufficiently accurate diagnostic test combined with the routine screening of milk samples can decrease the risk of zoonotic transmissions of M. bovis.


Subject(s)
Cattle Diseases , Mycobacterium bovis , Tuberculosis, Bovine , Cattle , Animals , Mycobacterium bovis/genetics , Tuberculosis, Bovine/diagnosis , Tuberculosis, Bovine/microbiology , Pathology, Molecular , Sensitivity and Specificity , Real-Time Polymerase Chain Reaction/veterinary , Real-Time Polymerase Chain Reaction/methods
12.
Curr Microbiol ; 81(3): 90, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38311651

ABSTRACT

Toxin-Antitoxin (TA) systems are some small genetic modules in bacteria that play significant roles in resistance and tolerance development to antibiotics. Whole genome sequencing (WGS) is an effective method to analyze TA systems in pathogenic Mycobacteria. However, this study aimed to use a simple and inexpensive PCR-Sequencing approach to investigate the type II TA system. Using data from the WGS of Mycobacterium tuberculosis (M. tuberculosis) strain H37Rv and Mycobacterium bovis (M. bovis) strain BCG, primers specific to the relJK, mazEF3, and vapBC3 gene families were designed by Primer3 software. Following that, a total of 90 isolates were examined using the newly developed PCR assay, consisting of 64 M. tuberculosis and 26 M. bovis isolates, encompassing both 45 rifampin-sensitive and 45 rifampin-resistant strains. Finally, 28 isolates (including 14 rifampin-resistant isolates) were sent for sequencing, and their sequences were aligned and compared to the mentioned reference sequences. The amplicons size of mazEF3, relJK, and vapBC3 genes were 825, 875, and 934 bp, respectively. Furthermore, all tested isolates showed the specific amplicons for these TA families. To evaluate the specificity of the primers, PCR was performed on S. aureus and E.coli isolates. None of the examined samples had the desired amplicons. Therefore, the primers had acceptable specificity. The results indicated that the developed PCR-Sequencing approach can be used to effectively investigate certain types of TA systems. Considering high costs of WGS and difficulty in interpreting its results, such a simple and inexpensive method is beneficial in the evaluation of TA systems in Mycobacteria.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Toxin-Antitoxin Systems , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium bovis/genetics , Rifampin , Toxin-Antitoxin Systems/genetics , Staphylococcus aureus/genetics , Tuberculosis/microbiology , Polymerase Chain Reaction/methods
13.
Microb Genom ; 10(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38354031

ABSTRACT

Mycobacterium bovis the main agent of bovine tuberculosis (bTB), presents as a series of spatially-localised micro-epidemics across landscapes. Classical molecular typing methods applied to these micro-epidemics, based on genotyping a few variable loci, have significantly improved our understanding of potential epidemiological links between outbreaks. However, they have limited utility owing to low resolution. Conversely, whole-genome sequencing (WGS) provides the highest resolution data available for molecular epidemiology, producing richer outbreak tracing, insights into phylogeography and epidemic evolutionary history. We illustrate these advantages by focusing on a common single lineage of M. bovis (1.140) from Northern Ireland. Specifically, we investigate the spatial sub-structure of 20 years of herd-level multi locus VNTR analysis (MLVA) surveillance data and WGS data from a down sampled subset of isolates of this MLVA type over the same time frame. We mapped 2108 isolate locations of MLVA type 1.140 over the years 2000-2022. We also mapped the locations of 148 contemporary WGS isolates from this lineage, over a similar geographic range, stratifying by single nucleotide polymorphism (SNP) relatedness cut-offs of 15 SNPs. We determined a putative core range for the 1.140 MLVA type and SNP-defined sequence clusters using a 50 % kernel density estimate, using cattle movement data to inform on likely sources of WGS isolates found outside of core ranges. Finally, we applied Bayesian phylogenetic methods to investigate past population history and reproductive number of the 1.140 M. bovis lineage. We demonstrate that WGS SNP-defined clusters exhibit smaller core ranges than the established MLVA type - facilitating superior disease tracing. We also demonstrate the superior functionality of WGS data in determining how this lineage was disseminated across the landscape, likely via cattle movement and to infer how its effective population size and reproductive number has been in flux since its emergence. These initial findings highlight the potential of WGS data for routine monitoring of bTB outbreaks.


Subject(s)
Mycobacterium bovis , Tuberculosis, Bovine , Animals , Cattle , Mycobacterium bovis/genetics , Bayes Theorem , Phylogeny , Tuberculosis, Bovine/epidemiology , Molecular Epidemiology
14.
Front Cell Infect Microbiol ; 14: 1341236, 2024.
Article in English | MEDLINE | ID: mdl-38410723

ABSTRACT

Bacille Calmette-Guérin (BCG) is a live strain of Mycobacterium bovis (M.bovis) for use as an attenuated vaccine to prevent tuberculosis (TB) infection, while it could also lead to an infection in immunodeficient patients. M.bovis could infect patients with immunodeficiency via BCG vaccination. Disseminated BCG disease (BCGosis) is extremely rare and has a high mortality rate. This article presents a case of a 3-month-old patient with disseminated BCG infection who was initially diagnosed with hemophagocytic syndrome (HPS) and eventually found to have X-linked severe combined immunodeficiency (X-SCID). M.bovis and its drug resistance genes were identified by metagenomics next-generation sequencing (mNGS) combined with targeted next-generation sequencing (tNGS) in blood and cerebrospinal fluid. Whole exome sequencing (WES) revealed a pathogenic variant in the common γ-chain gene (IL2RG), confirming X-SCID. Finally, antituberculosis therapy and umbilical cord blood transplantation were given to the patient. He was successfully cured of BCGosis, and his immune function was restored. The mNGS combined with the tNGS provided effective methods for diagnosing rare BCG infections in children. Their combined application significantly improved the sensitivity and specificity of the detection of M.bovis.


Subject(s)
Immunologic Deficiency Syndromes , Latent Tuberculosis , Mycobacterium bovis , Tuberculosis , X-Linked Combined Immunodeficiency Diseases , Male , Infant , Child , Humans , Mycobacterium bovis/genetics , BCG Vaccine/adverse effects , X-Linked Combined Immunodeficiency Diseases/diagnosis , X-Linked Combined Immunodeficiency Diseases/genetics , X-Linked Combined Immunodeficiency Diseases/complications , Tuberculosis/microbiology , Immunologic Deficiency Syndromes/complications , High-Throughput Nucleotide Sequencing
15.
J Infect Dev Ctries ; 18(1): 162-167, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38377089

ABSTRACT

INTRODUCTION: Disseminated bacillus Calmette-Guérin (BCG) disease is a rare but serious BCG complication in children. Early diagnosis and timely interventions are essential to improve prognosis. However, its manifestations can closely mimic those of Langerhans cell histiocytosis (LCH), which usually leads to a high rate of misdiagnoses. Herein we report the first case of successful application of biopsy tissue metagenomic next-generation sequencing (mNGS) in the differential diagnosis of disseminated BCG disease and LCH. CASE STUDY: A 5-month-old female infant was transferred to our center for the treatment of paroxysmal cough, intermittent hematochezia and trunk rash. Examination on admission showed moderate anemia, erythropenia, thrombocytopenia and hepatosplenomegaly. The immunohistochemistry of her intestinal biopsy samples showed CD1a (+) and Langerin (+). Genetic testing of both peripheral blood and bone marrow samples suggested BRAFV600E mutation. Hence, she was initially diagnosed with LCH. However, no improvement was observed after a course of systemic chemotherapy. The left axillary lymph node and colonic mucosal biopsy specimens were sent for mNGS which resulted in sequence reads of Mycobacterium bovis-BCG. Triple antimycobacterial therapy was started according to the diagnosis. RESULTS: The diagnosis of this case was corrected as disseminated BCG disease by mNGS. Currently, she is doing well clinically and continues to follow-up at our outpatient clinic. CONCLUSIONS: This case suggests that mNGS is a valuable tool in the differential diagnosis of disseminated BCG disease and LCH, which can improve the early diagnosis rate of disseminated BCG disease.


Subject(s)
Histiocytosis, Langerhans-Cell , Mycobacterium bovis , Humans , Infant , Child , Female , Mycobacterium bovis/genetics , BCG Vaccine/adverse effects , Prognosis , Histiocytosis, Langerhans-Cell/diagnosis , Mutation
16.
Clin Infect Dis ; 78(3): 637-645, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38207126

ABSTRACT

BACKGROUND: A unique enzootic focus of Mycobacterium bovis in free-ranging deer was identified in northern lower Michigan in 1994, with subsequent evidence of transmission to local cattle herds. Between 2002 and 2017, 3 Michigan deer hunters with M. bovis disease were previously reported. We present 4 additional human cases linked to the zoonotic focus in deer, utilizing genomic epidemiology to confirm close molecular associations among human, deer and cattle M. bovis isolates. METHODS: Identification of human tuberculosis (TB) cases with cultures of M. bovis was provided from the Michigan Department of Health and Human Services (MDHHS) tuberculosis database. Clinical review and interviews focused on risk factors for contact with wildlife and cattle. Whole genome sequences of human isolates were compared with a veterinary library of M. bovis strains to identify those linked to the enzootic focus. RESULTS: Three confirmed and 1 probable human case with M. bovis disease were identified between 2019 and 2022, including cutaneous disease, 2 severe pulmonary disease cases, and human-to-human transmission. The 3 human isolates had 0-3 single-nucleotide polymorphisms (SNPs) with M. bovis strains circulating in wild deer and domestic cattle in Michigan. CONCLUSIONS: Spillover of enzootic M. bovis from deer to humans and cattle continues to occur in Michigan. Future studies should examine the routes of transmission and degree of risk to humans through expanded epidemiological surveys. A One Health approach linking human, veterinary and environmental health should address screening for TB infection, public education, and mitigation of transmission.


Subject(s)
Deer , Mycobacterium bovis , Tuberculosis , Animals , Humans , Cattle , Mycobacterium bovis/genetics , Michigan/epidemiology , Deer/microbiology , Tuberculosis/epidemiology , Tuberculosis/veterinary , Tuberculosis/prevention & control , Animals, Wild
17.
Microbiol Immunol ; 68(4): 130-147, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38294180

ABSTRACT

Vaccination is an important factor in public health. The recombinant bacillus Calmette Guérin (rBCG) vaccine, which expresses foreign antigens, is expected to be a superior vaccine against infectious diseases. Here, we report a new recombination platform in which the BCG Tokyo strain is transformed with nucleotide sequences encoding foreign protein fused with the MPB70 immunogenic protein precursor. By RNA-sequencing, mpb70 was found to be the most transcribed among all known genes of BCG Tokyo. Small oligopeptide, namely, polyhistidine tag, was able to be expressed in and secreted from rBCG through a process in which polyhistidine tag fused with intact MPB70 were transcribed by an mpb70 promoter. This methodology was applied to develop an rBCG expressing the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2. Immunoblotting images and mass spectrometry data showed that RBD was also secreted from rBCG. Sera from mice vaccinated with the rBCG showed a tendency of weak neutralizing capacity. The secretion was retained even after a freeze-drying process. The freeze-dried rBCG was administered to and recovered from mice. Recovered rBCG kept secreting RBD. Collectively, our recombination platform offers stable secretion of foreign antigens and can be applied to the development of practical rBCGs.


Subject(s)
BCG Vaccine , Mycobacterium bovis , Animals , Mice , BCG Vaccine/genetics , Tokyo , Mycobacterium bovis/genetics , Lymphocyte Activation , Genetic Engineering , Vaccines, Synthetic
18.
Sci Rep ; 14(1): 357, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172248

ABSTRACT

Mycobacterium bovis (M. bovis) infection has been identified in black (Diceros bicornis) and white (Ceratotherium simum) rhinoceros populations in Kruger National Park, South Africa. However, it is unknown whether M. bovis infected rhinoceros, like humans and cattle, can shed mycobacteria in respiratory secretions. Limited studies have suggested that rhinoceros with subclinical M. bovis infection may present minimal risk for transmission. However, recent advances that have improved detection of Mycobacterium tuberculosis complex (MTBC) members in paucibacillary samples warranted further investigation of rhinoceros secretions. In this pilot study, nasal swab samples from 75 rhinoceros with defined infection status based on M. bovis antigen-specific interferon gamma release assay (IGRA) results were analysed by GeneXpert MTB/RIF Ultra, BACTEC MGIT and TiKa-MGIT culture. Following culture, speciation was done using targeted PCRs followed by Sanger sequencing for mycobacterial species identification, and a region of difference (RD) 4 PCR. Using these techniques, MTBC was detected in secretions from 14/64 IGRA positive rhinoceros, with viable M. bovis having been isolated in 11 cases, but not in any IGRA negative rhinoceros (n = 11). This finding suggests the possibility that MTBC/M. bovis-infected rhinoceros may be a source of infection for other susceptible animals sharing the environment.


Subject(s)
Mycobacterium bovis , Tuberculosis , Humans , Animals , Cattle , Mycobacterium bovis/genetics , Tuberculosis/diagnosis , Tuberculosis/veterinary , Tuberculosis/microbiology , Pilot Projects , Interferon-gamma Release Tests/veterinary , Perissodactyla/microbiology
19.
Appl Microbiol Biotechnol ; 108(1): 19, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38170315

ABSTRACT

In this research, a recombinant Bacillus Calmette Guerin (rBCG) vector vaccine carrying a human IL-2 and EBV BZLF1 fusion gene (IL-2-BZLF1-rBCG) was constructed. The IL-2-BZLF1-rBCG construct was successfully generated and stably expressed the IL-2 and BZLF1 proteins. IL-2-BZLF1-rBCG activated the immune system and promoted the secretion of IFN-γ and TNF-α by CD4+ and CD8+ T cells. IL-2-BZLF1-rBCG activated lymphocytes to effectively kill EBV-positive NPC cells in vitro. Additionally, IL-2-BZLF1-rBCG stimulated the proliferation of NK cells and lymphocytes in vivo, activated related immune responses, and effectively treated EBV-positive NPC. The immune response to and pharmacological effect of IL-2-BZLF1-rBCG were explored in vitro and in vivo to provide a theoretical and experimental basis for the prevention and treatment of EBV-positive tumors with an rBCG vector vaccine. KEY POINTS: • rBCG with human IL-2 and BZLF1 of EB virus was constructed • The IL-2-BZLF1 fusion gene was stably expressed with rBCG • rBCG with IL-2-BZLF1 has an obvious immune response in vitro and in vivo.


Subject(s)
Mycobacterium bovis , Neoplasms , Humans , Interleukin-2/genetics , CD8-Positive T-Lymphocytes , Mycobacterium bovis/genetics , BCG Vaccine , Trans-Activators/genetics
20.
Sci Rep ; 14(1): 2370, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38287127

ABSTRACT

Caused by the pathogenic agent Mycobacterium bovis, bovine tuberculosis (bTB) is a major concern in cattle breeding due to both its zoonotic potential and economic impact. Greater resistance to this disease has been reported in certain African zebu breeds compared to European taurine breeds. However the genetic basis for the lower susceptibility to bTB infection observed in zebu cattle remains poorly explored. This study was conducted on whole genome sequencing data of three bTB infection-resistant African zebu breeds and two bTB infection-susceptible taurine breeds to decipher the genetic background. A set of four selection signature statistics based on linkage disequilibrium, site frequency spectrum, and population differentiation were used on SNPs whereas between population variance based VST and t-test were used on CNVs. As a complement, genes from previous literature reported as candidate genes for bTB resistance were also inspected to identify genetic variations. Interestingly, the resulting nine candidate genes had deleterious missense variants (SHC3, IFNGR1, TLR2, TLR6, IL1A, LRRK2, EP300 and IRAK4) or a CNV difference (CD48) segregating between the groups. The genes found in the study play a role in immune pathways activated during Mycobacterium infection, contributing to the proliferation of immune cells and the granuloma formation, ultimately modulating the outcome of the infectious event. In particular, a deleterious variant in the LRRK2 gene, whose deficiency has been linked to improved prognosis upon tuberculosis infection, was found in the bTB infection-resistant zebu breeds. Therefore, these genes constitute credible candidates in explaining the discrepancy in Mycobacterium bovis infection susceptibility among different breed.


Subject(s)
Mycobacterium bovis , Tuberculosis, Bovine , Animals , Cattle , Tuberculosis, Bovine/genetics , Polymorphism, Single Nucleotide , Mycobacterium bovis/genetics , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...