Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 253
Filter
1.
J Am Chem Soc ; 146(17): 12138-12154, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38635392

ABSTRACT

Protein lipidation dynamically controls protein localization and function within cellular membranes. A unique form of protein O-fatty acylation in Corynebacterium, termed protein O-mycoloylation, involves the attachment of mycolic acids─unusually large and hydrophobic fatty acids─to serine residues of proteins in these organisms' outer mycomembrane. However, as with other forms of protein lipidation, the scope and functional consequences of protein O-mycoloylation are challenging to investigate due to the inherent difficulties of enriching and analyzing lipidated peptides. To facilitate the analysis of protein lipidation and enable the comprehensive profiling and site mapping of protein O-mycoloylation, we developed a chemical proteomics strategy integrating metabolic labeling, click chemistry, cleavable linkers, and a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method employing LC separation and complementary fragmentation methods tailored to the analysis of lipophilic, MS-labile O-acylated peptides. Using these tools in the model organism Corynebacterium glutamicum, we identified approximately 30 candidate O-mycoloylated proteins, including porins, mycoloyltransferases, secreted hydrolases, and other proteins with cell envelope-related functions─consistent with a role for O-mycoloylation in targeting proteins to the mycomembrane. Site mapping revealed that many of the proteins contained multiple spatially proximal modification sites, which occurred predominantly at serine residues surrounded by conformationally flexible peptide motifs. Overall, this study (i) discloses the putative protein O-mycoloylome for the first time, (ii) yields new insights into the undercharacterized proteome of the mycomembrane, which is a hallmark of important pathogens (e.g., Corynebacterium diphtheriae, Mycobacterium tuberculosis), and (iii) provides generally applicable chemical strategies for the proteomic analysis of protein lipidation.


Subject(s)
Bacterial Proteins , Corynebacterium glutamicum , Proteomics , Proteomics/methods , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Corynebacterium glutamicum/metabolism , Corynebacterium glutamicum/chemistry , Mycolic Acids/metabolism , Mycolic Acids/chemistry , Tandem Mass Spectrometry , Chromatography, Liquid , Acylation , Click Chemistry
2.
Molecules ; 29(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38338443

ABSTRACT

The emergence of new drug-resistant strains of the tuberculosis pathogen Mycobacterium tuberculosis (Mtb) is a new challenge for modern medicine. Its resistance capacity is closely related to the properties of the outer membrane of the Mtb cell wall, which is a bilayer membrane formed by mycolic acids (MAs) and their derivatives. To date, the molecular mechanisms of the response of the Mtb outer membrane to external factors and, in particular, elevated temperatures have not been sufficiently studied. In this work, we consider the temperature-induced changes in the structure, ordering, and molecular mobility of bilayer MA membranes of various chemical and conformational compositions. Using all-atom long-term molecular dynamics simulations of various MA membranes, we report the kinetic parameters of temperature-dependent changes in the MA self-diffusion coefficients and conformational compositions, including the apparent activation energies of these processes, as well as the characteristic times of ordering changes and the features of phase transitions occurring over a wide range of elevated temperatures. Understanding these effects could be useful for the prevention of drug resistance and the development of membrane-targeting pharmaceuticals, as well as in the design of membrane-based materials.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Mycolic Acids/chemistry , Molecular Dynamics Simulation , Temperature , Cell Wall
3.
ACS Appl Bio Mater ; 6(12): 5555-5562, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38015441

ABSTRACT

Lipidic adjuvant formulations consisting of immunomodulatory mycobacterial cell wall lipids interact with host cells following administration. The impact of this cross-talk on the host membrane's structure and function is rarely given enough consideration but is imperative to rule out nonspecific perturbation underlying the adjuvant. In this work, we investigated changes in the plasma membranes of live mammalian cells after exposure to mycobacterial mycolic acid (MA) and phenolic glycolipids, two strong candidates for lipidic adjuvant therapy. We found that phenolic glycolipid 1 softened the plasma membrane, lowering membrane tension and stiffness, but MA did not significantly change the membrane characteristics. Further, phenolic glycolipid 1 had a fluidizing impact on the host plasma membrane, increasing the fluidity and the abundance of fluid-ordered-disordered coexisting lipid domains. Notably, lipid diffusion was not impacted. Overall, MA and, to a lesser extent, phenolic glycolipid 1, due to minor disruption of host cell membranes, may serve as appropriate lipids in adjuvant formulations.


Subject(s)
Glycolipids , Mycolic Acids , Animals , Glycolipids/analysis , Glycolipids/chemistry , Glycolipids/metabolism , Mycolic Acids/analysis , Mycolic Acids/chemistry , Mycolic Acids/metabolism , Cell Membrane/chemistry , Cell Wall , Adjuvants, Immunologic , Macrophages/metabolism , Mammals/metabolism
4.
Molecules ; 28(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36771014

ABSTRACT

Bilayers of mycolic acids (MAs) form the outer membrane of Mycobacterium tuberculosis that has high strength and extremely low permeability for external molecules (including antibiotics). For the first time, we were able to study them using the all-atom long-term molecular dynamic simulations (from 300 ns up to 1.2 µs) in order to investigate the conformational changes and most favorable structures of the mycobacterial membranes. The structure and properties of the membranes are crucially dependent on the initial packing of the α-mycolic acid (AMA) molecules, as well as on the presence of the secondary membrane components, keto- and methoxy mycolic acids (KMAs and MMAs). In the case of AMA-based membranes, the most labile conformation is W while other types of conformations (sU as well as sZ, eU, and eZ) are much more stable. In the multicomponent membranes, the presence of the KMA and MMA components (in the W conformation) additionally stabilizes both the W and eU conformations of AMA. The membrane in which AMA prevails in the eU conformation is much thicker and, at the same time, much denser. Such a packing of the MA molecules promotes the formation of a significantly stronger outer mycobacterial membrane that should be much more resistant to the threatening external factors.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Molecular Conformation , Molecular Dynamics Simulation , Mycobacterium tuberculosis/chemistry , Mycolic Acids/chemistry
5.
Nat Struct Mol Biol ; 30(3): 296-308, 2023 03.
Article in English | MEDLINE | ID: mdl-36782050

ABSTRACT

The mycolic acid layer of the Mycobacterium tuberculosis cell wall is essential for viability and virulence, and the enzymes responsible for its synthesis are targets for antimycobacterial drug development. Polyketide synthase 13 (Pks13) is a module encoding several enzymatic and transport functions that carries out the condensation of two different long-chain fatty acids to produce mycolic acids. We determined structures by cryogenic-electron microscopy of dimeric multi-enzyme Pks13 purified from mycobacteria under normal growth conditions, captured with native substrates. Structures define the ketosynthase (KS), linker and acyl transferase (AT) domains at 1.8 Å resolution and two alternative locations of the N-terminal acyl carrier protein. These structures suggest intermediate states on the pathway for substrate delivery to the KS domain. Other domains, visible at lower resolution, are flexible relative to the KS-AT core. The chemical structures of three bound endogenous long-chain fatty acid substrates were determined by electrospray ionization mass spectrometry.


Subject(s)
Mycobacterium tuberculosis , Polyketide Synthases , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Mycobacterium tuberculosis/metabolism , Mycolic Acids/chemistry , Mycolic Acids/metabolism , Fatty Acids/metabolism
6.
Microbiol Res ; 267: 127260, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36463830

ABSTRACT

Corynebacterium glutamicum has been widely utilized for the industrial production of various amino acids. Trehalose is a prerequisite for the biosynthesis of mycolates which are structurally important constituents of the cell envelope in C. glutamicum. In this study, C. glutamicum mutant ΔSYA, which is unable to synthesize trehalose was constructed by deleting genes treS, treY and otsA in the three pathways of trehalose biosynthesis. In the fermentation medium, ΔSYA grew as well as the control C. glutamicum ATCC13869, synthesized similar levels of glucose monocorynomycolate, trehalose dicorynomycolate, and phospholipids to ATCC13869, but produced 12.5 times more L-glutamate than ATCC13869. Transcriptional levels of the genes relevant to L-arginine biosynthesis, encoding ODHC and relevant to the biosynthesis of sulfur-containing amino acids were down-regulated in ΔSYA. In minimal medium with different concentrations of glucose, ΔSYA grew worse than ATCC13869 but excreted more L-glutamate. When grown in minimal medium, phospholipids are the major lipid in ΔSYA, while glucose monocorynomycolate, trehalose dicorynomycolate, and phospholipids are the major lipid in ATCC13869. The transcriptional levels of mscCG in ΔSYA was significantly up-regulated when grown in minimal medium.


Subject(s)
Corynebacterium glutamicum , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Mycolic Acids/chemistry , Mycolic Acids/metabolism , Trehalose/metabolism , Glutamic Acid/metabolism , Glucose/metabolism
7.
ACS Infect Dis ; 8(11): 2315-2326, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36325756

ABSTRACT

Alternative mode-of-inhibition of clinically validated targets is an effective strategy for circumventing existing clinical drug resistance. Herein, we report 1,3-diarylpyrazolyl-acylsulfonamides as potent inhibitors of HadAB/BC, a 3-hydroxyl-ACP dehydratase complex required to iteratively elongate the meromycolate chain of mycolic acids in Mycobacterium tuberculosis (Mtb). Mutations in compound 1-resistant Mtb mutants mapped to HadC (Rv0637; K157R), while chemoproteomics confirmed the compound's binding to HadA (Rv0635), HadB (Rv0636), and HadC. The compounds effectively inhibited the HadAB and HadBC enzyme activities and affected mycolic acid biosynthesis in Mtb, in a concentration-dependent manner. Unlike known 3-hydroxyl-ACP dehydratase complex inhibitors of clinical significance, isoxyl and thioacetazone, 1,3-diarylpyrazolyl-acylsulfonamides did not require activation by EthA and thus are not liable to EthA-mediated resistance. Further, the crystal structure of a key compound in a complex with Mtb HadAB revealed unique binding interactions within the active site of HadAB, providing a useful tool for further structure-based optimization of the series.


Subject(s)
Mycobacterium tuberculosis , Thioacetazone , Bacterial Proteins/metabolism , Mycolic Acids/chemistry , Thioacetazone/metabolism , Thioacetazone/pharmacology , Hydro-Lyases/chemistry , Hydro-Lyases/metabolism , Hydro-Lyases/pharmacology
8.
BMC Biol ; 20(1): 147, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35729566

ABSTRACT

BACKGROUND: Type I polyketide synthases (PKSs) are multifunctional enzymes responsible for the biosynthesis of a group of diverse natural compounds with biotechnological and pharmaceutical interest called polyketides. The diversity of polyketides is impressive despite the limited set of catalytic domains used by PKSs for biosynthesis, leading to considerable interest in deciphering their structure-function relationships, which is challenging due to high intrinsic flexibility. Among nineteen polyketide synthases encoded by the genome of Mycobacterium tuberculosis, Pks13 is the condensase required for the final condensation step of two long acyl chains in the biosynthetic pathway of mycolic acids, essential components of the cell envelope of Corynebacterineae species. It has been validated as a promising druggable target and knowledge of its structure is essential to speed up drug discovery to fight against tuberculosis. RESULTS: We report here a quasi-atomic model of Pks13 obtained using small-angle X-ray scattering of the entire protein and various molecular subspecies combined with known high-resolution structures of Pks13 domains or structural homologues. As a comparison, the low-resolution structures of two other mycobacterial polyketide synthases, Mas and PpsA from Mycobacterium bovis BCG, are also presented. This study highlights a monomeric and elongated state of the enzyme with the apo- and holo-forms being identical at the resolution probed. Catalytic domains are segregated into two parts, which correspond to the condensation reaction per se and to the release of the product, a pivot for the enzyme flexibility being at the interface. The two acyl carrier protein domains are found at opposite sides of the ketosynthase domain and display distinct characteristics in terms of flexibility. CONCLUSIONS: The Pks13 model reported here provides the first structural information on the molecular mechanism of this complex enzyme and opens up new perspectives to develop inhibitors that target the interactions with its enzymatic partners or between catalytic domains within Pks13 itself.


Subject(s)
Mycobacterium tuberculosis , Polyketides , Bacterial Proteins/metabolism , Mycobacterium tuberculosis/genetics , Mycolic Acids/chemistry , Mycolic Acids/metabolism , Polyketide Synthases/chemistry , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Polyketides/metabolism
9.
J Am Soc Mass Spectrom ; 33(1): 149-159, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34842433

ABSTRACT

Mycobacterium tuberculosis (Mtb) cells are known to synthesize very long chain (C60-90) structurally complex mycolic acids with various functional groups. In this study, we applied linear ion-trap (LIT) multiple-stage mass spectrometry (MSn), combined with high-resolution mass spectrometry to study the mechanisms underlying the fragmentation processes of mycolic acid standards desorbed as lithiated adduct ions by ESI. This is followed by structural characterization of a Mtb mycolic acid family (Bovine strain). Using the insight fragmentation processes gained from the study, we are able to achieve a near complete characterization of the whole mycolic acid family, revealing the identity of the α-alkyl chain, the location of the functional groups including methyl, methoxy, and keto groups along the meroaldehyde chain in each lipid species. This study showcased the power of LIT MSn toward structural determination of complex lipids in a mixture, which would be otherwise very difficult to define using other analytical techniques.


Subject(s)
Mycobacterium tuberculosis/chemistry , Mycolic Acids/analysis , Mycolic Acids/chemistry , Tandem Mass Spectrometry/methods , Ions/analysis , Ions/chemistry , Molecular Conformation , Spectrometry, Mass, Electrospray Ionization
10.
Article in English | MEDLINE | ID: mdl-33355527

ABSTRACT

The occurrence of nontuberculous mycobacteria in different hosts and their implication as obligate or opportunistic pathogens remain mainly unclear. Mycobacteriosis in pigs is usually associated with members of the Mycobacterium avium complex and, in particular, with 'Mycobacterium avium subsp. hominissuis'. Here we describe a novel slow-growing mycobacterial species isolated from lymph nodes obtained from two sows housed in different Swiss farms. The animals presented chronic inappetence and mild diarrhoea. Gross pathology revealed focal caseous lymphadenopathy of the mesenteric lymph nodes. Complete genome sequencing of the two isolates from the two sows was performed. The genomes comprised 5.76 Mb and an average nucleotide identity score of 99.97 %. Whole genome sequence, mycolic acid and matrix-assisted laser desorption ionization-time of flight mass spectrometry analyses revealed that the two isolates were not related to any previously described Mycobacterium species. The closest related species was Mycobacterium parmense, a slow-growing scotochromogenic mycobacterium first isolated from a cervical lymph node of a 3-year-old child. The name proposed for the new species is Mycobacterium helveticum sp. nov. and 16-83T (=DSM 109965T= LMG 2019-02457T) is the type strain.


Subject(s)
Lymph Nodes/microbiology , Mycobacterium/classification , Phylogeny , Swine/microbiology , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Female , Genome, Bacterial , Mycobacterium/isolation & purification , Mycobacterium Infections/microbiology , Mycobacterium Infections/veterinary , Mycolic Acids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Switzerland
11.
Mol Divers ; 25(1): 351-366, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32533514

ABSTRACT

Tuberculosis is one of the leading causes of death across the world. The treatment regimens for tuberculosis are well established, but still the control of the disease faces many challenges such as lengthy treatment protocols, drug resistance and toxicity. In the present work, mycolic acid methyl transferase (MmaA1), a protein involved in the maturation of mycolic acids in the biochemical pathway of the Mycobacterium, was studied for novel drug discovery. The homology model of the MmaA1 protein was built and validated by using computational techniques. The MmaA1 protein has 286 amino acid residues consisting of 10 α-helices and 7 ß-sheets. The active site of the MmaA1 protein was identified using CASTp, SiteMap and PatchDock. Virtual screening studies were performed with two small molecule ligand databases: Asinex synergy and Diverse_Elite_Gold_Platinum databases having a total of 43,446 molecules and generated 1,30,814 conformers against the predicted and validated active site of the MmaA1 protein. Binding analysis showed that the residues ASP 19, PHE 22, TRP 30, TYR 32, TRP 74 and ALA 77 of MmaA1 protein have consistent interactions with the ligands. The hit ligands were further filtered by in silico ADME properties to eliminate potentially toxic molecules. Of the top 10 molecules, 3-(2-morpholinoacetamido)-N-(1,4-dihydro-4-oxoquinazolin-6-yl) benzamide was synthesised and screened for in vitro anti-TB activity against Mtb H37Rv using MABA assay. The compound and its intermediates exhibited good in vitro anti-TB activity which can be taken up for future lead optimisation studies. Structure based virtual screening study was performed using a validated homology model against small molecules from two virtual compound libraries. Synthesised the lead compound 3-(2-morpholinoacetamido)-N-(1,4-dihydro-4-oxoquinazolin-6-yl)benzamide obtained from virtual screening. In vitro activity against Mtb H37Rv has given a promising result.


Subject(s)
Antitubercular Agents/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Methyltransferases/antagonists & inhibitors , Mycobacterium tuberculosis/enzymology , Amino Acid Sequence , Catalytic Domain , Drug Evaluation, Preclinical , Enzyme Inhibitors/analysis , Ligands , Methyltransferases/chemistry , Methyltransferases/metabolism , Molecular Docking Simulation , Mycobacterium tuberculosis/drug effects , Mycolic Acids/chemistry , Mycolic Acids/metabolism , Protein Structure, Secondary , Reproducibility of Results , Structure-Activity Relationship
12.
Chem Phys Lipids ; 233: 104977, 2020 11.
Article in English | MEDLINE | ID: mdl-32961166

ABSTRACT

Cells of Mycobacterium alvei are known to contain a unique set of mycolic acids with a (ω-1)-methoxy group; although the various enzymes in the biosynthesis of other types of mycolic acid have been widely studied, the biosynthetic route to this substituent is unclear. We now define the stereochemistry of the (ω-1)-methoxy fragment as R, and describe the synthesis of a major R-(ω-1)-methoxy-mycolic acid and its sugar esters, and of two natural M. alvei diene mycolic acids.


Subject(s)
Mycobacteriaceae/chemistry , Mycolic Acids/chemical synthesis , Molecular Structure , Mycobacteriaceae/cytology , Mycolic Acids/chemistry , Stereoisomerism
13.
Int J Syst Evol Microbiol ; 70(10): 5503-5511, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32910752

ABSTRACT

Two Gram-stain-positive, strictly aerobic, non-spore-forming actinobacterial strains, designated YC2-7T and YC5-17, were isolated from the Yongcheondonggul (larva cave) in Jeju, Republic of Korea and their taxonomic ranks were examined by a polyphasic approach. The 16S rRNA gene tree showed that the novel isolates occupied an independent position separated from recognized genera of the family Nocardiaceae. In the 92 core gene-based phylogenomic analysis, strain YC2-7T was loosely associated with the type strain of Aldersonia kummingensis with 66.2 % average amino acid identity. The 16S rRNA gene sequence simairity between the isolate and members of the family Nocardiaceae was below 96.7 %. The cell-wall peptidoglycan was meso-diaminopimelic acid as a diagnostic diamino acid. Whole-cell sugars consisted of arabinose, galactose and glucose. The predominant menaquinone was MK-8(H4, ω-cycl). The major polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The cellular fatty acids consisted mainly of saturated and unsaturated components with small amounts of tuberculostearic acid. Mycolic acids of 52-58 carbon atoms were present. The DNA G+C content of the genome was 63.8 mol%. On the basis of combination of morphological and chemotaxonomic differences, in addition to phylogenetic distinctness, the novel isolates are considered to constitute members of a novel species of a new genus in the family Nocardiaceae, for which the name Antrihabitans stalactiti gen. nov., sp. nov. is proposed. The type strain is YC2-7T (=KACC 19965T=DSM 108733T).


Subject(s)
Caves/microbiology , Nocardiaceae/classification , Phylogeny , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Mycolic Acids/chemistry , Nocardiaceae/isolation & purification , Peptidoglycan/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Republic of Korea , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
14.
Chem Phys Lipids ; 230: 104928, 2020 08.
Article in English | MEDLINE | ID: mdl-32492381

ABSTRACT

Mycolic acid methyl esters were extracted from Mycobacterium avium by a mild saponification protocol, designed to preserve labile components. The resulting mixture of α-, keto- and wax ester mycolates was accompanied by some degraded ω-carboxymycolic acid dimethyl esters, whose overall structures were found to support previous studies. Chromatography of the mono-carboxylic mycolates gave an inseparable mixture of keto- and wax ester mycolates and separate α-mycolates. Reduction of the ketomycolate components allowed isolation and characterisation of intact wax ester mycolates for the first time. Minor α- and ω-carboxymycolates were detected in which methyl branches were located on either the proximal or distal sides of trans-alkene groups.


Subject(s)
Mycobacterium avium/chemistry , Mycolic Acids/chemistry , Alkenes/chemistry , Dimerization , Esters/chemistry , Mycolic Acids/isolation & purification , Stereoisomerism
15.
Int J Syst Evol Microbiol ; 70(5): 2981-2987, 2020 May.
Article in English | MEDLINE | ID: mdl-32375925

ABSTRACT

A novel nocardioform strain, CICC 11023T, was isolated from a tissue biopsy of neck lesions of a patient with primary cutaneous nocardiosis and characterized to establish its taxonomic position. The morphological, biochemical, physiological and chemotaxonomic properties of strain CICC 11023T were consistent with classification in the genus Nocardia. Whole-cell hydrolysates were rich in meso-diaminopimelic acid, galactose, arabinose and fructose. Mycolic acids were present. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, one unidentified phospholipid and two unidentified lipids, and the predominant menaquinone was cyclo MK-8 (H4, ω-cyclo). The main fatty acids (>5 %) were C18 : 0 10-methyl (TBSA), C16 : 0, summed feature 4 (C16 : 1 trans 9/C15 : 0 iso 2OH), C15 : 0 and C17 : 0 10-methyl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that the isolate is most closely related (>98 % similarity) to the type strains Nocardia ninae OFN 02.72T, Nocardia iowensis UI 122540T and Nocardia alba YIM 30243T, and phylogenetic analysis of gyrB gene sequences showed similarity (89.1-92.2 %) to Nocardia vulneris NBRC 108936T, Nocardia brasiliensis IFM 0236T and Nocardia exalbida IFM 0803T. DNA-DNA hybridization results for strain CICC 11023T compared to Nocardia type strains ranged from 20.4 to 35.4 %. The genome of strain CICC 11023T was 8.78 Mbp with a G+C content of 67.4 mol% overall. The average nucleotide identity (ANI) values between strain CICC 11023T and N. alba YIM 30243T were low (OrthoANIu=77.47 %), and the ANI values between strain CICC 11023T and N. vulneris NBRC 108936 T were low (OrthoANIu=83.75 %). Consequently, strain CICC 11023T represents a novel Nocardia species on the basis of this polyphasic study, for which the name Nocardia colli sp. nov. is proposed. The type strain is CICC 11023T (=KCTC 39837T).


Subject(s)
Nocardia Infections/microbiology , Nocardia/classification , Phylogeny , Adult , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Female , Humans , Mycolic Acids/chemistry , Neck , Nocardia/isolation & purification , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
16.
J Biol Chem ; 295(18): 6108-6119, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32217691

ABSTRACT

Pathogenic bacteria of the genera Mycobacterium and Corynebacterium cause severe human diseases such as tuberculosis (Mycobacterium tuberculosis) and diphtheria (Corynebacterium diphtheriae). The cells of these species are surrounded by protective cell walls rich in long-chain mycolic acids. These fatty acids are conjugated to the disaccharide trehalose on the cytoplasmic side of the bacterial cell membrane. They are then transported across the membrane to the periplasm where they act as donors for other reactions. We have previously shown that transient acetylation of the glycolipid trehalose monohydroxycorynomycolate (hTMCM) enables its efficient transport to the periplasm in Corynebacterium glutamicum and that acetylation is mediated by the membrane protein TmaT. Here, we show that a putative methyltransferase, encoded at the same genetic locus as TmaT, is also required for optimal hTMCM transport. Deletion of the C. glutamicum gene NCgl2764 (Rv0224c in M. tuberculosis) abolished acetyltrehalose monocorynomycolate (AcTMCM) synthesis, leading to accumulation of hTMCM in the inner membrane and delaying its conversion to trehalose dihydroxycorynomycolate (h2TDCM). Complementation with NCgl2764 normalized turnover of hTMCM to h2TDCM. In contrast, complementation with NCgl2764 derivatives mutated at residues essential for methyltransferase activity failed to rectify the defect, suggesting that NCgl2764/Rv0224c encodes a methyltransferase, designated here as MtrP. Comprehensive analyses of the individual mtrP and tmaT mutants and of a double mutant revealed strikingly similar changes across several lipid classes compared with WT bacteria. These findings indicate that both MtrP and TmaT have nonredundant roles in regulating AcTMCM synthesis, revealing additional complexity in the regulation of trehalose mycolate transport in the Corynebacterineae.


Subject(s)
Cell Membrane/metabolism , Corynebacterium glutamicum/cytology , Corynebacterium glutamicum/enzymology , Methyltransferases/metabolism , Mycolic Acids/chemistry , Trehalose/chemistry , Trehalose/metabolism , Biological Transport , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Methyltransferases/genetics , Mutation , Mycobacterium tuberculosis/genetics , Sequence Homology, Nucleic Acid
17.
Int J Mol Sci ; 21(5)2020 Feb 29.
Article in English | MEDLINE | ID: mdl-32121355

ABSTRACT

In addition to cell membrane phospholipids, Actinobacteria in the order Corynebacteriales possess a waxy cell envelope containing mycolic acids (MA). In optimized culture condition, some species can also accumulate high concentrations of intracellular triacylglycerols (TAG), which are a potential source of biodiesel. Bacterial lipid classes and composition alter in response to environmental stresses, including nutrient availability, thus understanding carbon flow into different lipid classes is important when optimizing TAG synthesis. Quantitative and qualitative analysis of lipid classes normally requires combinations of different extraction, derivatization, chromatographic and detection methods. In this study, a single-step thin-layer chromatography-flame ionization detection (TLC-FID) technique was applied to quantify lipid classes in six sub-Antarctic Corynebacteriales strains identified as Rhodococcus and Williamsia species. A hexane:diethyl-ether:acetic acid solvent system separated the total cellular lipids extracted from cells lysed by bead beating, which released more bound and unbound MA than sonication. Typical profiles included a major broad non-polar lipid peak, TAG and phospholipids, although trehalose dimycolates, when present, co-eluted with phospholipids. Ultra-performance liquid chromatography-tandem mass-spectrometry and nuclear magnetic resonance spectroscopy detected MA signatures in the non-polar lipid peak and indicated that these lipids were likely bound, at least in part, to sugars from cell wall arabinogalactan. Waxy esters were not detected. The single-solvent TLC-FID procedure provides a useful platform for the quantitation and preliminary screening of cellular lipid classes when testing the impacts of growth conditions on TAG synthesis.


Subject(s)
Biofuels , Lipids/isolation & purification , Mycolic Acids/chemistry , Rhodococcus/chemistry , Chromatography, Thin Layer , Flame Ionization , Lipids/chemistry , Lipids/classification , Mycolic Acids/metabolism
18.
Int J Syst Evol Microbiol ; 70(3): 2079-2083, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31995467

ABSTRACT

A mycolic acid-containing actinobacterium designated strain MMS17-SY073T was isolated from island soil. The isolate showed best growth at 25 °C, pH 6, and 0 % (w/v) NaCl. The phylogenetic analysis based on 16S rRNA gene sequences indicated that strain MMS17-SY073T belongs to the genus Gordonia, and is mostly related to the type strains of Gordonia soli (98.5 % sequence similarity), Gordonia polyisoprenivorans (98.1%), and Gordonia hankookensis (97.8%). The genome-based comparisons showed a clear distinction between the strain and the two neighbouring species, G. soli and G. polyisoprenivorans, with the average nucleotide identities (ANI) of 75.8 and 76.3 %, respectively. Notably, the genome of strain MMS17-SY073T was the largest in total stretch and gene counts among the complete genomes of Gordonia, and contained a number of biosynthetic gene clusters for secondary metabolites, in particular those for non-ribosomal peptide synthetases. The major polar lipids were diphosphatidyl glycerol (DPG), phosphatidyl glycerol (PG), phosphatidyl ethanolamine (PE), phosphatidyl inositol (PI) and phosphatidyl inositol mannoside (PIM). The isoprenoid quinone was MK-9(H2), and the main fatty acids were C16 : 0 (30.2%) and 10-methyl-C18 : 0 (33.7%). The whole cell hydrolysates contained galactose, arabinose, and meso-diaminopimelic acid. The DNA G+C content was 67.4 mol%. Based on phenotypic, chemotaxonomic and genetic analysis, strain MMS17-SY073T should be classified as a new species of the genus Gordonia, for which the name Gordonia insulae sp. nov. is proposed (type strain=MMS17-SY073T=KCTC 49257T=JCM 33277T).


Subject(s)
Gordonia Bacterium/classification , Phylogeny , Soil Microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Gordonia Bacterium/isolation & purification , Islands , Mycolic Acids/chemistry , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Republic of Korea , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
19.
Int J Syst Evol Microbiol ; 70(1): 493-498, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31617846

ABSTRACT

A novel actinobacterial strain, designated NEAU-LL90T, was isolated from cow dung collected from Shangzhi, Heilongjiang Province, north-east PR China and characterized by using a polyphasic approach. Morphological and chemotaxonomic characteristics were consistent with those members of the genus Nocardia. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The predominant menaquinone detected was MK-8(H4, ω-cycl). Major fatty acids (>10 %) were identified as C16:0, C18:1ω9c, C18:0 and 10-methyl C19:0. Mycolic acids were present. The results of 16S rRNA gene sequence analysis showed that strain NEAU-LL90T belongs to the genus Nocardia with high sequence similarity to Nocardia niigatensis JCM11894T (98.1 %), similarities to other type strains of species of the genus Nocardia were found to be lower than 98.0 %. Furthermore, a combination of DNA-DNA hybridization results and some phenotypic characteristics demonstrated that strain NEAU-LL90T could be distinguished from its closest relative. Therefore, it is proposed that strain NEAU-LL90T represents a novel species of the genus Nocardia, for which the name Nocardia stercoris sp. nov. is proposed. The type strain is NEAU-LL90T (=CGMCC 4.7500T=JCM 32663T).


Subject(s)
Cattle/microbiology , Manure/microbiology , Nocardia/classification , Phylogeny , Animals , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Mycolic Acids/chemistry , Nocardia/isolation & purification , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil Microbiology , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
20.
Int J Syst Evol Microbiol ; 70(2): 995-1006, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31738158

ABSTRACT

Three bacterial strains, HKU70T, HKU71T and HKU72T, were isolated from the conjunctival swab, blood and sputum samples of three patients with conjunctivitis, bacteraemia and respiratory infection, respectively, in Hong Kong. The three strains were aerobic, Gram-stain positive, catalase-positive, non-sporulating and non-motile bacilli and exhibited unique biochemical profiles distinguishable from currently recognized Tsukamurella species. 16S rRNA, secA, rpoB and groEL gene sequence analyses revealed that the three strains shared 99.6-99.9, 94.5-96.8, 95.7-97.8 and 97.7-98.9 % nucleotide identities with their corresponding closest Tsukamurella species respectively. DNA-DNA hybridization confirmed that they were distinct from other known species of the genus Tsukamurella (26.2±2.4 to 36.8±1.2 % DNA-DNA relatedness), in line with results of in silico genome-to-genome comparison (32.2-40.9 % Genome-to-Genome Distance Calculator and 86.3-88.9 % average nucleotide identity values]. Fatty acids, mycolic acids, cell-wall sugars and peptidoglycan analyses showed that they were typical of members of Tsukamurella. The G+C content determined based on the genome sequence of strains HKU70T, HKU71T and HKU72T were 69.9, 70.2 and 70.5 mol%, respectively. Taken together, our results supported the proposition and description of three new species, i.e. Tsukamurella sputi HKU70T (=JCM 33387T=DSM 109106T) sp. nov., Tsukamurella asaccharolytica HKU71T (=JCM 33388T=DSM 109107T) sp. nov. and Tsukamurella conjunctivitidis HKU72T (=JCM 33389T=DSM 109108T) sp. nov.


Subject(s)
Actinobacteria/classification , Bacteremia/microbiology , Conjunctivitis/microbiology , Phylogeny , Respiratory Tract Infections/microbiology , Actinobacteria/isolation & purification , Bacterial Typing Techniques , Base Composition , Base Sequence , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Hong Kong , Humans , Mycolic Acids/chemistry , Nucleic Acid Hybridization , Peptidoglycan/chemistry , Pigmentation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL