Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.575
1.
Front Cell Infect Microbiol ; 14: 1366908, 2024.
Article En | MEDLINE | ID: mdl-38725449

Background: Metagenomic next-generation sequencing (mNGS) is a novel non-invasive and comprehensive technique for etiological diagnosis of infectious diseases. However, its practical significance has been seldom reported in the context of hematological patients with high-risk febrile neutropenia, a unique patient group characterized by neutropenia and compromised immune responses. Methods: This retrospective study evaluated the results of plasma cfDNA sequencing in 164 hematological patients with high-risk febrile neutropenia. We assessed the diagnostic efficacy and clinical impact of mNGS, comparing it with conventional microbiological tests. Results: mNGS identified 68 different pathogens in 111 patients, whereas conventional methods detected only 17 pathogen types in 36 patients. mNGS exhibited a significantly higher positive detection rate than conventional methods (67.7% vs. 22.0%, P < 0.001). This improvement was consistent across bacterial (30.5% vs. 9.1%), fungal (19.5% vs. 4.3%), and viral (37.2% vs. 9.1%) infections (P < 0.001 for all comparisons). The anti-infective treatment strategies were adjusted for 51.2% (84/164) of the patients based on the mNGS results. Conclusions: mNGS of plasma cfDNA offers substantial promise for the early detection of pathogens and the timely optimization of anti-infective therapies in hematological patients with high-risk febrile neutropenia.


Febrile Neutropenia , High-Throughput Nucleotide Sequencing , Metagenomics , Humans , Metagenomics/methods , Male , Retrospective Studies , High-Throughput Nucleotide Sequencing/methods , Female , Middle Aged , Febrile Neutropenia/microbiology , Febrile Neutropenia/blood , Febrile Neutropenia/diagnosis , Adult , Aged , Young Adult , Adolescent , Aged, 80 and over , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Mycoses/diagnosis , Mycoses/microbiology , Virus Diseases/diagnosis , Virus Diseases/virology
2.
PLoS One ; 19(5): e0298591, 2024.
Article En | MEDLINE | ID: mdl-38758948

Amphibians globally suffer from emerging infectious diseases like chytridiomycosis caused by the continuously spreading chytrid fungi. One is Batrachochytrium salamandrivorans (Bsal) and its disease ‒ the 'salamander plague' ‒ which is lethal to several caudate taxa. Recently introduced into Western Europe, long distance dispersal of Bsal, likely through human mediation, has been reported. Herein we study if Alpine salamanders (Salamandra atra and S. lanzai) are yet affected by the salamander plague in the wild. Members of the genus Salamandra are highly susceptible to Bsal leading to the lethal disease. Moreover, ecological modelling has shown that the Alps and Dinarides, where Alpine salamanders occur, are generally suitable for Bsal. We analysed skin swabs of 818 individuals of Alpine salamanders and syntopic amphibians at 40 sites between 2017 to 2022. Further, we compiled those with published data from 319 individuals from 13 sites concluding that Bsal infections were not detected. Our results suggest that the salamander plague so far is absent from the geographic ranges of Alpine salamanders. That means that there is still a chance to timely implement surveillance strategies. Among others, we recommend prevention measures, citizen science approaches, and ex situ conservation breeding of endemic salamandrid lineages.


Batrachochytrium , Mycoses , Urodela , Animals , Batrachochytrium/genetics , Batrachochytrium/pathogenicity , Mycoses/veterinary , Mycoses/microbiology , Mycoses/epidemiology , Urodela/microbiology , Communicable Diseases, Emerging/microbiology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/veterinary , Salamandra/microbiology , Europe/epidemiology , Chytridiomycota
3.
BMC Infect Dis ; 24(1): 506, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773459

BACKGROUND: The sharp increase in fungal infections, insufficient diagnostic and treatment capabilities for fungal infections, poor prognosis of patients with fungal infections as well as the increasing drug resistance of fungi are serious clinical problems. It is necessary to explore the implementation and evaluation methods of antifungal stewardship (AFS) to promote the standardized use of antifungal drugs. METHODS: The AFS programme was implemented at a tertiary first-class hospital in China using a plan-do-check-act (PDCA) quality management tool. A baseline investigation was carried out to determine the utilization of antifungal drugs in pilot hospitals, analyse the existing problems and causes, and propose corresponding solutions. The AFS programme was proposed and implemented beginning in 2021, and included various aspects, such as team building, establishment of regulations, information construction, prescription review and professional training. The management effectiveness was recorded from multiple perspectives, such as the consumption of antifungal drugs, the microbial inspection rate of clinical specimens, and the proportion of rational prescriptions. The PDCA management concept was used for continuous improvement to achieve closed-loop management. RESULTS: In the first year after the implementation of the AFS programme, the consumption cost, use intensity and utilization rate of antifungal drugs decreased significantly (P < 0.01). The proportion of rational antifungal drug prescriptions markedly increased, with the proportion of prescriptions with indications increasing from 86.4% in 2019 to 97.0% in 2022, and the proportion of prescriptions with appropriate usage and dosage increased from 51.9 to 87.1%. In addition, after the implementation of the AFS programme, physicians' awareness of the need to complete microbial examinations improved, and the number of fungal cultures and serological examinations increased substantially. Statistics from drug susceptibility tests revealed a decrease in the resistance rate of Candida to fluconazole. CONCLUSION: This study indicated that the combination of AFS and the PDCA cycle could effectively reduce antifungal consumption and promote the rational use of antifungal drugs, providing a reference for other health care systems to reduce the overuse of antifungal drugs and delay the progression of fungal resistance.


Antifungal Agents , Antimicrobial Stewardship , Mycoses , Tertiary Care Centers , Antifungal Agents/therapeutic use , Humans , China , Mycoses/drug therapy , Mycoses/microbiology , Drug Resistance, Fungal , Drug Utilization/standards , Drug Utilization/statistics & numerical data
4.
Environ Microbiol Rep ; 16(3): e13274, 2024 Jun.
Article En | MEDLINE | ID: mdl-38775382

The pathogenic fungus Batrachochytrium dendrobatidis has caused declines of amphibians worldwide. Yet our understanding of how water quality influences fungal pathogenicity is limited. Here, we reviewed experimental studies on the effect of water quality on this pathogen to determine which parameters impacted disease dynamics consistently. The strongest evidence for protective effects is salinity which shows strong antifungal properties in hosts at natural levels. Although many fungicides had detrimental effects on the fungal pathogen in vitro, their impact on the host is variable and they can worsen infection outcomes. However, one fungicide, epoxiconazole, reduced disease effects experimentally and likely in the field. While heavy metals are frequently studied, there is weak evidence that they influence infection outcomes. Nitrogen and phosphorous do not appear to impact pathogen growth or infection in the amphibian host. The effects of other chemicals, like pesticides and disinfectants on infection were mostly unclear with mixed results or lacking an in vivo component. Our study shows that water chemistry does impact disease dynamics, but the effects of specific parameters require more investigation. Improving our understanding of how water chemistry influences disease dynamics will help predict the impact of chytridiomycosis, especially in amphibian populations affected by land use changes.


Amphibians , Batrachochytrium , Water Quality , Animals , Batrachochytrium/drug effects , Amphibians/microbiology , Mycoses/microbiology , Mycoses/veterinary , Mycoses/prevention & control , Salinity , Fungicides, Industrial/pharmacology , Chytridiomycota/drug effects , Chytridiomycota/pathogenicity , Pesticides/pharmacology , Disinfectants/pharmacology , Antifungal Agents/pharmacology
6.
Article Zh | MEDLINE | ID: mdl-38811177

Objective: By conducting a retrospective analysis of the clinical data of 14 patients diagnosed with invasive fungal rhinosinusitis (IFRS) confirmed by metagenomics next generation sequencing (mNGS) technology, we aim to explore the rapid diagnosis value of mNGS in IFRS. Methods: The clinical data of 14 IFRS patients admitted to TianJin First Central Hospital were retrospectively analyzed from February 2021 to October 2023. The study cohort comprised 8 males and 6 females, with ages ranging from 14 to 77 years. All patients were diagnosed as IFRS by performing mNGS sequencing technology of nasal sinus lesion biopsy specimens. Clinical data such as laboratory examination, imaging examination, histopathological examination results, treatment plan and prognosis were summarized and analyzed. Results: All 14 patients were diagnosed as IFRS, with mNGS detecting pathogens such as Rhizopus (7 cases), Aspergillus (5 cases), Trichoderma (1 case), and Scedosporium apiospermum (1 case). Follow-up evaluations were conducted for a period ranging from 2 months to 2 years post-treatment. At the end of follow-up, 11 out of 14 IFRS patients achieved a complete cure with no signs of recurrence, while the symptoms of the remaining 3 patients significantly improved with comprehensive treatment. Conclusion: mNGS emerges as a highly effective diagnostic tool for IFRS, providing valuable microbiological evidence for clinical diagnosis and demonstrating promising clinical utility.


Sinusitis , Humans , Male , Female , Sinusitis/microbiology , Sinusitis/diagnosis , Retrospective Studies , Middle Aged , Aged , Adolescent , Adult , Young Adult , Metagenomics/methods , High-Throughput Nucleotide Sequencing , Mycoses/diagnosis , Mycoses/microbiology , Aspergillus/isolation & purification , Rhinitis/diagnosis , Rhinitis/microbiology , Rhizopus/isolation & purification , Scedosporium/isolation & purification
7.
Sci Rep ; 14(1): 10899, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740854

In order to obtain the best mass spectrometry identification results for using the most appropriate methods in clinical practice, we explore the optimal pretreatment methods for different species and morphologies of filamentous fungi. 98 fungal strains were treated with formic acid sandwich method, dispersion method, extraction method, and other methods using a medium element mass spectrometer (EXS3000) as a platform. Each strain had three targets, and the identification rates and confidence differences under different pre-treatment methods were compared to evaluate the identification effects of these methods. The mass spectrometry identification rates of 98 filamentous fungi obtained after pre-treatment with formic acid sandwich method, dispersion method, and extraction method were 85.71%, 82.65%, and 75.51%, respectively. The identification rate of the formic acid sandwich method was significantly higher than the other two methods (P < 0 005) has the best identification ability and the obtained confidence is also higher than the other two methods. The use of formic acid sandwich method for mass spectrometry identification of filamentous fungi can achieve ideal identification results, which is suitable for mass spectrometry identification of filamentous fungi in conventional laboratories.


Fungi , Mass Spectrometry , Fungi/isolation & purification , Fungi/classification , Mass Spectrometry/methods , Formates/chemistry , Formates/analysis , Mycoses/microbiology , Mycoses/diagnosis , Humans
8.
Ecol Lett ; 27(5): e14431, 2024 May.
Article En | MEDLINE | ID: mdl-38712705

There is a rich literature highlighting that pathogens are generally better adapted to infect local than novel hosts, and a separate seemingly contradictory literature indicating that novel pathogens pose the greatest threat to biodiversity and public health. Here, using Batrachochytrium dendrobatidis, the fungus associated with worldwide amphibian declines, we test the hypothesis that there is enough variance in "novel" (quantified by geographic and phylogenetic distance) host-pathogen outcomes to pose substantial risk of pathogen introductions despite local adaptation being common. Our continental-scale common garden experiment and global-scale meta-analysis demonstrate that local amphibian-fungal interactions result in higher pathogen prevalence, pathogen growth, and host mortality, but novel interactions led to variable consequences with especially virulent host-pathogen combinations still occurring. Thus, while most pathogen introductions are benign, enough variance exists in novel host-pathogen outcomes that moving organisms around the planet greatly increases the chance of pathogen introductions causing profound harm.


Batrachochytrium , Host-Pathogen Interactions , Animals , Batrachochytrium/genetics , Batrachochytrium/physiology , Anura/microbiology , Amphibians/microbiology , Mycoses/veterinary , Mycoses/microbiology , Adaptation, Physiological , Phylogeny
10.
Emerg Infect Dis ; 30(6): 1077-1087, 2024 Jun.
Article En | MEDLINE | ID: mdl-38781681

Scedosporium spp. and Lomentospora prolificans are emerging non-Aspergillus filamentous fungi. The Scedosporiosis/lomentosporiosis Observational Study we previously conducted reported frequent fungal vascular involvement, including aortitis and peripheral arteritis. For this article, we reviewed 7 cases of Scedosporium spp. and L. prolificans arteritis from the Scedosporiosis/lomentosporiosis Observational Study and 13 cases from published literature. Underlying immunosuppression was reported in 70% (14/20) of case-patients, mainly those who had solid organ transplants (10/14). Osteoarticular localization of infection was observed in 50% (10/20) of cases; infections were frequently (7/10) contiguous with vascular infection sites. Scedosporium spp./Lomentospora prolificans infections were diagnosed in 9 of 20 patients ≈3 months after completing treatment for nonvascular scedosporiosis/lomentosporiosis. Aneurysms were found in 8/11 aortitis and 6/10 peripheral arteritis cases. Invasive fungal disease--related deaths were high (12/18 [67%]). The vascular tropism of Scedosporium spp. and L. prolificans indicates vascular imaging, such as computed tomography angiography, is needed to manage infections, especially for osteoarticular locations.


Mycoses , Scedosporium , Humans , Scedosporium/isolation & purification , France/epidemiology , Male , Middle Aged , Aged , Female , Mycoses/microbiology , Mycoses/epidemiology , Mycoses/diagnosis , Adult , Antifungal Agents/therapeutic use , Aged, 80 and over , Invasive Fungal Infections
11.
Emerg Infect Dis ; 30(6): 1232-1235, 2024 Jun.
Article En | MEDLINE | ID: mdl-38782016

A 3-year-old patient in India experiencing headaches and seizures was diagnosed with a fungal infection, initially misidentified as Cladophialophora bantiana. Follow-up sequencing identified the isolate to be Fonsecaea monophora fungus. This case demonstrates the use of molecular methods for the correct identification of F. monophora, an agent of fungal brain abscess.


Ascomycota , Brain Abscess , Brain Abscess/microbiology , Brain Abscess/diagnosis , Brain Abscess/drug therapy , Humans , Ascomycota/isolation & purification , Ascomycota/genetics , Ascomycota/classification , Child, Preschool , Male , Mycoses/microbiology , Mycoses/diagnosis , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Phylogeny , DNA, Fungal/genetics
12.
Diagn Microbiol Infect Dis ; 109(3): 116337, 2024 Jul.
Article En | MEDLINE | ID: mdl-38718662

Lecanicillium dimorphum and Lecanicillium psalliotae are fungi that exist naturally in plants or insects, and are generally considered non-pathogenic to humans. However, in this case, we cultured Lecanicillium from the synovial fluid of a patient, and identified it through genome sequencing and sequence alignment as Lecanicillium dimorphum or Lecanicillium psalliotae. Due to the conservation of sequences, we can only identify the genus and not the species. There are very few reports on the human infection and pathogenicity of these two fungi, and this case also cannot completely prove that the pathogenic agent is this fungus. But this case also holds clinical significance, as the discovery of Lecanicillium in a human sample can alert the clinician to the presence of an uncommon mold with unclear clinical significance.


Hypocreales , Mycoses , Humans , Hypocreales/isolation & purification , Hypocreales/genetics , Hypocreales/classification , Mycoses/microbiology , Mycoses/diagnosis , Synovial Fluid/microbiology , Male , Phylogeny , Sequence Analysis, DNA , DNA, Fungal/genetics
13.
BMC Infect Dis ; 24(1): 473, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711014

BACKGROUND: The incidence of Talaromyces marneffei (T. marneffei) infection has increased in recent years with the development of organ transplantation and the widespread use of immunosuppressive agents. However, the lack of clinical suspicion leading to delay or misdiagnosis is an important reason for the high mortality rate in non-human immunodeficiency virus (HIV) and non-endemic population. Herein, we report a case of disseminated T. marneffei infection in a non-HIV and non-endemic recipient after renal transplant, who initially presented with skin rashes and subcutaneous nodules and developed gastrointestinal bleeding. CASE PRESENTATION: We describe a 54-year-old renal transplantation recipient presented with scattered rashes, subcutaneous nodules and ulcerations on the head, face, abdomen, and right upper limb. The HIV antibody test was negative. The patient had no obvious symptoms such as fever, cough, etc. Histopathological result of the skin lesion sites showed chronic suppurative inflammation with a large number of fungal spores. Subsequent fungal culture suggested T. marneffei infection. Amphotericin B deoxycholate was given for antifungal treatment, and there was no deterioration in the parameters of liver and kidney function. Unfortunately, the patient was soon diagnosed with gastrointestinal bleeding, gastrointestinal perforation and acute peritonitis. Then he rapidly developed multiple organ dysfunction syndrome and abandoned treatment. CONCLUSIONS: The risk of fatal gastrointestinal bleeding can be significantly increased in kidney transplant patients with T. marneffei infection because of the long-term side effects of post-transplant medications. Strengthening clinical awareness and using mNGS or mass spectrometry technologies to improve the detection rate and early diagnosis of T. marneffei are crucial for clinical treatment in non-HIV and non-endemic population.


Kidney Transplantation , Mycoses , Talaromyces , Transplant Recipients , Humans , Male , Middle Aged , Amphotericin B/therapeutic use , Antifungal Agents/therapeutic use , Deoxycholic Acid , Dermatomycoses/diagnosis , Dermatomycoses/microbiology , Dermatomycoses/drug therapy , Drug Combinations , Fatal Outcome , Kidney Transplantation/adverse effects , Mycoses/diagnosis , Mycoses/drug therapy , Mycoses/microbiology , Talaromyces/isolation & purification
14.
Ther Adv Respir Dis ; 18: 17534666241254090, 2024.
Article En | MEDLINE | ID: mdl-38780228

BACKGROUND: A significant decline in pulmonary exacerbation rates has been reported in CF patients homozygous for F508del treated with lumacaftor/ivacaftor. However, it is still unclear whether this reduction reflects a diminished microbiological burden. OBJECTIVES: The aim of this study was to determine the impact of lumacaftor/ivacaftor on the bacterial and fungal burden. DESIGN: The study is a prospective multicenter cohort study including 132 CF patients homozygous for F508del treated with lumacaftor/ivacaftor. METHODS: Clinical parameters as well as bacterial and fungal outcomes 1 year after initiation of lumacaftor/ivacaftor were compared to data from 2 years prior to initiation of the treatment. Changes in the slope of the outcomes before and after the onset of treatment were assessed. RESULTS: Lung function measured as ppFEV1 (p < 0.001), body mass index (BMI) in adults (p < 0.001), and BMI z-score in children (p = 0.007) were improved after initiation of lumacaftor/ivacaftor. In addition, the slope of the prevalence of Streptococcus pneumoniae (p = 0.007) and Stenotrophomonas maltophilia (p < 0.001) shifted from positive to negative, that is, became less prevalent, 1 year after treatment, while the slope for Candida albicans (p = 0.009), Penicillium spp (p = 0.026), and Scedosporium apiospermum (p < 0.001) shifted from negative to positive. CONCLUSION: The current study showed a significant improvement in clinical parameters and a reduction of some of CF respiratory microorganisms 1 year after starting with lumacaftor/ivacaftor. However, no significant changes were observed for Pseudomonas aeruginosa, Staphylococcus aureus, or Aspergillus fumigatus, key pathogens in the CF context.


Aminophenols , Aminopyridines , Benzodioxoles , Cystic Fibrosis , Drug Combinations , Quinolones , Humans , Cystic Fibrosis/drug therapy , Cystic Fibrosis/microbiology , Cystic Fibrosis/physiopathology , Male , Prospective Studies , Female , Aminophenols/therapeutic use , Benzodioxoles/therapeutic use , Child , Adult , Young Adult , Adolescent , Aminopyridines/pharmacology , Aminopyridines/administration & dosage , Aminopyridines/therapeutic use , Aminopyridines/adverse effects , Quinolones/pharmacology , Sweden , Treatment Outcome , Mycoses/microbiology , Mycoses/drug therapy , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/diagnosis , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Lung/microbiology , Lung/physiopathology , Lung/drug effects , Chloride Channel Agonists/therapeutic use , Time Factors , Fungi/isolation & purification , Bacterial Infections/microbiology , Bacterial Infections/drug therapy
15.
Dis Aquat Organ ; 158: 123-132, 2024 May 30.
Article En | MEDLINE | ID: mdl-38813853

The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) causes chytridiomycosis, a disease among the main causes of amphibian declines worldwide. However, Bd studies on Neotropical amphibians from temperate areas are scarce. We present a comprehensive survey of Bd in Uruguay, in temperate central eastern South America, carried out between 2006 and 2014. Skin swabs of 535 specimens of 21 native and exotic frogs were tested by PCR. We used individual-level data to examine the relationship between infection, climatic variables, and their effects on body condition and the number of prey items found in stomach contents. Infection was widespread in free-ranging anurans with an overall prevalence of 41.9%, detected in 15 native species, wild American bullfrogs Aquarana catesbeiana, and captive specimens of Ceratophrys ornata and Xenopus laevis. Three haplotypes of the Bd ITS region were identified in native amphibians, all belonging to the global panzootic lineage (BdGPL), of which only one was present in exotic hosts. Despite high infection frequencies in different anurans, we found no evidence of morbidity or mortality attributable to chytridiomycosis, and we observed no discernible impact on body condition or consumed prey. Climatic conditions at the time of our surveys suggested that the chance of infection is associated with monthly mean temperature, mean humidity, and total precipitation. Temperatures below 21°C combined with moderate humidity and pronounced rainfall may increase the likelihood of infection. Multiple haplotypes of BdGPL combined with high frequencies of infection suggest an enzootic pattern in native species, underscoring the need for continued monitoring.


Climate , Mycoses , Animals , Mycoses/veterinary , Mycoses/epidemiology , Mycoses/microbiology , Uruguay/epidemiology , Batrachochytrium/genetics , Anura/microbiology , Chytridiomycota/isolation & purification
16.
Dis Aquat Organ ; 158: 173-178, 2024 May 30.
Article En | MEDLINE | ID: mdl-38813857

Working with aquatic organisms often requires handling multiple individuals in a single session, potentially resulting in cross-contamination by live pathogens or DNA. Most researchers address this problem by disposing of gloves between animals. However, this generates excessive waste and may be impractical for processing very slippery animals that might be easier to handle with cotton gloves. We tested methods to decontaminate cotton or nitrile gloves after contamination with cultured Batrachochytrium dendrobatidis (Bd) or after handling heavily Bd-infected Xenopus laevis with layered cotton and nitrile gloves. Bleach eliminated detectable Bd DNA from culture-contaminated nitrile gloves, but gloves retained detectable Bd DNA following ethanol disinfection. After handling a Bd-infected frog, Bd DNA contamination was greatly reduced by removal of the outer cotton glove, after which either bleach decontamination or ethanol decontamination followed by drying hands with a paper towel lowered Bd DNA below the detection threshold of our assay. These results provide new options to prevent pathogen or DNA cross-contamination, especially when handling slippery aquatic organisms. However, tradeoffs should be considered when selecting an animal handling procedure, such as the potential for cotton gloves to abrade amphibian skin or disrupt skin mucus. Disposing of gloves between animals should remain the gold standard for maintaining biosecurity in sensitive situations.


Decontamination , Gloves, Protective , Animals , Decontamination/methods , Gloves, Protective/microbiology , Batrachochytrium , DNA, Fungal , Mycoses/veterinary , Mycoses/prevention & control , Mycoses/microbiology
17.
Nat Microbiol ; 9(5): 1325-1339, 2024 May.
Article En | MEDLINE | ID: mdl-38589468

Drug-resistant fungal infections pose a significant threat to human health. Dual-targeting compounds, which have multiple targets on a single pathogen, offer an effective approach to combat drug-resistant pathogens, although ensuring potent activity and high selectivity remains a challenge. Here we propose a dual-targeting strategy for designing antifungal compounds. We incorporate DNA-binding naphthalene groups as the hydrophobic moieties into the host defence peptide-mimicking poly(2-oxazoline)s. This resulted in a compound, (Gly0.8Nap0.2)20, which targets both the fungal membrane and DNA. This compound kills clinical strains of multidrug-resistant fungi including Candida spp., Cryptococcus neoformans, Cryptococcus gattii and Aspergillus fumigatus. (Gly0.8Nap0.2)20 shows superior performance compared with amphotericin B by showing not only potent antifungal activities but also high antifungal selectivity. The compound also does not induce antimicrobial resistance. Moreover, (Gly0.8Nap0.2)20 exhibits promising in vivo therapeutic activities against drug-resistant Candida albicans in mouse models of skin abrasion, corneal infection and systemic infection. This study shows that dual-targeting antifungal compounds may be effective in combating drug-resistant fungal pathogens and mitigating fungal resistance.


Antifungal Agents , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Animals , Mice , Humans , Drug Resistance, Multiple, Fungal , Disease Models, Animal , Cryptococcus neoformans/drug effects , Aspergillus fumigatus/drug effects , Candida albicans/drug effects , Naphthalenes/pharmacology , Naphthalenes/chemistry , Oxazoles/pharmacology , Oxazoles/chemistry , Candida/drug effects , Mycoses/drug therapy , Mycoses/microbiology
18.
J Clin Microbiol ; 62(5): e0174923, 2024 May 08.
Article En | MEDLINE | ID: mdl-38624235

The timely identification of microbial pathogens is essential to guide targeted antimicrobial therapy and ultimately, successful treatment of an infection. However, the yield of standard microbiology testing (SMT) is directly related to the duration of antecedent antimicrobial therapy as SMT culture methods are dependent on the recovery of viable organisms, the fastidious nature of certain pathogens, and other pre-analytic factors. In the last decade, metagenomic next-generation sequencing (mNGS) has been successfully utilized as a diagnostic tool for various applications within the clinical laboratory. However, mNGS is resource, time, and labor-intensive-requiring extensive laborious preliminary benchwork, followed by complex bioinformatic analysis. We aimed to address these shortcomings by developing a largely Automated targeted Metagenomic next-generation sequencing (tmNGS) PipeLine for rapId inFectIous disEase Diagnosis (AMPLIFIED) to detect bacteria and fungi directly from clinical specimens. Therefore, AMPLIFIED may serve as an adjunctive approach to complement SMT. This tmNGS pipeline requires less than 1 hour of hands-on time before sequencing and less than 2 hours of total processing time, including bioinformatic analysis. We performed tmNGS on 50 clinical specimens with concomitant cultures to assess feasibility and performance in the hospital laboratory. Of the 50 specimens, 34 (68%) were from true clinical infections. Specimens from cases of true infection were more often tmNGS positive compared to those from the non-infected group (82.4% vs 43.8%, respectively, P = 0.0087). Overall, the clinical sensitivity of AMPLIFIED was 54.6% with 85.7% specificity, equating to 70.6% and 75% negative and positive predictive values, respectively. AMPLIFIED represents a rapid supplementary approach to SMT; the typical time from specimen receipt to identification of potential pathogens by AMPLIFIED is roughly 24 hours which is markedly faster than the days, weeks, and months required to recover bacterial, fungal, and mycobacterial pathogens by culture, respectively. IMPORTANCE: To our knowledge, this represents the first application of an automated sequencing and bioinformatics pipeline in an exclusively pediatric population. Next-generation sequencing is time-consuming, labor-intensive, and requires experienced personnel; perhaps contributing to hesitancy among clinical laboratories to adopt such a test. Here, we report a strong case for use by removing these barriers through near-total automation of our sequencing pipeline.


Bacteria , Bacterial Infections , Fungi , High-Throughput Nucleotide Sequencing , Metagenomics , Mycoses , Humans , High-Throughput Nucleotide Sequencing/methods , Fungi/genetics , Fungi/isolation & purification , Fungi/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Metagenomics/methods , Mycoses/diagnosis , Mycoses/microbiology , Automation, Laboratory/methods , Sensitivity and Specificity , Molecular Diagnostic Techniques/methods , Time Factors , Computational Biology/methods , Male , Female , Child , Adolescent , Adult , Child, Preschool
19.
Emerg Infect Dis ; 30(5): 1000-1003, 2024 May.
Article En | MEDLINE | ID: mdl-38666639

We describe the detection of Paranannizziopsis sp. fungus in a wild population of vipers in Europe. Fungal infections were severe, and 1 animal likely died from infection. Surveillance efforts are needed to better understand the threat of this pathogen to snake conservation.


Mycoses , Viperidae , Animals , Europe/epidemiology , Mycoses/epidemiology , Mycoses/microbiology , Mycoses/veterinary , Animals, Wild/microbiology
20.
J Mycol Med ; 34(2): 101479, 2024 Jun.
Article En | MEDLINE | ID: mdl-38604083

With increasing concern about the negative health impact of fungal disease, there is a need to survey what is and is not known about the epidemiology of these infections in Tunisia. We have estimated the incidence and prevalence of the most serious fungal diseases in Tunisia for the first time. Using published literature from Tunisia, or if absent other countries, we have estimated the burden of life-threatening fungal infections and those causing significant morbidity, using deterministic modeling, based on populations at greatest risk. An estimated 250,494 (2.12% of the Tunisian population) are affected by a serious fungal disease annually. Invasive and chronic pulmonary aspergillosis are relatively common with 708 and 2090 patients affected, partly linked to the prevalence of chronic obstructive pulmonary disease (COPD). Fungal asthma (allergic bronchopulmonary aspergillosis and severe asthma with fungal sensitization) have an estimated prevalence of 38,264 (5.8% of the adult asthma population). Fungal keratitis probably affects 1,761 eyes annually, often leading to uniocular blindness. Candidaemia and Candida peritonitis probably affect at least 680 people annually, with a high mortality. Recurrent vulvovaginal candidiasis probably affects over 200,000 women. While fungal diseases are regularly diagnosed in Tunisia, epidemiological studies with denominators are uncommon. Some fungal diseases are poorly addressed with the current diagnostic portfolio, and surveillance is lacking. Studies on these diseases and the implementation of a national program of surveillance are required.


Mycoses , Humans , Tunisia/epidemiology , Prevalence , Incidence , Female , Mycoses/epidemiology , Mycoses/microbiology , Male , Adult , Asthma/epidemiology , Middle Aged , Pulmonary Disease, Chronic Obstructive/epidemiology , Adolescent , Aged , Candidiasis, Vulvovaginal/epidemiology , Candidiasis, Vulvovaginal/microbiology , Young Adult , Child , Keratitis/epidemiology , Keratitis/microbiology , Aspergillosis, Allergic Bronchopulmonary/epidemiology , Aspergillosis, Allergic Bronchopulmonary/microbiology , Candidemia/epidemiology , Candidemia/microbiology , Pulmonary Aspergillosis/epidemiology , Pulmonary Aspergillosis/microbiology , Child, Preschool
...