Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 393
1.
Cell Rep ; 43(5): 114230, 2024 May 28.
Article En | MEDLINE | ID: mdl-38743566

Satellite glial cells (SGCs) of dorsal root ganglia (DRGs) are activated in a variety of chronic pain conditions; however, their mediation roles in pain remain elusive. Here, we take advantage of proteolipid protein (PLP)/creERT-driven recombination in the periphery mainly occurring in SGCs of DRGs to assess the role of SGCs in the regulation of chronic mechanical hypersensitivity and pain-like responses in two organs, the distal colon and hindpaw, to test generality. We show that PLP/creERT-driven hM3Dq activation increases, and PLP/creERT-driven TrkB.T1 deletion attenuates, colon and hindpaw chronic mechanical hypersensitivity, positively associating with calcitonin gene-related peptide (CGRP) expression in DRGs and phospho-cAMP response element-binding protein (CREB) expression in the dorsal horn of the spinal cord. Activation of Plp1+ DRG cells also increases the number of small DRG neurons expressing Piezo2 and acquiring mechanosensitivity and leads to peripheral organ neurogenic inflammation. These findings unravel a role and mechanism of Plp1+ cells, mainly SGCs, in the facilitation of chronic mechanical pain and suggest therapeutic targets for pain mitigation.


Chronic Pain , Ganglia, Spinal , Ion Channels , Neurons , Up-Regulation , Animals , Ganglia, Spinal/metabolism , Chronic Pain/metabolism , Chronic Pain/pathology , Chronic Pain/genetics , Neurons/metabolism , Mice , Ion Channels/metabolism , Ion Channels/genetics , Colon/metabolism , Colon/pathology , Male , Hyperalgesia/metabolism , Hyperalgesia/pathology , Myelin Proteolipid Protein/metabolism , Myelin Proteolipid Protein/genetics , Neuroglia/metabolism
2.
Trends Mol Med ; 30(5): 459-470, 2024 May.
Article En | MEDLINE | ID: mdl-38582621

Pelizaeus-Merzbacher disease (PMD) is caused by mutations in the proteolipid protein 1 (PLP1) gene encoding proteolipid protein (PLP). As a major component of myelin, mutated PLP causes progressive neurodegeneration and eventually death due to severe white matter deficits. Medical care has long been limited to symptomatic treatments, but first-in-class PMD therapies with novel mechanisms now stand poised to enter clinical trials. Here, we review PMD disease mechanisms and outline rationale for therapeutic interventions, including PLP1 suppression, cell transplantation, iron chelation, and intracellular stress modulation. We discuss available preclinical data and their implications on clinical development. With several novel treatments on the horizon, PMD is on the precipice of a new era in the diagnosis and treatment of patients suffering from this debilitating disease.


Myelin Proteolipid Protein , Myelin Sheath , Pelizaeus-Merzbacher Disease , Pelizaeus-Merzbacher Disease/genetics , Pelizaeus-Merzbacher Disease/therapy , Pelizaeus-Merzbacher Disease/diagnosis , Pelizaeus-Merzbacher Disease/pathology , Humans , Myelin Sheath/metabolism , Myelin Sheath/pathology , Animals , Myelin Proteolipid Protein/genetics , Myelin Proteolipid Protein/metabolism , Mutation
3.
Genes (Basel) ; 15(4)2024 03 25.
Article En | MEDLINE | ID: mdl-38674338

Microribonucleic acids (miRNAs) comprising miR-23a/b clusters, specifically miR-23a and miR-27a, are recognized for their divergent roles in myelination within the central nervous system. However, cluster-specific miRNA functions remain controversial as miRNAs within the same cluster have been suggested to function complementarily. This study aims to clarify the role of miR-23a/b clusters in myelination using mice with a miR-23a/b cluster deletion (KO mice), specifically in myelin expressing proteolipid protein (PLP). Inducible conditional KO mice were generated by crossing miR-23a/b clusterflox/flox mice with PlpCre-ERT2 mice; the offspring were injected with tamoxifen at 10 days or 10 weeks of age to induce a myelin-specific miR-23a/b cluster deletion. Evaluation was performed at 10 weeks or 12 months of age and compared with control mice that were not treated with tamoxifen. KO mice exhibit impaired motor function and hypoplastic myelin sheaths in the brain and spinal cord at 10 weeks and 12 months of age. Simultaneously, significant decreases in myelin basic protein (MBP) and PLP expression occur in KO mice. The percentages of oligodendrocyte precursors and mature oligodendrocytes are consistent between the KO and control mice. However, the proportion of oligodendrocytes expressing MBP is significantly lower in KO mice. Moreover, changes in protein expression occur in KO mice, with increased leucine zipper-like transcriptional regulator 1 expression, decreased R-RAS expression, and decreased phosphorylation of extracellular signal-regulated kinases. These findings highlight the significant influence of miR-23a/b clusters on myelination during postnatal growth and aging.


Aging , MicroRNAs , Myelin Sheath , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , Myelin Sheath/metabolism , Myelin Sheath/genetics , Aging/genetics , Central Nervous System/metabolism , Central Nervous System/growth & development , Mice, Knockout , Myelin Proteolipid Protein/genetics , Myelin Proteolipid Protein/metabolism , Spinal Cord/metabolism , Spinal Cord/growth & development , Myelin Basic Protein/metabolism , Myelin Basic Protein/genetics , Oligodendroglia/metabolism , Brain/metabolism , Brain/growth & development
4.
Cell Mol Biol (Noisy-le-grand) ; 69(10): 9-16, 2023 Oct 31.
Article En | MEDLINE | ID: mdl-37953590

Soluble epoxide hydrolase (sEH) inhibition has currently emerged as a therapeutic target in the treatment of various neuroinflammatory neurodegenerative diseases, including multiple sclerosis. Previously, we reported that treatment of mice with a sEH-selective inhibitor, 1-(1-propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl]urea; TPPU), ameliorated chronic experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein 35-55 peptide immunization followed by injection of pertussis toxin to mice via regulating pro-inflammatory and anti-inflammatory pathways in the central nervous system. This study tested the hypothesis that the pro-inflammatory G protein-coupled receptor (GPR) 75 and anti-apoptotic phospholipase C (PLC) signaling pathways also contribute to the ameliorating effect of TPPU on chronic EAE. Brains and spinal cords of phosphate-buffered saline-, dimethyl sulfoxide-, or TPPU (3 mg/kg)-treated mice were used for the measurement of sEH, GPR75, Gaq/11, activator protein (AP)-1, PLC ß4, phosphoinositide 3-kinase (PI3K) p85a, Akt1, mitogen-activated protein kinase kinase (MEK) 1/2, extracellular signal-regulated kinase (ERK) 1/2, cyclic adenosine monophosphate-response element-binding protein (CREB) 1, B-cell lymphoma (Bcl)-2, semaphorin (SEMA) 3A, and myelin proteolipid protein (PLP) expression and/or activity by using the immunoblotting method. Expression of sEH, GPR75, Gaq/11, c-jun, phosphorylated c-Jun, and SEMA3A was lower, while PLCß4, phosphorylated PI3K p85a, phosphorylated Akt1, phosphorylated MEK1/2, phosphorylated ERK1/2, phosphorylated CREB1, Bcl-2, and myelin PLP expression was higher in the tissues of TPPU (3 mg/kg)-treated mice as compared with the EAE and vehicle control groups. Inhibition of sEH by TPPU ameliorates chronic EAE through suppressing pro-inflammatory GPR75/Gaq/11/AP-1 pathway and reducing expression of the remyelination inhibitor, SEMA3A, as well as increasing anti-apoptotic PLC/PI3K/Akt1/MEK1/2/ERK1/2/CREB1/Bcl-2 pathway activity and myelin PLP expression.


Encephalomyelitis, Autoimmune, Experimental , Phospholipases , Receptors, G-Protein-Coupled , Signal Transduction , Animals , Mice , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Mice, Inbred C57BL , Myelin Proteolipid Protein/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phospholipases/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Semaphorin-3A , Receptors, G-Protein-Coupled/metabolism
5.
Sci Immunol ; 8(88): eadl0618, 2023 10 13.
Article En | MEDLINE | ID: mdl-37801515

Curated expression of proteolipid protein 1 (PLP1) is essential for multiple sclerosis-derived autoantibody recognition.


Multiple Sclerosis , Myelin Proteolipid Protein , Humans , Myelin Proteolipid Protein/genetics , Myelin Proteolipid Protein/metabolism
6.
Am J Physiol Gastrointest Liver Physiol ; 324(2): G115-G130, 2023 02 01.
Article En | MEDLINE | ID: mdl-36511517

Proteolipid protein 1 (Plp1) is highly expressed in enteric glia, labeling cells throughout the mucosa, muscularis, and the extrinsic innervation. Plp1 is a major constituent of myelin in the central and peripheral nervous systems, but the absence of myelin in the enteric nervous system (ENS) suggests another role for Plp1 in the gut. Although the functions of enteric glia are still being established, there is strong evidence that they regulate intestinal motility and permeability. To interrogate the role of Plp1 in enteric glia, we investigated gut motility, secretomotor function and permeability, and evaluated the ENS in mice lacking Plp1. We studied two time points: ∼3 mo (young) and >1 yr (old). Old Plp1 null mice exhibited increased fecal output, decreased fecal water content, faster whole gut transit times, reduced intestinal permeability, and faster colonic migrating motor complexes. Interestingly, in both young and old mice, the ENS exhibited normal glial and neuronal numbers as well as glial arborization density in the absence of Plp1. As Plp1-associated functions involve mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 (Mapk/Erk1/2) signaling and Mapk/Erk1/2 are reported to have a regulatory role in intestinal motility, we measured protein expression of Erk1/2 and its active form in the small intestine. Old Plp1 null mice had reduced levels of phosphorylated-Erk1/2. Although Plp1 is not required for the normal appearance of enteric glial cells, it has a regulatory role in intestinal motility and barrier function. Our results suggest that functional changes mediated by Plp1-expressing enteric glia may involve Erk1/2 activation.NEW & NOTEWORTHY Here, we describe that Plp1 regulates gut motility and barrier function. The functional effects of Plp1 eradication are only seen in old mice, not young. The effects of Plp1 appear to be mediated through the Erk1/2 pathway.


Gastrointestinal Motility , Intestinal Mucosa , Myelin Proteolipid Protein , Animals , Mice , Enteric Nervous System/physiology , Gastrointestinal Motility/physiology , Mice, Knockout , Neuroglia/metabolism , Neurons/metabolism , Proteolipids/metabolism , Proteolipids/pharmacology , Myelin Proteolipid Protein/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/physiology
7.
Cell Mol Life Sci ; 79(8): 419, 2022 Jul 12.
Article En | MEDLINE | ID: mdl-35829923

The myelin sheath is an essential, multilayered membrane structure that insulates axons, enabling the rapid transmission of nerve impulses. The tetraspan myelin proteolipid protein (PLP) is the most abundant protein of compact myelin in the central nervous system (CNS). The integral membrane protein PLP adheres myelin membranes together and enhances the compaction of myelin, having a fundamental role in myelin stability and axonal support. PLP is linked to severe CNS neuropathies, including inherited Pelizaeus-Merzbacher disease and spastic paraplegia type 2, as well as multiple sclerosis. Nevertheless, the structure, lipid interaction properties, and membrane organization mechanisms of PLP have remained unidentified. We expressed, purified, and structurally characterized human PLP and its shorter isoform DM20. Synchrotron radiation circular dichroism spectroscopy and small-angle X-ray and neutron scattering revealed a dimeric, α-helical conformation for both PLP and DM20 in detergent complexes, and pinpoint structural variations between the isoforms and their influence on protein function. In phosphatidylcholine membranes, reconstituted PLP and DM20 spontaneously induced formation of multilamellar myelin-like membrane assemblies. Cholesterol and sphingomyelin enhanced the membrane organization but were not crucial for membrane stacking. Electron cryomicroscopy, atomic force microscopy, and X-ray diffraction experiments for membrane-embedded PLP/DM20 illustrated effective membrane stacking and ordered organization of membrane assemblies with a repeat distance in line with CNS myelin. Our results shed light on the 3D structure of myelin PLP and DM20, their structure-function differences, as well as fundamental protein-lipid interplay in CNS compact myelin.


Lipid Bilayers , Myelin Proteolipid Protein , Axons/metabolism , Central Nervous System/metabolism , Humans , Lipid Bilayers/metabolism , Myelin Proteolipid Protein/metabolism , Myelin Sheath/metabolism , Protein Isoforms/metabolism
8.
Eur J Hum Genet ; 30(7): 860-864, 2022 07.
Article En | MEDLINE | ID: mdl-35217805

Leukodystrophies are a heterogenous group of genetic disorders, characterised by abnormal development of cerebral white matter. Pelizaeus-Merzbacher disease is caused by mutations in PLP1, encoding major myelin-resident protein required for myelin sheath assembly. We report a missense variant p.(Ala109Asp) in MAL as causative for a rare, hypomyelinating leukodystrophy similar to Pelizaeus-Merzbacher disease. MAL encodes a membrane proteolipid that directly interacts with PLP1, ensuring correct distribution during myelin assembly. In contrast to wild-type MAL, mutant MAL was retained in the endoplasmic reticulum but was released following treatment with 4-phenylbutyrate. Proximity-dependent identification of wild-type MAL interactants implicated post-Golgi vesicle-mediated protein transport and protein localisation to membranes, whereas mutant MAL interactants suggested unfolded protein responses. Our results suggest that mislocalisation of MAL affects PLP1 distribution, consistent with known pathomechanisms for hypomyelinating leukodystrophies.


Neurodegenerative Diseases , Pelizaeus-Merzbacher Disease , Humans , Mutation , Mutation, Missense , Myelin Proteolipid Protein/genetics , Myelin Proteolipid Protein/metabolism , Pelizaeus-Merzbacher Disease/genetics , Protein Transport
9.
Int J Mol Sci ; 22(17)2021 Aug 31.
Article En | MEDLINE | ID: mdl-34502381

Myelin is of vital importance to the central nervous system and its disruption is related to a large number of both neurodevelopmental and neurodegenerative diseases. The differences observed between human and rodent oligodendrocytes make animals inadequate for modeling these diseases. Although developing human in vitro models for oligodendrocytes and myelinated axons has been a great challenge, 3D cell cultures derived from iPSC are now available and able to partially reproduce the myelination process. We have previously developed a human iPSC-derived 3D brain organoid model (also called BrainSpheres) that contains a high percentage of myelinated axons and is highly reproducible. Here, we have further refined this technology by applying multiple readouts to study myelination disruption. Myelin was assessed by quantifying immunostaining/confocal microscopy of co-localized myelin basic protein (MBP) with neurofilament proteins as well as proteolipid protein 1 (PLP1). Levels of PLP1 were also assessed by Western blot. We identified compounds capable of inducing developmental neurotoxicity by disrupting myelin in a systematic review to evaluate the relevance of our BrainSphere model for the study of the myelination/demyelination processes. Results demonstrated that the positive reference compound (cuprizone) and two of the three potential myelin disruptors tested (Bisphenol A, Tris(1,3-dichloro-2-propyl) phosphate, but not methyl mercury) decreased myelination, while ibuprofen (negative control) had no effect. Here, we define a methodology that allows quantification of myelin disruption and provides reference compounds for chemical-induced myelin disruption.


Induced Pluripotent Stem Cells/metabolism , Myelin Sheath/metabolism , Myelin Sheath/physiology , Axons/metabolism , Brain/metabolism , Cell Culture Techniques/methods , Central Nervous System/metabolism , Humans , Models, Biological , Myelin Basic Protein/analysis , Myelin Basic Protein/metabolism , Myelin Proteolipid Protein/analysis , Myelin Proteolipid Protein/metabolism , Nerve Fibers, Myelinated/metabolism , Nerve Fibers, Myelinated/pathology , Neurotoxicity Syndromes/metabolism , Oligodendroglia/metabolism , Oligodendroglia/pathology , Organoids/metabolism
10.
PLoS One ; 16(8): e0256207, 2021.
Article En | MEDLINE | ID: mdl-34403440

Thyroid hormones are messengers that bind to specific nuclear receptors and regulate a wide range of physiological processes in the early stages of vertebrate embryonic development, including neurodevelopment and myelogenesis. We here tested the effects of reduced T3 availability upon the myelination process by treating zebrafish embryos with low concentrations of iopanoic acid (IOP) to block T4 to T3 conversion. Black Gold II staining showed that T3 deficiency reduced the myelin density in the forebrain, midbrain, hindbrain and the spinal cord at 3 and 7 dpf. These observations were confirmed in 3 dpf mbp:egfp transgenic zebrafish, showing that the administration of IOP reduced the fluorescent signal in the brain. T3 rescue treatment restored brain myelination and reversed the changes in myelin-related gene expression induced by IOP exposure. NG2 immunostaining revealed that T3 deficiency reduced the amount of oligodendrocyte precursor cells in 3 dpf IOP-treated larvae. Altogether, the present results show that inhibition of T4 to T3 conversion results in hypomyelination, suggesting that THs are part of the key signaling molecules that control the timing of oligodendrocyte differentiation and myelin synthesis from very early stages of brain development.


Gene Expression Regulation, Developmental/drug effects , Larva/genetics , Myelin Sheath/genetics , Thyroxine/deficiency , Triiodothyronine/deficiency , Zebrafish/metabolism , Animals , Animals, Genetically Modified , Antigens/genetics , Antigens/metabolism , Embryo, Nonmammalian , Embryonic Development , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Iopanoic Acid/pharmacology , Larva/cytology , Larva/drug effects , Larva/growth & development , Mesencephalon/cytology , Mesencephalon/drug effects , Mesencephalon/growth & development , Mesencephalon/metabolism , Myelin Proteolipid Protein/genetics , Myelin Proteolipid Protein/metabolism , Myelin Sheath/drug effects , Myelin Sheath/metabolism , Neurogenesis/drug effects , Neurogenesis/genetics , Oligodendrocyte Transcription Factor 2/genetics , Oligodendrocyte Transcription Factor 2/metabolism , Oligodendroglia/cytology , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Prosencephalon/cytology , Prosencephalon/drug effects , Prosencephalon/growth & development , Prosencephalon/metabolism , Proteoglycans/genetics , Proteoglycans/metabolism , Rhombencephalon/cytology , Rhombencephalon/drug effects , Rhombencephalon/growth & development , Rhombencephalon/metabolism , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism , Spinal Cord/cytology , Spinal Cord/drug effects , Spinal Cord/growth & development , Spinal Cord/metabolism , Triiodothyronine/pharmacology , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
11.
Hum Mol Genet ; 30(23): 2225-2239, 2021 11 16.
Article En | MEDLINE | ID: mdl-34230963

Oligodendrocytes (OLs) produce myelin in the central nervous system (CNS), which accelerates the propagation of action potentials and supports axonal integrity. As a major component of CNS myelin, proteolipid protein 1 (Plp1) is indispensable for the axon-supportive function of myelin. Notably, this function requires the continuous high-level expression of Plp1 in OLs. Equally important is the controlled expression of Plp1, as illustrated by Pelizaeus-Merzbacher disease for which the most common cause is PLP1 overexpression. Despite a decade-long search, promoter-distal OL enhancers that govern Plp1 remain elusive. We have recently developed an innovative method that maps promoter-distal enhancers to genes in a principled manner. Here, we applied it to Plp1, uncovering two OL enhancers for it (termed Plp1-E1 and Plp1-E2). Remarkably, clustered regularly interspaced short palindromic repeats (CRISPR) interference epigenome editing showed that Plp1-E1 and Plp1-E2 do not regulate two genes in their vicinity, highlighting their exquisite specificity to Plp1. Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) data show that Plp1-E1 and Plp1-E2 are OL-specific enhancers that are conserved among human, mouse and rat. Hi-C data reveal that the physical interactions between Plp1-E1/2 and PLP1 are among the strongest in OLs and specific to OLs. We also show that Myrf, a master regulator of OL development, acts on Plp1-E1 and Plp1-E2 to promote Plp1 expression.


Enhancer Elements, Genetic , Gene Expression Regulation , Myelin Proteolipid Protein/genetics , Oligodendroglia/metabolism , Animals , Base Sequence , Binding Sites , CRISPR-Cas Systems , Chromatin Immunoprecipitation Sequencing , Chromosome Mapping , DNA-Binding Proteins/metabolism , Humans , Membrane Proteins/metabolism , Mice , Myelin Proteolipid Protein/metabolism , Nucleotide Motifs , Promoter Regions, Genetic , Transcription Factors/metabolism
12.
JCI Insight ; 6(7)2021 04 08.
Article En | MEDLINE | ID: mdl-33661767

Here, we report on the identification of Itga7-expressing muscle-resident glial cells activated by loss of neuromuscular junction (NMJ) integrity. Gene expression analysis at the bulk and single-cell level revealed that these cells are distinct from Itga7-expressing muscle satellite cells. We show that a selective activation and expansion of Itga7+ glial cells occur in response to muscle nerve lesion. Upon activation, muscle glial-derived progenies expressed neurotrophic genes, including nerve growth factor receptor, which enables their isolation by FACS. We show that activated muscle glial cells also expressed genes potentially implicated in extracellular matrix remodeling at NMJs. We found that tenascin C, which was highly expressed by muscle glial cells, activated upon nerve injury and preferentially localized to NMJ. Interestingly, we observed that the activation of muscle glial cells by acute nerve injury was reversible upon NMJ repair. By contrast, in a mouse model of ALS, in which NMJ degeneration is progressive, muscle glial cells steadily increased over the course of the disease. However, they exhibited an impaired neurotrophic activity, suggesting that pathogenic activation of glial cells may be implicated in ALS progression.


Amyotrophic Lateral Sclerosis/pathology , Muscle, Skeletal/cytology , Neuroglia/physiology , Spinal Cord Injuries/pathology , Animals , Antigens, CD/metabolism , Disease Models, Animal , Female , Gene Expression Regulation , Integrin alpha Chains/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Myelin Proteolipid Protein/genetics , Myelin Proteolipid Protein/metabolism , Neuroglia/cytology , Neuromuscular Junction/cytology , Receptor, Nerve Growth Factor/genetics , Receptors, Cholinergic/metabolism , Sciatic Nerve/injuries , Single-Cell Analysis , Superoxide Dismutase-1/genetics
13.
ACS Appl Bio Mater ; 4(1): 387-391, 2021 01 18.
Article En | MEDLINE | ID: mdl-35014289

Multiple sclerosis is complex and heterogeneous. Better tools are needed to be able to monitor this disease among individuals, but blood-based biomarkers are often too rare to profile. In this work, we developed antigen-specific biomaterials to replicate the central nervous system niche where multiple sclerosis biomarkers are amplified. We incorporated mouse brain homogenate into a microporous gelatin methacrylate network. Homogenate-containing biomaterials differentially stimulated cells and led to the marked amplification of disease-relevant, antigen-specific B cells. These results demonstrate that biomaterials containing primary tissue homogenate retain antigen specificity and may be a useful tool for decoding human autoimmunity.


Antigens/metabolism , Biocompatible Materials/chemistry , Brain/metabolism , Animals , Antigens/chemistry , Autoimmunity , B-Lymphocytes/cytology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B7-2 Antigen/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Gelatin/chemistry , Mice , Myelin Proteolipid Protein/chemistry , Myelin Proteolipid Protein/immunology , Myelin Proteolipid Protein/metabolism , Peptide Fragments/chemistry , Peptide Fragments/immunology , Peptide Fragments/metabolism , Spleen/cytology , Spleen/metabolism
14.
J Neurosci Res ; 99(3): 731-749, 2021 03.
Article En | MEDLINE | ID: mdl-33197966

The cornea is the most innervated tissue in the human body. Myelinated axons upon inserting into the peripheral corneal stroma lose their myelin sheaths and continue into the central cornea wrapped by only nonmyelinating corneal Schwann cells (nm-cSCs). This anatomical organization is believed to be important for central vision. Here we employed single-cell RNA sequencing (scRNA-seq), microscopy, and transgenics to characterize these nm-cSCs of the central cornea. Using principal component analysis, uniform manifold approximation and projection, and unsupervised hierarchal cell clustering of scRNA-seq data derived from central corneal cells of male rabbits, we successfully identified several clusters representing different corneal cell types, including a unique cell cluster representing nm-cSCs. To confirm protein expression of cSC genes, we performed cross-species validation, employing corneal whole-mount immunostaining with confocal microscopy in mouse corneas. The expression of several representative proteins of nm-cSCs were validated. As the proteolipid protein 1 (PLP1) gene was also expressed in nm-cSCs, we explored the Plp1-eGFP transgenic reporter mouse line to visualize cSCs. Specific and efficient eGFP expression was observed in cSCs in adult mice of different ages. Of several putative cornea-specific SC genes identified, Dickkopf-related protein 1 was shown to be present in nm-cSCs. Taken together, our findings, for the first time, identify important insights and tools toward the study nm-cSCs in isolated tissue and adult animals. We expect that our results will advance the future study of nm-cSCs in applications of nerve repair, and provide a resource for the study of corneal sensory function.


Cornea/metabolism , Gene Expression/genetics , Schwann Cells/metabolism , Animals , Biomarkers , Female , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myelin Proteolipid Protein/metabolism , Neural Cell Adhesion Molecule L1/metabolism , Rabbits , SOXE Transcription Factors/metabolism , Single-Cell Analysis , Syndecan-3/metabolism , Transcriptome , Voltage-Gated Sodium Channels/metabolism
15.
Cells ; 9(12)2020 12 17.
Article En | MEDLINE | ID: mdl-33348629

BACKGROUND: When aiming to restore myelin tolerance using antigen-specific treatment approaches in MS, the wide variety of myelin-derived antigens towards which immune responses are targeted in multiple sclerosis (MS) patients needs to be taken into account. Uncertainty remains as to whether the myelin reactivity pattern of a specific MS patient can be predicted based upon the human leukocyte antigen (HLA) class II haplotype of the patient. METHODS: In this study, we analyzed the reactivity towards myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP) and proteolipid protein (PLP) peptides using direct interferon (IFN)-γ enzyme-linked immune absorbent spot (ELISPOT). Next, the HLA class II haplotype profile was determined by next-generation sequencing. In doing so, we aimed to evaluate the possible association between the precursor frequency of myelin-reactive T cells and the HLA haplotype. RESULTS: Reactivity towards any of the analyzed peptides could be demonstrated in 65.0% (13/20) of MS patients and in 60.0% (6/10) of healthy controls. At least one of the MS risk alleles HLA-DRB1*15:01, HLA-DQA1*01:02 and HLA-DQB1*06:02 was found in 70.0% (14/20) of patients and in 20.0% (2/10) of healthy controls. No difference in the presence of a myelin-specific response, nor in the frequency of myelin peptide-reactive precursor cells could be detected among carriers and non-carriers of these risk alleles. CONCLUSION: No association between HLA haplotype and myelin reactivity profile was present in our study population. This complicates the development of antigen-specific treatment approaches and implies the need for multi-epitope targeting in an HLA-unrestricted manner to fully address the wide variation in myelin responses and HLA profiles in a heterogeneous group of MS patients.


HLA Antigens/genetics , Multiple Sclerosis, Relapsing-Remitting/pathology , Myelin Basic Protein/metabolism , Adult , Aged , Alleles , Case-Control Studies , Female , Genotype , HLA-DQ alpha-Chains/genetics , HLA-DQ beta-Chains/genetics , Haplotypes , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/genetics , Myelin Basic Protein/chemistry , Myelin Proteolipid Protein/chemistry , Myelin Proteolipid Protein/metabolism , Myelin-Oligodendrocyte Glycoprotein/chemistry , Myelin-Oligodendrocyte Glycoprotein/metabolism , Peptides/pharmacology , Young Adult
16.
Curr Biol ; 30(21): 4254-4262.e5, 2020 11 02.
Article En | MEDLINE | ID: mdl-32857972

Cell vertices in epithelia comprise specialized tricellular junctions (TCJs) that seal the paracellular space between three adjoining cells [1, 2]. Although TCJs play fundamental roles in tissue homeostasis, pathogen defense, and in sensing tension and cell shape [3-5], how they are assembled, maintained, and remodeled is poorly understood. In Drosophila, the transmembrane proteins Anakonda (Aka [6]) and Gliotactin (Gli [7]) are TCJ components essential for epithelial barrier formation. Additionally, the conserved four-transmembrane-domain protein M6, the only myelin proteolipid protein (PLP) family member in Drosophila, localizes to TCJs [8, 9]. PLPs associate with cholesterol-rich membrane domains and induce filopodia formation [10, 11] and membrane curvature [12], and Drosophila M6 acts as a tumor suppressor [8], but its role in TCJ formation remained unknown. Here, we show that M6 is essential for the assembly of tricellular, but not bicellular, occluding junctions, and for barrier function in embryonic epithelia. M6 and Aka localize to TCJs in a mutually dependent manner and are jointly required for TCJ localization of Gli, whereas Aka and M6 localize to TCJs independently of Gli. Aka acts instructively and is sufficient to direct M6 to cell vertices in the absence of septate junctions, while M6 is required permissively to maintain Aka at TCJs. Furthermore, M6 and Aka are mutually dependent for their accumulation in a low-mobility pool at TCJs. These findings suggest a hierarchical model for TCJ assembly, where Aka and M6 promote TCJ formation through synergistic interactions that demarcate a distinct plasma membrane microdomain at cell vertices.


Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Myelin Proteins/metabolism , Myelin Proteolipid Protein/metabolism , Proteolipids/metabolism , Receptors, Scavenger/metabolism , Tight Junctions/metabolism , Animals , Animals, Genetically Modified , Cell Membrane/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Embryo, Nonmammalian , Epithelial Cells/cytology , Epithelial Cells/metabolism , Female , Fluorescence Recovery After Photobleaching , Intravital Microscopy , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Myelin Proteins/genetics , Myelin Proteolipid Protein/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Proteolipids/genetics , Receptors, Scavenger/genetics
17.
Curr Biol ; 30(21): 4245-4253.e4, 2020 11 02.
Article En | MEDLINE | ID: mdl-32857971

In epithelia, tricellular junctions (TCJs) serve as pivotal sites for barrier function and integration of both biochemical and mechanical signals [1-3]. In Drosophila, TCJs are composed of the transmembrane protein Sidekick at the adherens junction (AJ) level, which plays a role in cell-cell contact rearrangement [4-6]. At the septate junction (SJ) level, TCJs are formed by Gliotactin (Gli) [7], Anakonda (Aka) [8, 9], and the Myelin proteolipid protein (PLP) M6 [10, 11]. Despite previous data on TCJ organization [12-14], TCJ assembly, composition, and links to adjacent bicellular junctions (BCJs) remain poorly understood. Here, we have characterized the making of TCJs within the plane of adherens junctions (tricellular adherens junction [tAJ]) and the plane of septate junctions (tricellular septate junction [tSJ]) and report that their assembly is independent of each other. Aka and M6, whose localizations are interdependent, act upstream to localize Gli. In turn, Gli stabilizes Aka at tSJ. Moreover, tSJ components are not only essential at vertex, as we found that loss of tSJ integrity induces micron-length bicellular SJ (bSJ) deformations. This phenotype is associated with the disappearance of SJ components at tricellular contacts, indicating that bSJs are no longer connected to tSJs. Reciprocally, SJ components are required to restrict the localization of Aka and Gli at vertex. We propose that tSJs function as pillars to anchor bSJs to ensure the maintenance of tissue integrity in Drosophila proliferative epithelia.


Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Intercellular Junctions/metabolism , Membrane Proteins/metabolism , Myelin Proteolipid Protein/metabolism , Nerve Tissue Proteins/metabolism , Receptors, Scavenger/metabolism , Animals , Animals, Genetically Modified , Cell Membrane/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Fluorescence Recovery After Photobleaching , Intercellular Junctions/genetics , Intravital Microscopy , Membrane Proteins/genetics , Myelin Proteolipid Protein/genetics , Nerve Tissue Proteins/genetics , Protein Stability , Receptors, Scavenger/genetics
18.
Vet Microbiol ; 247: 108793, 2020 Aug.
Article En | MEDLINE | ID: mdl-32768236

Porcine epidemic diarrhea virus (PEDV) belongs to the Alphacoronavirus genus in the Coronaviridae family. Similar to other coronaviruses, PEDV encodes two papain-like proteases. Papain-like protease (PLP)2 has been proposed to play a key role in antagonizing host innate immunity. However, the function of PLP1 remains unclear. In this study, we found that overexpression of PLP1 significantly promoted PEDV replication and inhibited production of interferon-ß. Immunoprecipitation and mass spectrometry were used to identify cellular interaction partners of PLP1. Host cell poly(C) binding protein 2 (PCBP2) was determined to bind and interact with PLP1. Both endogenous and overexpressed PCBP2 co-localized with PLP1 in the cytoplasm. Overexpression of PLP1 upregulated expression of PCBP2. Furthermore, overexpression of PCBP2 promoted PEDV replication. Silencing of endogenous PCBP2 using small interfering RNAs attenuated PEDV replication. Taken together, these data demonstrated that PLP1 negatively regulated the production of type 1 interferon by interacting with PCBP2 and promoted PEDV replication.


Papain/metabolism , Porcine epidemic diarrhea virus/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication/physiology , Animals , Chlorocebus aethiops , Coronavirus Papain-Like Proteases , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , HEK293 Cells , Humans , Interferon-beta/genetics , Interferon-beta/metabolism , Myelin Proteolipid Protein/metabolism , Papain/genetics , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/physiology , RNA Interference , RNA-Binding Proteins , Tumor Necrosis Factor-alpha/pharmacology , Vero Cells , Viral Nonstructural Proteins/genetics
19.
Nature ; 585(7825): 397-403, 2020 09.
Article En | MEDLINE | ID: mdl-32610343

Mutations in PLP1, the gene that encodes proteolipid protein (PLP), result in failure of myelination and neurological dysfunction in the X-chromosome-linked leukodystrophy Pelizaeus-Merzbacher disease (PMD)1,2. Most PLP1 mutations, including point mutations and supernumerary copy variants, lead to severe and fatal disease. Patients who lack PLP1 expression, and Plp1-null mice, can display comparatively mild phenotypes, suggesting that PLP1 suppression might provide a general therapeutic strategy for PMD1,3-5. Here we show, using CRISPR-Cas9 to suppress Plp1 expression in the jimpy (Plp1jp) point-mutation mouse model of severe PMD, increased myelination and restored nerve conduction velocity, motor function and lifespan of the mice to wild-type levels. To evaluate the translational potential of this strategy, we identified antisense oligonucleotides that stably decrease the levels of Plp1 mRNA and PLP protein throughout the neuraxis in vivo. Administration of a single dose of Plp1-targeting antisense oligonucleotides in postnatal jimpy mice fully restored oligodendrocyte numbers, increased myelination, improved motor performance, normalized respiratory function and extended lifespan up to an eight-month end point. These results suggest that PLP1 suppression could be developed as a treatment for PMD in humans. More broadly, we demonstrate that oligonucleotide-based therapeutic agents can be delivered to oligodendrocytes in vivo to modulate neurological function and lifespan, establishing a new pharmaceutical modality for myelin disorders.


Disease Models, Animal , Myelin Proteolipid Protein/deficiency , Pelizaeus-Merzbacher Disease/genetics , Pelizaeus-Merzbacher Disease/therapy , Animals , CRISPR-Cas Systems , Female , Gene Editing , Hypoxia/metabolism , Male , Mice , Mice, Mutant Strains , Motor Activity/genetics , Myelin Proteolipid Protein/genetics , Myelin Proteolipid Protein/metabolism , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/genetics , Pelizaeus-Merzbacher Disease/metabolism , Point Mutation , Respiratory Function Tests , Survival Analysis
20.
Invest Ophthalmol Vis Sci ; 61(6): 12, 2020 06 03.
Article En | MEDLINE | ID: mdl-32503050

Purpose: Synucleinopathies such as multiple system atrophy (MSA) and Parkinson's disease are associated with a variety of visual symptoms. Functional and morphological retinal aberrations are therefore supposed to be valuable biomarkers for these neurodegenerative diseases. This study examined the retinal morphology and functionality resulting from human α-synuclein (α-Syn) overexpression in the transgenic Plp-α-Syn mouse model. Methods: Immunohistochemistry on retinal sections and whole-mounts was performed on 8- to 11-week-old and 12-month-old Plp-α-Syn mice and C57BL/6N controls. Quantitative RT-PCR experiments were performed to study the expression of endogenous and human α-Syn and tyrosine hydroxylase (TH). We confirmed the presence of human α-Syn in the retina in western blot analyses. Multi-electrode array (MEA) analyses from light-stimulated whole-mounted retinas were used to investigate their functionality. Results: Biochemical and immunohistochemical analyses showed human α-Syn in the retina of Plp-α-Syn mice. We found distinct staining in different retinal cell layers, most abundantly in rod bipolar cells of the peripheral retina. In the periphery, we also observed a trend toward a decline in the number of retinal ganglion cells. The number of TH+ neurons was unaffected in this human α-Syn overexpression model. MEA recordings showed that Plp-α-Syn retinas were functional but exhibited mild alterations in dim light conditions. Conclusions: Together, these findings implicate an impairment of retinal neurons in the Plp-α-Syn mouse. The phenotype partly relates to retinal deficits reported in MSA patients. We further propose the suitability of the Plp-α-Syn retina as a biological model to study synuclein-mediated mechanisms.


Disease Models, Animal , Myelin Proteolipid Protein/metabolism , Retinal Diseases/metabolism , Retinal Neurons/metabolism , Synucleinopathies/metabolism , alpha-Synuclein/metabolism , Animals , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Electroretinography , Female , Glial Fibrillary Acidic Protein/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Microscopy, Confocal , Optic Nerve/metabolism , Photic Stimulation , Real-Time Polymerase Chain Reaction , Retina/metabolism , Retina/radiation effects , Retinal Diseases/pathology , Retinal Neurons/pathology , Synucleinopathies/pathology
...