Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 21(5)2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32155697

ABSTRACT

Pharmacological concentrations of melatonin reduce reperfusion arrhythmias, but less is known about the antiarrhythmic protection of the physiological circadian rhythm of melatonin. Bilateral surgical removal of the superior cervical ganglia irreversibly suppresses melatonin rhythmicity. This study aimed to analyze the cardiac electrophysiological effects of the loss of melatonin circadian oscillation and the role played by myocardial melatonin membrane receptors, SERCA2A, TNFα, nitrotyrosine, TGFß, KATP channels, and connexin 43. Three weeks after bilateral removal of the superior cervical ganglia or sham surgery, the hearts were isolated and submitted to ten minutes of regional ischemia followed by ten minutes of reperfusion. Arrhythmias, mainly ventricular tachycardia, increased during reperfusion in the ganglionectomy group. These hearts also suffered an epicardial electrical activation delay that increased during ischemia, action potential alternants, triggered activity, and dispersion of action potential duration. Hearts from ganglionectomized rats showed a reduction of the cardioprotective MT2 receptors, the MT1 receptors, and SERCA2A. Markers of nitroxidative stress (nitrotyrosine), inflammation (TNFα), and fibrosis (TGFß and vimentin) did not change between groups. Connexin 43 lateralization and the pore-forming subunit (Kir6.1) of KATP channels increased in the experimental group. We conclude that the loss of the circadian rhythm of melatonin predisposes the heart to suffer cardiac arrhythmias, mainly ventricular tachycardia, due to conduction disorders and changes in repolarization.


Subject(s)
Arrhythmias, Cardiac/pathology , Ganglionectomy/adverse effects , Heart/physiopathology , Myocardial Reperfusion Injury/surgery , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Circadian Rhythm , Connexin 43/genetics , Connexin 43/metabolism , Male , Melatonin/metabolism , Rats , Rats, Wistar , Receptors, Melatonin/genetics , Receptors, Melatonin/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
2.
Redox Rep ; 21(2): 75-83, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26066587

ABSTRACT

PURPOSE: Percutaneous coronary angioplasty (PCA) has been demonstrated to reduce mortality and morbidity and thereby improve the prognosis of patients undergoing acute myocardial infarctions (AMIs). However, this procedure paradoxically increases the initial damage as the result of a condition known as 'myocardial reperfusion injury'. Oxidative stress may contribute to the mechanism of this injury. The goal of the present study was to ascertain whether high plasma ascorbate levels could ameliorate the reperfusion injuries that occur after the successful restoration of blood flow. METHODS: Patients from three clinical centers of the public health system were included in the study. The groups were formed by either-sex patients with a diagnosis of ST-segment elevation myocardial infarction with an indication for primary PCA. Only the patients who presented with their first myocardial infarction were enrolled. Ascorbate was administered through an infusion given prior to the restoration of the coronary flow, which was then followed by oral treatment with vitamin C (500 mg/12 hours) plus vitamin E (400 IU/day) for 84 days. The left ventricular ejection fraction (LVEF) was determined by using cardiac magnetic resonance on days 6 and 84 following the onset of the reperfusion. In addition, the microvascular function was assessed by an angiographic evaluation using the Thrombolysis In Myocardial Infarction (TIMI) myocardial perfusion grade (TMPG). The results were grouped according to the plasma ascorbate concentration achieved immediately following the onset of reperfusion into either the HA group (high ascorbate, >1 mmol/l) or the LA group (low ascorbate, <1 mmol/l). The biochemical parameters were analyzed throughout the protocol. RESULTS: The LVEF of the HA group was significantly higher than that of the LA group, values on day 84 in the HA group were 33% higher than those of the LA group. The amelioration of the LVEF was accompanied by an improvement in the microvascular dysfunction, after PCA, 95% of the patients in the HA group achieved a TMPG of 2-3, in the LA group only 79% of patients showed a TMPG of 2-3. CONCLUSIONS: These data are consistent with the protective effect of high plasma levels of ascorbate against the oxidative challenge caused by reperfusion injury in patients subjected to PCA following an AMI. Further studies are needed to elucidate the mechanism accounting for this beneficial antioxidant effect.


Subject(s)
Ascorbic Acid/therapeutic use , Myocardial Infarction/drug therapy , Myocardial Infarction/surgery , Ventricular Function, Left/drug effects , Aged , Angioplasty, Balloon, Coronary , Female , Humans , Male , Middle Aged , Myocardial Infarction/blood , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/blood , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/surgery , Oxidative Stress/drug effects , Ventricular Function, Left/physiology
SELECTION OF CITATIONS
SEARCH DETAIL