Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.012
Filter
1.
Int J Mol Sci ; 25(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38892380

ABSTRACT

Levosimendan's calcium sensitizing effects in heart muscle cells are well established; yet, its potential impact on skeletal muscle cells has not been evidently determined. Despite controversial results, levosimendan is still expected to interact with skeletal muscle through off-target sites (further than troponin C). Adding to this debate, we investigated levosimendan's acute impact on fast-twitch skeletal muscle biomechanics in a length-dependent activation study by submersing single muscle fibres in a levosimendan-supplemented solution. We employed our MyoRobot technology to investigate the calcium sensitivity of skinned single muscle fibres alongside their stress-strain response in the presence or absence of levosimendan (100 µM). While control data are in agreement with the theory of length-dependent activation, levosimendan appears to shift the onset of the 'descending limb' of active force generation to longer sarcomere lengths without notably improving myofibrillar calcium sensitivity. Passive stretches in the presence of levosimendan yielded over twice the amount of enlarged restoration stress and Young's modulus in comparison to control single fibres. Both effects have not been described before and may point towards potential off-target sites of levosimendan.


Subject(s)
Calcium , Muscle Fibers, Fast-Twitch , Simendan , Simendan/pharmacology , Animals , Mice , Calcium/metabolism , Muscle Fibers, Fast-Twitch/drug effects , Muscle Fibers, Fast-Twitch/metabolism , Muscle Contraction/drug effects , Sarcomeres/metabolism , Sarcomeres/drug effects , Male , Myofibrils/metabolism , Myofibrils/drug effects
2.
PLoS Genet ; 20(6): e1011101, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38905299

ABSTRACT

Filamins are mechanosensitive actin crosslinking proteins that organize the actin cytoskeleton in a variety of shapes and tissues. In muscles, filamin crosslinks actin filaments from opposing sarcomeres, the smallest contractile units of muscles. This happens at the Z-disc, the actin-organizing center of sarcomeres. In flies and vertebrates, filamin mutations lead to fragile muscles that appear ruptured, suggesting filamin helps counteract muscle rupturing during muscle contractions by providing elastic support and/or through signaling. An elastic region at the C-terminus of filamin is called the mechanosensitive region and has been proposed to sense and counteract contractile damage. Here we use molecularly defined mutants and microscopy analysis of the Drosophila indirect flight muscles to investigate the molecular details by which filamin provides cohesion to the Z-disc. We made novel filamin mutations affecting the C-terminal region to interrogate the mechanosensitive region and detected three Z-disc phenotypes: dissociation of actin filaments, Z-disc rupture, and Z-disc enlargement. We tested a constitutively closed filamin mutant, which prevents the elastic changes in the mechanosensitive region and results in ruptured Z-discs, and a constitutively open mutant which has the opposite elastic effect on the mechanosensitive region and gives rise to enlarged Z-discs. Finally, we show that muscle contraction is required for Z-disc rupture. We propose that filamin senses myofibril damage by elastic changes in its mechanosensory region, stabilizes the Z-disc, and counteracts contractile damage at the Z-disc.


Subject(s)
Actin Cytoskeleton , Drosophila Proteins , Drosophila melanogaster , Filamins , Muscle Contraction , Mutation , Myofibrils , Animals , Filamins/metabolism , Filamins/genetics , Myofibrils/metabolism , Myofibrils/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Muscle Contraction/genetics , Muscle Contraction/physiology , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Sarcomeres/metabolism , Sarcomeres/genetics , Mechanotransduction, Cellular/genetics , Phenotype
3.
Meat Sci ; 215: 109554, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38838569

ABSTRACT

This study investigated the effect of ultrasound (US) combined with pre- and post-addition of κ-carrageenan (KC) on the gelling properties, structural characteristics and rheological behavior of myofibrillar proteins (MP) under low-salt conditions. The results showed that US combined with either pre- or post-addition of KC rendered higher gel strength and water holding capacity (WHC) of MP gels than those treated with US alone and added with KC alone (P < 0.05). US combined with pre-addition of KC facilitated the binding between MP and KC, which enhanced the gel strength and WHC of the mixed MP gels and significantly improved the rheological behavior of MP. This was also confirmed by the highest surface hydrophobicity, disulfide bonds and ß-sheet content of the MP gels with US combined with pre-addition of KC. Moreover, microstructural results reflected a denser structure for the pre-addition of KC in combination with US. However, US combined with post-addition of KC resulted in limited MP unfolding and relatively weak hydrophobic interactions in the composite gels, which were less effective in improving the gel properties of the MP gels. This study provides potential strategies for enhancing the gelling properties of low-salt meat products via application of US and KC.


Subject(s)
Carrageenan , Food Handling , Gels , Hydrophobic and Hydrophilic Interactions , Meat Products , Rheology , Carrageenan/chemistry , Animals , Gels/chemistry , Meat Products/analysis , Food Handling/methods , Muscle Proteins/chemistry , Swine , Myofibrils/chemistry
4.
Food Res Int ; 188: 114531, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823850

ABSTRACT

Different emulsion gel systems are widely applied to deliver functional ingredients. The effects and mechanisms of ultrasound-assisted emulsification (UAE) treatment and carboxymethyl cellulose (CMC) modifying the curcumin delivery properties and in vitro digestibility of the myofibrillar protein (MP)-soybean oil emulsion gels were investigated. The rheological properties, droplet size, protein and CMC distribution, ultrastructure, surface hydrophobicity, sulfhydryl groups, and zeta potential of emulsion gels were also measured. Results indicate that UAE treatment and CMC addition both improved curcumin encapsulation and protection efficiency in MP emulsion gel, especially for the UAE combined with CMC (UAE-CMC) treatment which encapsulation efficiency, protection efficiency, the release rate, and bioaccessibility of curcumin increased from 86.75 % to 97.67 %, 44.85 % to 68.85 %, 18.44 % to 41.78 %, and 28.68 % to 44.93 % respectively. The protein digestibility during the gastric stage was decreased after the CMC addition and UAE treatment, and the protein digestibility during the intestinal stage was reduced after the CMC addition. The fatty acid release rate was increased after CMC addition and UAE treatment. Apparent viscosity, storage modulus, and loss modulus were decreased after CMC addition while increased after UAE and UAE-CMC treatment especially the storage modulus increased from 0.26 Pa to 41 Pa after UAE-CMC treatment. The oil size was decreased, the protein and CMC concentration around the oil was increased, and a denser and uniform emulsion gel network structure was formed after UAE treatment. The surface hydrophobicity, free SH groups, and absolute zeta potential were increased after UAE treatment. The UAE-CMC treatment could strengthen the MP emulsion gel structure and decrease the oil size to increase the curcumin delivery properties, and hydrophobic and electrostatic interaction might be essential forces to maintain the emulsion gel.


Subject(s)
Carboxymethylcellulose Sodium , Curcumin , Digestion , Emulsions , Gels , Hydrophobic and Hydrophilic Interactions , Rheology , Curcumin/chemistry , Emulsions/chemistry , Carboxymethylcellulose Sodium/chemistry , Gels/chemistry , Muscle Proteins , Soybean Oil/chemistry , Viscosity , Particle Size , Myofibrils/chemistry , Myofibrils/metabolism , Ultrasonic Waves
5.
Food Res Int ; 188: 114461, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823861

ABSTRACT

Myofibrillar proteins are crucial for gel formation in processed meat products such as sausages and meat patties. Freeze-thaw cycles can alter protein properties, impacting gel stability and product quality. This study aims to investigate the potential of thawed drip and its membrane-separated components as potential antifreeze agents to retard denaturation, oxidation and gel deterioration of myofibrillar proteins during freezing-thawing cycles of pork patties. The thawed drip and its membrane-separated components of > 10 kDa and < 10 kDa, along with deionized water, were added to minced pork at 10 % mass fraction and subjected to increasing freeze-thaw cycles. Results showed that the addition of thawed drip and its membrane separation components inhibited denaturation and structural changes of myofibrillar proteins, evidenced by reduced surface hydrophobicity and carbonyl content, increased free sulfhydryl groups, protein solubility and α-helix, as compared to the deionized water group. Correspondingly, improved gel properties including water-holding capacity, textural parameters and denser network structure were observed with the addition of thawed drip and its membrane separation components. Denaturation and oxidation of myofibrillar proteins were positively correlated with gel deterioration during freezing-thawing cycles. We here propose a role of thawed drip and its membrane separation components as cryoprotectants against myofibrillar protein gel deterioration during freeze-thawing cycles.


Subject(s)
Freezing , Gels , Muscle Proteins , Myofibrils , Animals , Gels/chemistry , Swine , Muscle Proteins/chemistry , Myofibrils/chemistry , Food Handling/methods , Protein Denaturation , Meat Products/analysis , Hydrophobic and Hydrophilic Interactions , Solubility , Water/chemistry , Oxidation-Reduction
6.
Meat Sci ; 215: 109550, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38820704

ABSTRACT

The influence of Eleutherine bulbosa (EB) extract at various levels (1, 4, 7, 10 or 13 g/kg) on the myofibrillar protein oxidation and moisture migration of yak meat in Fenton oxidation system was investigated. The results showed that inclusion of EB extract in yak meat efficiently inhibited carbonyl formation triggered by hydroxyl radicals. Supplementation of EB extract at 1-10 g/kg manifested more contents of the active sulfhydryl, ε-NH2 groups and α-helix structure, and higher solubility of myofibrillar proteins (MPs), but alleviated the turbidity of MPs. However, adding high level of EB extract (13 g/kg) induced the loss of free amine and α-helix content and resulted in more aggregation of MPs. The SDS-PAGE demonstrated that adding 1-7 g/kg EB extract had an obvious protective effect for myosin heavy chain and actin, whereas 10 or 13 g/kg EB extract led to weakened intensities of protein bands. DSC and LF-NMR analysis revealed that 7 g/kg EB extract had appreciable effects on thermal stabilities of MPs, and improved the hydration of yak meat induced by oxidation, while 13 g/kg EB extract accelerated MP structure destabilization and lowered water retention. Our results suggested that incorporation of low levels of EB extract (1-7 g/kg) effectively retarded the oxidative damage to MPs and EB extract could be a promising natural antioxidant in meat processing.


Subject(s)
Muscle Proteins , Oxidation-Reduction , Plant Extracts , Animals , Cattle , Plant Extracts/chemistry , Plant Extracts/pharmacology , Muscle Proteins/chemistry , Oxidative Stress/drug effects , Myofibrils/chemistry , Red Meat/analysis , Water , Antioxidants/pharmacology
7.
Food Res Int ; 187: 114361, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763645

ABSTRACT

This work investigated the cryoprotective effect of trehalose (TH) and sodium pyrophosphate (SPP) alone and in combination on myofibrillar protein (MP) oxidation and structural changes in silver carp surimi during 90 days of frozen storage (-20 °C). TH combined with SPP was significantly more effective than single TH or SPP in preventing MP oxidation (P < 0.05), showing a higher SH content (6.05 nmol/mg protein), and a lower carbonyl (4.24 nmol/mg protein) and dityrosine content (1280 A.U.). SDS-PAGE results indicated that TH combined with SPP did not differ significantly from TH and SPP in inhibiting protein degradation but was more effective in inhibiting protein crosslinking. Moreover, all cryoprotectants could stabilise the secondary and tertiary structures and inhibit unfolded and aggregation of MP, with the combination of TH and SPP being the best. It's worth noting that TH combined with SPP had a synergistic effect on inhibiting the decrease in α-helix content and gel-forming ability, and the increase in surface hydrophobicity. Overall, TH combined with SPP could significantly inhibited MP oxidation and structural changes in surimi during frozen storage and improve the gel-forming ability, which was significantly better than single TH or SPP.


Subject(s)
Carps , Cryoprotective Agents , Diphosphates , Food Storage , Freezing , Muscle Proteins , Oxidation-Reduction , Trehalose , Animals , Trehalose/chemistry , Food Storage/methods , Diphosphates/chemistry , Muscle Proteins/chemistry , Cryoprotective Agents/chemistry , Cryoprotective Agents/pharmacology , Fish Proteins/chemistry , Food Preservation/methods , Fish Products/analysis , Myofibrils/chemistry
8.
Food Res Int ; 187: 114413, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763665

ABSTRACT

In this study, the highly loaded myofibrillar protein (MP)-luteolin (Lut) complexes were noncovalently constructed by using green high-pressure homogenization technology (HPH) and high-pressure micro-fluidization technology (HPM), aiming to optimize the encapsulation efficiency of flavonoids in the protein-based vehicle without relying on the organic solvent (i.e. DMSO, ethanol, etc.). The loading efficiency of Lut into MPs could reach 100 % with a concentration of 120 µmol/g protein by using HPH (103 MPa, 2 passes) without ethanol adoption. The in vitro gastrointestinal digestion behavior and antioxidant activity of the complexes were then compared with those of ethanol-assisted groups. During gastrointestinal digestion, the MP digestibility of complexes, reaching more than 70.56 % after thermal treatment, was higher than that of sole protein. The release profile of Lut encapsulated in ethanol-containing and ethanol-free samples both well fitted with the Hixson-Crowell release kinetic model (R2 = 0.92 and 0.94, respectively), and the total phenol content decreased by ≥ 40.02 % and ≥ 62.62 %, respectively. The in vitro antioxidant activity (DPPH, ABTS, and Fe2+) of the digestive products was significantly improved by 23.89 %, 159.69 %, 351.12 % (ethanol groups) and 13.43 %, 125.48 %, 213.95 % (non-ethanol groups). The 3 mg/mL freeze-dried digesta significantly alleviated lipid accumulation and oxidative stress in HepG2 cells. The triglycerides and malondialdehyde contents decreased by at least 57.62 % and 67.74 % after digesta treatment. This study provides an easily approached and environment-friendly strategy to construct a highly loaded protein-flavonoid conjugate, which showed great potential in the formulation of healthier meat products.


Subject(s)
Antioxidants , Biological Availability , Digestion , Humans , Antioxidants/chemistry , Myofibrils/chemistry , Myofibrils/metabolism , Flavonoids/chemistry , Flavonoids/pharmacokinetics , Gastrointestinal Tract/metabolism , Animals
9.
J Texture Stud ; 55(3): e12835, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778604

ABSTRACT

Texture deterioration of meat products upon high-temperature sterilization is a pressing issue in the meat industry. This study evaluated the effect of different thermal sterilization temperatures on the textural and juiciness of ready-to-eat (RTE) chicken breast. In this study, by dynamically monitoring the texture and juiciness of chicken meat products during the process of thermal sterilization, it has been observed that excessively high sterilization temperatures (above 100°C) significantly diminish the shear force, springiness and water-holding capacity of the products. Furthermore, from the perspective of myofibrillar protein degradation, molecular mechanisms have been elucidated, unveiling that the thermal sterilization treatment at 121°C/10 min triggers the degradation of myosin heavy chains and F-actin, disrupting the lattice arrangement of myofilaments, compromising the integrity of sarcomeres, and resulting in an increase of approximately 40.66% in the myofibrillar fragmentation index, thus diminishing the quality characteristics of the products. This study unravels the underlying mechanisms governing the dynamic changes in quality of chicken meat products during the process of thermal sterilization, thereby providing theoretical guidance for the development of high-quality chicken products.


Subject(s)
Chickens , Sterilization , Animals , Sterilization/methods , Hot Temperature , Meat Products/analysis , Food Handling/methods , Proteolysis , Meat/analysis , Actins , Myofibrils/chemistry , Muscle Proteins
10.
Food Chem ; 451: 139502, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38701732

ABSTRACT

In this study, the correlation between protein phosphorylation and deterioration in the quality of tilapia during storage in ice was examined by assessing changes in texture, water-holding capacity (WHC), and biochemical characteristics of myofibrillar protein throughout 7 days of storage. The hardness significantly decreased from 471.50 to 252.17 g, whereas cooking and drip losses significantly increased from 26.5% to 32.6% and 2.9% to 9.1%, respectively (P < 0.05). Myofibril fragmentation increased, while myofibrillar protein sulfhydryl content and Ca2+-ATPase activity decreased from 119.33 to 89.29 µmol/g prot and 0.85 to 0.46 µmolPi/mg prot/h, respectively (P < 0.05). Correlation analysis revealed that the myofibrillar protein phosphorylation level was positively correlated with hardness and Ca2+-ATPase activity but negatively correlated with WHC. Myofibrillar protein phosphorylation affects muscle contraction by influencing the dissociation of actomyosin, thereby regulating hardness and WHC. This study provides novel insights for the establishment of quality control strategies for tilapia storage based on protein phosphorylation.


Subject(s)
Fish Proteins , Food Storage , Ice , Muscle Proteins , Myofibrils , Tilapia , Animals , Phosphorylation , Tilapia/metabolism , Muscle Proteins/metabolism , Muscle Proteins/chemistry , Fish Proteins/chemistry , Fish Proteins/metabolism , Ice/analysis , Myofibrils/chemistry , Myofibrils/metabolism , Seafood/analysis
11.
Ultrason Sonochem ; 107: 106911, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761771

ABSTRACT

The hardness properties of unwashed surimi gel are considered as the qualities of gelation defect. This research investigated the effect of ultrasound-assisted first-stage thermal treatment (UATT) on the physicochemical properties of unwashed Silver Carp surimi gel, and the enhancement mechanism. UATT could reduce protein particle size, which significantly reduced from 142.22 µm to 106.70 µm after 30 min of UATT compared with the nature protein. This phenomenon can promote the protein crosslinking, resulting in the hardness of surimi gel increased by 15.08 %. Partially unfolded structure of myofibrillar protein and exposures of tryptophan to water, lead to the increase in the zeta potential absolute value, driven by UATT. The reduced SH group level and the conformational conversion of proteins from random coiling to α-helix and ß-sheet, which was in support of intermolecular interaction and gel network construction. The results are valuable for processing protein gels and other food products.


Subject(s)
Carps , Gels , Animals , Gels/chemistry , Temperature , Fish Proteins/chemistry , Fish Products/analysis , Ultrasonic Waves , Myofibrils/chemistry , Muscle Proteins/chemistry , Food Handling/methods
12.
Am J Clin Nutr ; 120(1): 34-46, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762187

ABSTRACT

BACKGROUND: Skeletal muscle mass is determined predominantly by feeding-induced and activity-induced fluctuations in muscle protein synthesis (MPS). Older individuals display a diminished MPS response to protein ingestion, referred to as age-related anabolic resistance, which contributes to the progression of age-related muscle loss known as sarcopenia. OBJECTIVES: We aimed to determine the impact of consuming higher-quality compared with lower-quality protein supplements above the recommended dietary allowance (RDA) on integrated MPS rates. We hypothesized that increasing total protein intake above the RDA, regardless of the source, would support higher integrated rates of myofibrillar protein synthesis. METHODS: Thirty-one healthy older males (72 ± 4 y) consumed a controlled diet with protein intake set at the RDA: control phase (days 1-7). In a double-blind, randomized controlled fashion, participants were assigned to consume an additional 50 g (2 × 25g) of whey (n = 10), pea (n = 11), or collagen (n = 10) protein each day (25 g at breakfast and lunch) during the supplemental phase (days 8-15). Deuterated water ingestion and muscle biopsies assessed integrated MPS and acute anabolic signaling. Postprandial blood samples were collected to determine feeding-induced aminoacidemia. RESULTS: Integrated MPS was increased during supplemental with whey (1.59 ± 0.11 %/d; P < 0.001) and pea (1.59 ± 0.14 %/d; P < 0.001) when compared with RDA (1.46 ± 0.09 %/d for the whey group; 1.46 ± 0.10 %/d for the pea group); however, it remained unchanged with collagen. Supplemental protein was sufficient to overcome anabolic signaling deficits (mTORC1 and rpS6), corroborating the greater postprandial aminoacidemia. CONCLUSIONS: Our findings demonstrate that supplemental protein provided at breakfast and lunch over the current RDA enhanced anabolic signaling and integrated MPS in older males; however, the source of additional protein may be an important consideration in overcoming age-related anabolic resistance. This trial was registered clinicaltrials.gov as NCT04026607.


Subject(s)
Collagen , Dietary Supplements , Muscle Proteins , Whey Proteins , Humans , Male , Whey Proteins/administration & dosage , Whey Proteins/pharmacology , Aged , Muscle Proteins/metabolism , Collagen/metabolism , Double-Blind Method , Pea Proteins , Recommended Dietary Allowances , Myofibrils/metabolism , Muscle, Skeletal/metabolism
13.
J Food Sci ; 89(7): 4162-4177, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795377

ABSTRACT

This paper aimed to investigate the effects of ultrasound-assisted L-lysine treatment on meat quality and myofibrillar proteins (MPs) properties of pork longissimus dorsi during postmortem aging. The results revealed that the L-lysine (Lys) and/or ultrasound treatment significantly increased (p < 0.05) the water-holding capacity and tenderness of the pork during postmortem aging, while the ultrasound-assisted Lys treatment had the lowest cooking loss, pressurization loss, Warner-Bratzler shear force, and hardness. In addition, L-lysine and/or ultrasound treatment increased (p < 0.05) pH value, T21, and myofibrillar fragmentation index, while the ultrasound-assisted Lys treatment had the highest value. Meanwhile, the protein solubility was increased with Lys and/or ultrasound treatment during postmortem aging, and ultrasound-assisted Lys treatment had the highest solubility, reaching 88.19%, 92.98%, and 91.73% at 0, 1, and 3 days, respectively. The result of protein conformational characteristics showed that Lys and/or ultrasound treatment caused the unfolding of the α-helix structure, resulting in the exposure of more hydrophobic amino acids and buried sulfhydryl groups, ultimately enhancing MPs solubility. In summary, ultrasound-assisted Lys treatment altered the structure of MPs, resulting in the enhancement of the water-holding capacity and tenderness of the pork. PRACTICAL APPLICATION: This study showed that ultrasound-assisted L-lysine (Lys) treatment could enhance the water-holding capacity and tenderness of pork during postmortem aging. The results might provide a reference for the application of ultrasound-assisted Lys treatment on the improvement of pork meat quality. To facilitate practical applications in production, the development of medium and large-sized ultrasound equipment for conducting small-scale and pilot experiments is crucial for future research.


Subject(s)
Food Handling , Lysine , Muscle Proteins , Myofibrils , Animals , Lysine/chemistry , Swine , Muscle Proteins/chemistry , Muscle Proteins/metabolism , Myofibrils/chemistry , Food Handling/methods , Pork Meat/analysis , Solubility , Cooking/methods , Hydrogen-Ion Concentration , Muscle, Skeletal/chemistry , Postmortem Changes
14.
Commun Biol ; 7(1): 648, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802450

ABSTRACT

In striated muscle, the sarcomeric protein myosin-binding protein-C (MyBP-C) is bound to the myosin thick filament and is predicted to stabilize myosin heads in a docked position against the thick filament, which limits crossbridge formation. Here, we use the homozygous Mybpc2 knockout (C2-/-) mouse line to remove the fast-isoform MyBP-C from fast skeletal muscle and then conduct mechanical functional studies in parallel with small-angle X-ray diffraction to evaluate the myofilament structure. We report that C2-/- fibers present deficits in force production and calcium sensitivity. Structurally, passive C2-/- fibers present altered sarcomere length-independent and -dependent regulation of myosin head conformations, with a shift of myosin heads towards actin. At shorter sarcomere lengths, the thin filament is axially extended in C2-/-, which we hypothesize is due to increased numbers of low-level crossbridges. These findings provide testable mechanisms to explain the etiology of debilitating diseases associated with MyBP-C.


Subject(s)
Carrier Proteins , Mice, Knockout , Animals , Carrier Proteins/metabolism , Carrier Proteins/genetics , Mice , Sarcomeres/metabolism , Myofibrils/metabolism , Myofibrils/genetics , Muscle, Skeletal/metabolism , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/genetics , Male , Myosins/metabolism , Myosins/genetics
15.
Food Chem ; 452: 139567, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38718456

ABSTRACT

In this study, a hydroxyl radical oxidation system was established to simulate the oxidation process in fermented meat products. This system was employed to examine the structural changes in myofibrillar proteins (MPs) resulting from tryptic hydrolysis after a hydroxyl radical oxidative regime. The effect of these changes on the ability of MPs to bind selected aldehydes (3-methyl butanal, pentanal, hexanal, and heptanal) was also investigated. Moderate oxidation (H2O2 ≤ 1.0 mM) unfolded the structure of MPs, facilitating trypsin-mediated hydrolysis and increasing their binding capacity for the four selected aldehydes. However, excessive oxidation (H2O2 ≥ 2.5 mM) led to cross-linking and aggregation of MPs, inhibiting trypsin-mediated hydrolysis. The oxidised MPs had the best binding capacity for heptanal. The interaction of the oxidised trypsin-hydrolysed MPs with heptanal was driven by hydrophobic interactions. The binding of heptanal affected the structure of the oxidised trypsin-hydrolysed MPs and reduced their α-helix content.


Subject(s)
Aldehydes , Hydroxyl Radical , Oxidative Stress , Hydroxyl Radical/chemistry , Hydroxyl Radical/metabolism , Aldehydes/chemistry , Aldehydes/metabolism , Hydrolysis , Animals , Muscle Proteins/chemistry , Muscle Proteins/metabolism , Oxidation-Reduction , Myofibrils/chemistry , Myofibrils/metabolism , Trypsin/chemistry , Trypsin/metabolism , Swine , Protein Binding , Meat Products/analysis
16.
Int J Biol Macromol ; 268(Pt 2): 131998, 2024 May.
Article in English | MEDLINE | ID: mdl-38697415

ABSTRACT

The potential application of fish oil microcapsules as salt reduction strategies in low-salt myofibrillar protein (MP) gel was investigated by employing soy protein isolates/carboxymethyl cellulose sodium (SPI-CMC) coacervates enriched with 25 mM sodium chloride and exploring their rheological characteristics, taste perception, and microstructure. The results revealed that the SPI-CMC coacervate phase exhibited the highest sodium content under 25 mM sodium level, albeit with uneven distribution. Notably, the hydrophilic and adhesive properties of CMC to sodium facilitated the in vitro release of sodium during oral digestion, as evidenced by the excellent wettability and mucopenetration ability of CMC. Remarkably, the fish oil microcapsules incorporating SPI-CMC as the wall material, prepared at pH 3.5 with a core-to-wall ratio of 1:1, demonstrated the highest encapsulation efficiency, which was supported by the strong hydrogen bonding. Interestingly, the presence of SPI-CMC coacervates and fish oil microcapsules enhanced the interaction between MPs and strengthened the low-salt MP gel network. Coupled with electronic tongue analysis, the incorporation of fish oil microcapsules slightly exacerbated the non-uniformity of sodium distribution. This ultimately contributed to an enhanced perception of saltiness, richness, and aftertaste in low-salt protein gels. Overall, the incorporation of fish oil microcapsules emerged as an effective salt reduction strategy in low-salt MP gel.


Subject(s)
Carboxymethylcellulose Sodium , Fish Oils , Gels , Fish Oils/chemistry , Carboxymethylcellulose Sodium/chemistry , Gels/chemistry , Soybean Proteins/chemistry , Rheology , Capsules , Sodium Chloride/chemistry , Muscle Proteins/chemistry , Myofibrils/chemistry , Myofibrils/metabolism
17.
Food Chem ; 449: 139203, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38599105

ABSTRACT

This study examined the interaction between myofibrillar proteins (MPs) and the numbing substance hydroxy-α-sanshool (α-SOH) in a thermal environment, and provided an explanation of the numbness perception mechanism through muti-spectroscopic and molecular dynamics simulation methodology. Results showed that addition of α-SOH could reduce the particle size and molecular weight of MPs, accompanied by changes in the tertiary and secondary structure, causing the α-helix of MPs transitioned to ß-sheet and ß-turn due to the reorganization of hydrogen bonds. After a moderate heating (60 or 70 °C), MPs could form the stable complexes with α-SOH that were associated with attachment sites and protein wrapping. The thermal process might convert a portion of α-SOH' into hydroxy-ß-sanshool' (ß-SOH'). When docking with the sensory receptor TRPV1, the RMSD, RMSF and binding free energy all showed that ß-SOH' demonstrated a low affinity, thereby reducing the numbing perception. These findings can provide a theoretical foundation for the advanced processing of numbing meat products.


Subject(s)
Hot Temperature , Animals , Molecular Docking Simulation , Muscle Proteins/chemistry , Molecular Dynamics Simulation , Myofibrils/chemistry , Humans , Meat Products/analysis , Protein Binding , Swine , Hypesthesia , TRPV Cation Channels/chemistry , TRPV Cation Channels/metabolism , Hydrogen Bonding
18.
Nutr. clín. diet. hosp ; 44(2): 106-114, Abr. 2024. graf
Article in English | IBECS | ID: ibc-VR-16

ABSTRACT

The objective of this study is to develop and evaluate the properties of smoked edible film (EF) composed of carrageenan, myofibril, and collagen. The smoked EF was prepared by incorporating 0.8% liquid smoke. The analysis focused on various parameters including pH, physical properties such as thickness, solubility, tensile strength, elongation percentage, and water vapor transmission rate (WVTR). Sensory evaluation was also conducted to assess the texture attributes of the coated product, including wateriness, firmness, elasticity, hardness, and juiciness. The findings revealed that the concentration of the ingredients influenced the thickness of the EF, with myofibril proteins exhibiting higher concentrations compared to carrageenan and collagen. Both collagen and myofibril demonstrated maximum solubility at a concentration of 6%, while carrageenan achieved optimal solubility at concentrations ranging from 2 to 2.5%. Carrageenan exhibited significantly higher tensile strength compared to myofibril and collagen, whereas collagen demonstrated greater elasticity than carrageenan and myofibril protein. Moreover, myofibril protein film exhibited a lower water vapor transmission rate compared to carrageenan and collagen films. In terms of sensory assessment, carrageenan displayed high elasticity and juiciness, while collagen and myofibril showed high firmness and hardness. All EFs showed better antioxidant activity compared to Trolox (EC50 < 95.57 µg/mL).(AU)


Subject(s)
Humans , Male , Female , Collagen , Myofibrils , Carrageenan
19.
Food Chem ; 451: 139403, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38653104

ABSTRACT

In this study, the impact of three unsaturated fatty acids (Oleic acid: OA, Eicosapentaenoic acid: EPA, Docosahexaenoic acid: DHA) on the oxidation and structure of rainbow trout myofibrillar protein (MP) was explored. The findings revealed a notable increase in carbonyl content (P < 0.05) and a significant decrease in total sulfhydryl content (P < 0.05) of MP with the concentration increase of the three unsaturated fatty acids. Endogenous fluorescence spectroscopy and surface hydrophobicity analyses showed that unsaturated fatty acids can cause unfolding and exposure of hydrophobic groups in MP. In addition, SDS-PAGE showed that disulfide bonds were associated with MP cross-linking and aggregate size induced by unsaturated fatty acids. Overall, three unsaturated fatty acid treatments facilitated the oxidation of myofibrillar proteins, and the extent of protein oxidation was closely associated with the concentration of unsaturated fatty acids.


Subject(s)
Fatty Acids, Unsaturated , Fish Proteins , Muscle Proteins , Oncorhynchus mykiss , Oxidation-Reduction , Animals , Oncorhynchus mykiss/metabolism , Fatty Acids, Unsaturated/chemistry , Fish Proteins/chemistry , Muscle Proteins/chemistry , Myofibrils/chemistry , Hydrophobic and Hydrophilic Interactions
20.
Food Chem ; 451: 139456, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38670022

ABSTRACT

Frozen surimi quality generally correlates with oxidation, but impacts of protein oxidation on salt-dissolved myofibrillar protein (MP) sol in surimi remain unclear. Hence, physicochemical and gelling properties of MP sol with different oxidation degrees were investigated subjected to freeze-thaw cycles. Results showed that mild oxidation (≤1 mmol/L) improved unfrozen MP gel quality with lowest cooking loss (3.29 %) and highest hardness (829.76 N). Whereas, oxidized sol suffering freeze-thawing degenerated severely, showing reduction of 23.85 % of salt soluble protein contents with H2O2 concentrations of 10 mmol/L. Shearing before heating influenced gelling properties of freeze-thawed sol, depending on oxidation levels. Oxidized gel with shearing displayed disorganized network structures, whereas gel without shearing displayed relatively complete appearances without holes under high oxidation condition (10 mmol/L). Overall, freeze-thaw process aggravated denaturation extents of MP sol subjected to oxidation, further causing high water loss and yellow color of heat-induced gel, especially to gel with shearing.


Subject(s)
Fish Products , Freezing , Gels , Muscle Proteins , Oxidation-Reduction , Animals , Gels/chemistry , Fish Products/analysis , Muscle Proteins/chemistry , Swine , Protein Aggregates , Myofibrils/chemistry , Fish Proteins/chemistry , Cooking , Food Handling
SELECTION OF CITATIONS
SEARCH DETAIL
...