Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 567
Filter
1.
Meat Sci ; 215: 109554, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38838569

ABSTRACT

This study investigated the effect of ultrasound (US) combined with pre- and post-addition of κ-carrageenan (KC) on the gelling properties, structural characteristics and rheological behavior of myofibrillar proteins (MP) under low-salt conditions. The results showed that US combined with either pre- or post-addition of KC rendered higher gel strength and water holding capacity (WHC) of MP gels than those treated with US alone and added with KC alone (P < 0.05). US combined with pre-addition of KC facilitated the binding between MP and KC, which enhanced the gel strength and WHC of the mixed MP gels and significantly improved the rheological behavior of MP. This was also confirmed by the highest surface hydrophobicity, disulfide bonds and ß-sheet content of the MP gels with US combined with pre-addition of KC. Moreover, microstructural results reflected a denser structure for the pre-addition of KC in combination with US. However, US combined with post-addition of KC resulted in limited MP unfolding and relatively weak hydrophobic interactions in the composite gels, which were less effective in improving the gel properties of the MP gels. This study provides potential strategies for enhancing the gelling properties of low-salt meat products via application of US and KC.


Subject(s)
Carrageenan , Food Handling , Gels , Hydrophobic and Hydrophilic Interactions , Meat Products , Rheology , Carrageenan/chemistry , Animals , Gels/chemistry , Meat Products/analysis , Food Handling/methods , Muscle Proteins/chemistry , Swine , Myofibrils/chemistry
2.
Food Res Int ; 188: 114531, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823850

ABSTRACT

Different emulsion gel systems are widely applied to deliver functional ingredients. The effects and mechanisms of ultrasound-assisted emulsification (UAE) treatment and carboxymethyl cellulose (CMC) modifying the curcumin delivery properties and in vitro digestibility of the myofibrillar protein (MP)-soybean oil emulsion gels were investigated. The rheological properties, droplet size, protein and CMC distribution, ultrastructure, surface hydrophobicity, sulfhydryl groups, and zeta potential of emulsion gels were also measured. Results indicate that UAE treatment and CMC addition both improved curcumin encapsulation and protection efficiency in MP emulsion gel, especially for the UAE combined with CMC (UAE-CMC) treatment which encapsulation efficiency, protection efficiency, the release rate, and bioaccessibility of curcumin increased from 86.75 % to 97.67 %, 44.85 % to 68.85 %, 18.44 % to 41.78 %, and 28.68 % to 44.93 % respectively. The protein digestibility during the gastric stage was decreased after the CMC addition and UAE treatment, and the protein digestibility during the intestinal stage was reduced after the CMC addition. The fatty acid release rate was increased after CMC addition and UAE treatment. Apparent viscosity, storage modulus, and loss modulus were decreased after CMC addition while increased after UAE and UAE-CMC treatment especially the storage modulus increased from 0.26 Pa to 41 Pa after UAE-CMC treatment. The oil size was decreased, the protein and CMC concentration around the oil was increased, and a denser and uniform emulsion gel network structure was formed after UAE treatment. The surface hydrophobicity, free SH groups, and absolute zeta potential were increased after UAE treatment. The UAE-CMC treatment could strengthen the MP emulsion gel structure and decrease the oil size to increase the curcumin delivery properties, and hydrophobic and electrostatic interaction might be essential forces to maintain the emulsion gel.


Subject(s)
Carboxymethylcellulose Sodium , Curcumin , Digestion , Emulsions , Gels , Hydrophobic and Hydrophilic Interactions , Rheology , Curcumin/chemistry , Emulsions/chemistry , Carboxymethylcellulose Sodium/chemistry , Gels/chemistry , Muscle Proteins , Soybean Oil/chemistry , Viscosity , Particle Size , Myofibrils/chemistry , Myofibrils/metabolism , Ultrasonic Waves
3.
Food Res Int ; 188: 114461, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823861

ABSTRACT

Myofibrillar proteins are crucial for gel formation in processed meat products such as sausages and meat patties. Freeze-thaw cycles can alter protein properties, impacting gel stability and product quality. This study aims to investigate the potential of thawed drip and its membrane-separated components as potential antifreeze agents to retard denaturation, oxidation and gel deterioration of myofibrillar proteins during freezing-thawing cycles of pork patties. The thawed drip and its membrane-separated components of > 10 kDa and < 10 kDa, along with deionized water, were added to minced pork at 10 % mass fraction and subjected to increasing freeze-thaw cycles. Results showed that the addition of thawed drip and its membrane separation components inhibited denaturation and structural changes of myofibrillar proteins, evidenced by reduced surface hydrophobicity and carbonyl content, increased free sulfhydryl groups, protein solubility and α-helix, as compared to the deionized water group. Correspondingly, improved gel properties including water-holding capacity, textural parameters and denser network structure were observed with the addition of thawed drip and its membrane separation components. Denaturation and oxidation of myofibrillar proteins were positively correlated with gel deterioration during freezing-thawing cycles. We here propose a role of thawed drip and its membrane separation components as cryoprotectants against myofibrillar protein gel deterioration during freeze-thawing cycles.


Subject(s)
Freezing , Gels , Muscle Proteins , Myofibrils , Animals , Gels/chemistry , Swine , Muscle Proteins/chemistry , Myofibrils/chemistry , Food Handling/methods , Protein Denaturation , Meat Products/analysis , Hydrophobic and Hydrophilic Interactions , Solubility , Water/chemistry , Oxidation-Reduction
4.
Ultrason Sonochem ; 107: 106911, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761771

ABSTRACT

The hardness properties of unwashed surimi gel are considered as the qualities of gelation defect. This research investigated the effect of ultrasound-assisted first-stage thermal treatment (UATT) on the physicochemical properties of unwashed Silver Carp surimi gel, and the enhancement mechanism. UATT could reduce protein particle size, which significantly reduced from 142.22 µm to 106.70 µm after 30 min of UATT compared with the nature protein. This phenomenon can promote the protein crosslinking, resulting in the hardness of surimi gel increased by 15.08 %. Partially unfolded structure of myofibrillar protein and exposures of tryptophan to water, lead to the increase in the zeta potential absolute value, driven by UATT. The reduced SH group level and the conformational conversion of proteins from random coiling to α-helix and ß-sheet, which was in support of intermolecular interaction and gel network construction. The results are valuable for processing protein gels and other food products.


Subject(s)
Carps , Gels , Animals , Gels/chemistry , Temperature , Fish Proteins/chemistry , Fish Products/analysis , Ultrasonic Waves , Myofibrils/chemistry , Muscle Proteins/chemistry , Food Handling/methods
5.
J Food Sci ; 89(7): 4162-4177, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795377

ABSTRACT

This paper aimed to investigate the effects of ultrasound-assisted L-lysine treatment on meat quality and myofibrillar proteins (MPs) properties of pork longissimus dorsi during postmortem aging. The results revealed that the L-lysine (Lys) and/or ultrasound treatment significantly increased (p < 0.05) the water-holding capacity and tenderness of the pork during postmortem aging, while the ultrasound-assisted Lys treatment had the lowest cooking loss, pressurization loss, Warner-Bratzler shear force, and hardness. In addition, L-lysine and/or ultrasound treatment increased (p < 0.05) pH value, T21, and myofibrillar fragmentation index, while the ultrasound-assisted Lys treatment had the highest value. Meanwhile, the protein solubility was increased with Lys and/or ultrasound treatment during postmortem aging, and ultrasound-assisted Lys treatment had the highest solubility, reaching 88.19%, 92.98%, and 91.73% at 0, 1, and 3 days, respectively. The result of protein conformational characteristics showed that Lys and/or ultrasound treatment caused the unfolding of the α-helix structure, resulting in the exposure of more hydrophobic amino acids and buried sulfhydryl groups, ultimately enhancing MPs solubility. In summary, ultrasound-assisted Lys treatment altered the structure of MPs, resulting in the enhancement of the water-holding capacity and tenderness of the pork. PRACTICAL APPLICATION: This study showed that ultrasound-assisted L-lysine (Lys) treatment could enhance the water-holding capacity and tenderness of pork during postmortem aging. The results might provide a reference for the application of ultrasound-assisted Lys treatment on the improvement of pork meat quality. To facilitate practical applications in production, the development of medium and large-sized ultrasound equipment for conducting small-scale and pilot experiments is crucial for future research.


Subject(s)
Food Handling , Lysine , Muscle Proteins , Myofibrils , Animals , Lysine/chemistry , Swine , Muscle Proteins/chemistry , Muscle Proteins/metabolism , Myofibrils/chemistry , Food Handling/methods , Pork Meat/analysis , Solubility , Cooking/methods , Hydrogen-Ion Concentration , Muscle, Skeletal/chemistry , Postmortem Changes
6.
Food Chem ; 455: 139902, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38820644

ABSTRACT

High-pressure homogenization modified quinoa protein (HQP) was added to porcine myofibrillar proteins (MP) to study its the influence on protein conformation, water distribution and dynamical rheological characteristics of low-salt porcine MP (0.3 M NaCl). Based on these results, the WHC, gel strength, and G' value of the low-salt MP gel were significantly improved with an increase in the added amount of HQP. A moderate amount of HQP (6%) increased the surface hydrophobicity and active sulfhydryl content of MP (P < 0.05). Moreover, the addition of HQP decreased particle size and endogenous fluorescence intensity. FT-IR results indicated that the conformation of α-helix gradually converted to ß-sheet by HQP addition. The incorporation of HQP also shortened the T2 relaxation time and enhanced the proportion of immobile water, contributing to the formation of a compact and homogeneous gel structure. In conclusion, the moderate addition of HQP can effectively enhance the structural stability and functionality of low-salt MP.


Subject(s)
Chenopodium quinoa , Gels , Plant Proteins , Rheology , Water , Animals , Chenopodium quinoa/chemistry , Swine , Water/chemistry , Plant Proteins/chemistry , Gels/chemistry , Hydrophobic and Hydrophilic Interactions , Myofibrils/chemistry , Muscle Proteins/chemistry , Protein Conformation
7.
Food Chem ; 452: 139567, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38718456

ABSTRACT

In this study, a hydroxyl radical oxidation system was established to simulate the oxidation process in fermented meat products. This system was employed to examine the structural changes in myofibrillar proteins (MPs) resulting from tryptic hydrolysis after a hydroxyl radical oxidative regime. The effect of these changes on the ability of MPs to bind selected aldehydes (3-methyl butanal, pentanal, hexanal, and heptanal) was also investigated. Moderate oxidation (H2O2 ≤ 1.0 mM) unfolded the structure of MPs, facilitating trypsin-mediated hydrolysis and increasing their binding capacity for the four selected aldehydes. However, excessive oxidation (H2O2 ≥ 2.5 mM) led to cross-linking and aggregation of MPs, inhibiting trypsin-mediated hydrolysis. The oxidised MPs had the best binding capacity for heptanal. The interaction of the oxidised trypsin-hydrolysed MPs with heptanal was driven by hydrophobic interactions. The binding of heptanal affected the structure of the oxidised trypsin-hydrolysed MPs and reduced their α-helix content.


Subject(s)
Aldehydes , Hydroxyl Radical , Oxidative Stress , Hydroxyl Radical/chemistry , Hydroxyl Radical/metabolism , Aldehydes/chemistry , Aldehydes/metabolism , Hydrolysis , Animals , Muscle Proteins/chemistry , Muscle Proteins/metabolism , Oxidation-Reduction , Myofibrils/chemistry , Myofibrils/metabolism , Trypsin/chemistry , Trypsin/metabolism , Swine , Protein Binding , Meat Products/analysis
8.
Int J Biol Macromol ; 268(Pt 2): 131998, 2024 May.
Article in English | MEDLINE | ID: mdl-38697415

ABSTRACT

The potential application of fish oil microcapsules as salt reduction strategies in low-salt myofibrillar protein (MP) gel was investigated by employing soy protein isolates/carboxymethyl cellulose sodium (SPI-CMC) coacervates enriched with 25 mM sodium chloride and exploring their rheological characteristics, taste perception, and microstructure. The results revealed that the SPI-CMC coacervate phase exhibited the highest sodium content under 25 mM sodium level, albeit with uneven distribution. Notably, the hydrophilic and adhesive properties of CMC to sodium facilitated the in vitro release of sodium during oral digestion, as evidenced by the excellent wettability and mucopenetration ability of CMC. Remarkably, the fish oil microcapsules incorporating SPI-CMC as the wall material, prepared at pH 3.5 with a core-to-wall ratio of 1:1, demonstrated the highest encapsulation efficiency, which was supported by the strong hydrogen bonding. Interestingly, the presence of SPI-CMC coacervates and fish oil microcapsules enhanced the interaction between MPs and strengthened the low-salt MP gel network. Coupled with electronic tongue analysis, the incorporation of fish oil microcapsules slightly exacerbated the non-uniformity of sodium distribution. This ultimately contributed to an enhanced perception of saltiness, richness, and aftertaste in low-salt protein gels. Overall, the incorporation of fish oil microcapsules emerged as an effective salt reduction strategy in low-salt MP gel.


Subject(s)
Carboxymethylcellulose Sodium , Fish Oils , Gels , Fish Oils/chemistry , Carboxymethylcellulose Sodium/chemistry , Gels/chemistry , Soybean Proteins/chemistry , Rheology , Capsules , Sodium Chloride/chemistry , Muscle Proteins/chemistry , Myofibrils/chemistry , Myofibrils/metabolism
9.
Meat Sci ; 215: 109550, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38820704

ABSTRACT

The influence of Eleutherine bulbosa (EB) extract at various levels (1, 4, 7, 10 or 13 g/kg) on the myofibrillar protein oxidation and moisture migration of yak meat in Fenton oxidation system was investigated. The results showed that inclusion of EB extract in yak meat efficiently inhibited carbonyl formation triggered by hydroxyl radicals. Supplementation of EB extract at 1-10 g/kg manifested more contents of the active sulfhydryl, ε-NH2 groups and α-helix structure, and higher solubility of myofibrillar proteins (MPs), but alleviated the turbidity of MPs. However, adding high level of EB extract (13 g/kg) induced the loss of free amine and α-helix content and resulted in more aggregation of MPs. The SDS-PAGE demonstrated that adding 1-7 g/kg EB extract had an obvious protective effect for myosin heavy chain and actin, whereas 10 or 13 g/kg EB extract led to weakened intensities of protein bands. DSC and LF-NMR analysis revealed that 7 g/kg EB extract had appreciable effects on thermal stabilities of MPs, and improved the hydration of yak meat induced by oxidation, while 13 g/kg EB extract accelerated MP structure destabilization and lowered water retention. Our results suggested that incorporation of low levels of EB extract (1-7 g/kg) effectively retarded the oxidative damage to MPs and EB extract could be a promising natural antioxidant in meat processing.


Subject(s)
Muscle Proteins , Oxidation-Reduction , Plant Extracts , Animals , Cattle , Plant Extracts/chemistry , Plant Extracts/pharmacology , Muscle Proteins/chemistry , Oxidative Stress/drug effects , Myofibrils/chemistry , Red Meat/analysis , Water , Antioxidants/pharmacology
10.
Food Chem ; 451: 139502, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38701732

ABSTRACT

In this study, the correlation between protein phosphorylation and deterioration in the quality of tilapia during storage in ice was examined by assessing changes in texture, water-holding capacity (WHC), and biochemical characteristics of myofibrillar protein throughout 7 days of storage. The hardness significantly decreased from 471.50 to 252.17 g, whereas cooking and drip losses significantly increased from 26.5% to 32.6% and 2.9% to 9.1%, respectively (P < 0.05). Myofibril fragmentation increased, while myofibrillar protein sulfhydryl content and Ca2+-ATPase activity decreased from 119.33 to 89.29 µmol/g prot and 0.85 to 0.46 µmolPi/mg prot/h, respectively (P < 0.05). Correlation analysis revealed that the myofibrillar protein phosphorylation level was positively correlated with hardness and Ca2+-ATPase activity but negatively correlated with WHC. Myofibrillar protein phosphorylation affects muscle contraction by influencing the dissociation of actomyosin, thereby regulating hardness and WHC. This study provides novel insights for the establishment of quality control strategies for tilapia storage based on protein phosphorylation.


Subject(s)
Fish Proteins , Food Storage , Ice , Muscle Proteins , Myofibrils , Tilapia , Animals , Phosphorylation , Tilapia/metabolism , Muscle Proteins/metabolism , Muscle Proteins/chemistry , Fish Proteins/chemistry , Fish Proteins/metabolism , Ice/analysis , Myofibrils/chemistry , Myofibrils/metabolism , Seafood/analysis
11.
J Texture Stud ; 55(3): e12835, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778604

ABSTRACT

Texture deterioration of meat products upon high-temperature sterilization is a pressing issue in the meat industry. This study evaluated the effect of different thermal sterilization temperatures on the textural and juiciness of ready-to-eat (RTE) chicken breast. In this study, by dynamically monitoring the texture and juiciness of chicken meat products during the process of thermal sterilization, it has been observed that excessively high sterilization temperatures (above 100°C) significantly diminish the shear force, springiness and water-holding capacity of the products. Furthermore, from the perspective of myofibrillar protein degradation, molecular mechanisms have been elucidated, unveiling that the thermal sterilization treatment at 121°C/10 min triggers the degradation of myosin heavy chains and F-actin, disrupting the lattice arrangement of myofilaments, compromising the integrity of sarcomeres, and resulting in an increase of approximately 40.66% in the myofibrillar fragmentation index, thus diminishing the quality characteristics of the products. This study unravels the underlying mechanisms governing the dynamic changes in quality of chicken meat products during the process of thermal sterilization, thereby providing theoretical guidance for the development of high-quality chicken products.


Subject(s)
Chickens , Sterilization , Animals , Sterilization/methods , Hot Temperature , Meat Products/analysis , Food Handling/methods , Proteolysis , Meat/analysis , Actins , Myofibrils/chemistry , Muscle Proteins
12.
Food Res Int ; 187: 114361, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763645

ABSTRACT

This work investigated the cryoprotective effect of trehalose (TH) and sodium pyrophosphate (SPP) alone and in combination on myofibrillar protein (MP) oxidation and structural changes in silver carp surimi during 90 days of frozen storage (-20 °C). TH combined with SPP was significantly more effective than single TH or SPP in preventing MP oxidation (P < 0.05), showing a higher SH content (6.05 nmol/mg protein), and a lower carbonyl (4.24 nmol/mg protein) and dityrosine content (1280 A.U.). SDS-PAGE results indicated that TH combined with SPP did not differ significantly from TH and SPP in inhibiting protein degradation but was more effective in inhibiting protein crosslinking. Moreover, all cryoprotectants could stabilise the secondary and tertiary structures and inhibit unfolded and aggregation of MP, with the combination of TH and SPP being the best. It's worth noting that TH combined with SPP had a synergistic effect on inhibiting the decrease in α-helix content and gel-forming ability, and the increase in surface hydrophobicity. Overall, TH combined with SPP could significantly inhibited MP oxidation and structural changes in surimi during frozen storage and improve the gel-forming ability, which was significantly better than single TH or SPP.


Subject(s)
Carps , Cryoprotective Agents , Diphosphates , Food Storage , Freezing , Muscle Proteins , Oxidation-Reduction , Trehalose , Animals , Trehalose/chemistry , Food Storage/methods , Diphosphates/chemistry , Muscle Proteins/chemistry , Cryoprotective Agents/chemistry , Cryoprotective Agents/pharmacology , Fish Proteins/chemistry , Food Preservation/methods , Fish Products/analysis , Myofibrils/chemistry
13.
Food Res Int ; 187: 114413, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763665

ABSTRACT

In this study, the highly loaded myofibrillar protein (MP)-luteolin (Lut) complexes were noncovalently constructed by using green high-pressure homogenization technology (HPH) and high-pressure micro-fluidization technology (HPM), aiming to optimize the encapsulation efficiency of flavonoids in the protein-based vehicle without relying on the organic solvent (i.e. DMSO, ethanol, etc.). The loading efficiency of Lut into MPs could reach 100 % with a concentration of 120 µmol/g protein by using HPH (103 MPa, 2 passes) without ethanol adoption. The in vitro gastrointestinal digestion behavior and antioxidant activity of the complexes were then compared with those of ethanol-assisted groups. During gastrointestinal digestion, the MP digestibility of complexes, reaching more than 70.56 % after thermal treatment, was higher than that of sole protein. The release profile of Lut encapsulated in ethanol-containing and ethanol-free samples both well fitted with the Hixson-Crowell release kinetic model (R2 = 0.92 and 0.94, respectively), and the total phenol content decreased by ≥ 40.02 % and ≥ 62.62 %, respectively. The in vitro antioxidant activity (DPPH, ABTS, and Fe2+) of the digestive products was significantly improved by 23.89 %, 159.69 %, 351.12 % (ethanol groups) and 13.43 %, 125.48 %, 213.95 % (non-ethanol groups). The 3 mg/mL freeze-dried digesta significantly alleviated lipid accumulation and oxidative stress in HepG2 cells. The triglycerides and malondialdehyde contents decreased by at least 57.62 % and 67.74 % after digesta treatment. This study provides an easily approached and environment-friendly strategy to construct a highly loaded protein-flavonoid conjugate, which showed great potential in the formulation of healthier meat products.


Subject(s)
Antioxidants , Biological Availability , Digestion , Humans , Antioxidants/chemistry , Myofibrils/chemistry , Myofibrils/metabolism , Flavonoids/chemistry , Flavonoids/pharmacokinetics , Gastrointestinal Tract/metabolism , Animals
14.
Meat Sci ; 213: 109507, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38583336

ABSTRACT

The impact of various field strength (2, 3, 4 kV/cm) and treatment time (60s and 90s) combinations on NaCl content and diffusion coefficient of beef were evaluated in the current study. Weight change, water content, water holding capacity, and texture of beef after brining were also explored. The results demonstrated pulsed electric field (PEF) pre-treatment significantly increased NaCl uptake when the brining time was 150 min (P < 0.05). The maximum NaCl content increased by 19.50% and the diffusion coefficient increased by 58.50%. Relatively mild PEF (60s) could improve beef qualities, but longer treatment time (90s) was detrimental to these qualities. Meanwhile, more complete myofibrillar structure and lower lipid oxidation extent were observed in the samples treated by PEF, contributing to the higher a* values. In conclusion, short processing time (60s) and high field strength (4 kV/cm) treatment is a potential strategy for meat brining acceleration and quality improvement in practical industrial production.


Subject(s)
Food Handling , Red Meat , Sodium Chloride , Animals , Cattle , Red Meat/analysis , Food Handling/methods , Sodium Chloride/chemistry , Electricity , Diffusion , Water , Myofibrils/chemistry , Muscle, Skeletal/chemistry , Food Quality
15.
Int J Biol Macromol ; 267(Pt 1): 131418, 2024 May.
Article in English | MEDLINE | ID: mdl-38582465

ABSTRACT

In this work, the effects of low-frequency alternating magnetic fields (LF-AMF) on the physicochemical, conformational, and functional characteristics of myofibrillar protein (MP) after iterative freeze-thaw (FT) cycles were explored. With the increasing LF-AMF treatment time, the solubility, active sulfhydryl groups, surface hydrophobicity, emulsifiability, and emulsion stability of MP after five FT cycles evidently elevated and then declined, and the peak value was obtained at 3 h. Conversely, the moderate LF-AMF treatment time can significantly reduce the average particle size, carbonyl content, and endogenous fluorescence intensity of MP. The rheology results showed that various LF-AMF treatment times would elevate the G' value of MP after iterative FT cycles. The FTIR spectroscopy results suggested that LF-AMF influenced the secondary structure of MP after multiple FT cycles, resulting in a depression in α-helix content and an increment in ß-folding proportion. Moreover, LF-AMF treatment induced the gradually lighter and wider myosin heavy chain bands of MP, implying that LF-AMF accelerated the degradation of macromolecular aggregates. Therefore, the LF-AMF treatment efficaciously ameliorates the structural and functional deterioration of MP after iterative FT cycles and could be used as a potential quality-improving technology in the frozen meat industry.


Subject(s)
Freezing , Magnetic Fields , Muscle Proteins , Rheology , Muscle Proteins/chemistry , Myofibrils/chemistry , Solubility , Animals , Chemical Phenomena , Protein Conformation , Hydrophobic and Hydrophilic Interactions
16.
Food Chem ; 449: 139203, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38599105

ABSTRACT

This study examined the interaction between myofibrillar proteins (MPs) and the numbing substance hydroxy-α-sanshool (α-SOH) in a thermal environment, and provided an explanation of the numbness perception mechanism through muti-spectroscopic and molecular dynamics simulation methodology. Results showed that addition of α-SOH could reduce the particle size and molecular weight of MPs, accompanied by changes in the tertiary and secondary structure, causing the α-helix of MPs transitioned to ß-sheet and ß-turn due to the reorganization of hydrogen bonds. After a moderate heating (60 or 70 °C), MPs could form the stable complexes with α-SOH that were associated with attachment sites and protein wrapping. The thermal process might convert a portion of α-SOH' into hydroxy-ß-sanshool' (ß-SOH'). When docking with the sensory receptor TRPV1, the RMSD, RMSF and binding free energy all showed that ß-SOH' demonstrated a low affinity, thereby reducing the numbing perception. These findings can provide a theoretical foundation for the advanced processing of numbing meat products.


Subject(s)
Hot Temperature , Animals , Molecular Docking Simulation , Muscle Proteins/chemistry , Molecular Dynamics Simulation , Myofibrils/chemistry , Humans , Meat Products/analysis , Protein Binding , Swine , Hypesthesia , TRPV Cation Channels/chemistry , TRPV Cation Channels/metabolism , Hydrogen Bonding
17.
Food Chem ; 450: 139300, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38640525

ABSTRACT

The present study aimed to investigate the impact of Flammulina velutipes polysaccharide (FVSP) on the rheological properties and structural alterations of myofibrillar protein (MP) and oxidized MP (OMP), utilizing techniques such as rhehometer, fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In the unoxidized system, the addition of 5.00% FVSP significantly improved (p < 0.05) the storage and loss moduli of the composite gel and promoted the α-helix to ß-sheet transformation. These effects enhanced the protein's gel strength and water-holding capacity (WHC). In the oxidation system, 5.00% FVSP had significant effects (p < 0.05) on repair and improvement of the oxidized MP. These effects inhibited the cross-linking aggregation and degradation of the protein. In addition, the addition of FVSP significantly improved the gel properties of MPs after oxidation (p < 0.05), hindered fracture of the protein gel network structure. In summary, polysaccharides have a substantial effect on the functional characteristics of MP, and FVSP could potentially be applied in meat products.


Subject(s)
Flammulina , Muscle Proteins , Oxidation-Reduction , Polysaccharides , Flammulina/chemistry , Polysaccharides/chemistry , Animals , Muscle Proteins/chemistry , Swine , Gels/chemistry , Meat Products/analysis , Rheology , Myofibrils/chemistry
18.
Food Chem ; 451: 139403, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38653104

ABSTRACT

In this study, the impact of three unsaturated fatty acids (Oleic acid: OA, Eicosapentaenoic acid: EPA, Docosahexaenoic acid: DHA) on the oxidation and structure of rainbow trout myofibrillar protein (MP) was explored. The findings revealed a notable increase in carbonyl content (P < 0.05) and a significant decrease in total sulfhydryl content (P < 0.05) of MP with the concentration increase of the three unsaturated fatty acids. Endogenous fluorescence spectroscopy and surface hydrophobicity analyses showed that unsaturated fatty acids can cause unfolding and exposure of hydrophobic groups in MP. In addition, SDS-PAGE showed that disulfide bonds were associated with MP cross-linking and aggregate size induced by unsaturated fatty acids. Overall, three unsaturated fatty acid treatments facilitated the oxidation of myofibrillar proteins, and the extent of protein oxidation was closely associated with the concentration of unsaturated fatty acids.


Subject(s)
Fatty Acids, Unsaturated , Fish Proteins , Muscle Proteins , Oncorhynchus mykiss , Oxidation-Reduction , Animals , Oncorhynchus mykiss/metabolism , Fatty Acids, Unsaturated/chemistry , Fish Proteins/chemistry , Muscle Proteins/chemistry , Myofibrils/chemistry , Hydrophobic and Hydrophilic Interactions
19.
Food Chem ; 451: 139456, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38670022

ABSTRACT

Frozen surimi quality generally correlates with oxidation, but impacts of protein oxidation on salt-dissolved myofibrillar protein (MP) sol in surimi remain unclear. Hence, physicochemical and gelling properties of MP sol with different oxidation degrees were investigated subjected to freeze-thaw cycles. Results showed that mild oxidation (≤1 mmol/L) improved unfrozen MP gel quality with lowest cooking loss (3.29 %) and highest hardness (829.76 N). Whereas, oxidized sol suffering freeze-thawing degenerated severely, showing reduction of 23.85 % of salt soluble protein contents with H2O2 concentrations of 10 mmol/L. Shearing before heating influenced gelling properties of freeze-thawed sol, depending on oxidation levels. Oxidized gel with shearing displayed disorganized network structures, whereas gel without shearing displayed relatively complete appearances without holes under high oxidation condition (10 mmol/L). Overall, freeze-thaw process aggravated denaturation extents of MP sol subjected to oxidation, further causing high water loss and yellow color of heat-induced gel, especially to gel with shearing.


Subject(s)
Fish Products , Freezing , Gels , Muscle Proteins , Oxidation-Reduction , Animals , Gels/chemistry , Fish Products/analysis , Muscle Proteins/chemistry , Swine , Protein Aggregates , Myofibrils/chemistry , Fish Proteins/chemistry , Cooking , Food Handling
20.
Food Chem ; 451: 139455, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38678659

ABSTRACT

Interactions among flavor compounds from spices (FCS) and myofibrillar proteins (MP) were investigated. Fluorescence and Fourier transform infrared spectroscopy showed that hydrogen bonding and hydrophobic interactions were the main binding forces between FCS and MP. The FCS increased the particle size and SH content of MP and caused a reduction of zeta potential from -5.23 to -6.50 mV. Furthermore, FCS could modify the binding ability of MP and aldehydes. Eugenol reduced the ability of MP to bond with aldehydes by 22.70-47.87 %. Molecular dynamics simulations demonstrated that eugenol may combat nonanal to attain binding site of amino acid residue (PHE165) and induce protein conformational changes. Electrostatic interactions and van der Waals forces within myosin-nonanal may be disrupted by these alterations, which could reduce stability of complex and cause release of nonanal. This study could provide new insights into regulating the ability of proteins to release and hold flavors.


Subject(s)
Aldehydes , Flavoring Agents , Muscle Proteins , Spices , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Spices/analysis , Muscle Proteins/chemistry , Muscle Proteins/metabolism , Animals , Aldehydes/chemistry , Aldehydes/metabolism , Protein Binding , Myofibrils/chemistry , Myofibrils/metabolism , Molecular Dynamics Simulation , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...