Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Hum Mol Genet ; 30(12): 1111-1130, 2021 06 09.
Article in English | MEDLINE | ID: mdl-33864373

ABSTRACT

RNA toxicity underlies the pathogenesis of disorders such as myotonic dystrophy type 1 (DM1). Muscular dystrophy is a key element of the pathology of DM1. The means by which RNA toxicity causes muscular dystrophy in DM1 is unclear. Here, we have used the DM200 mouse model of RNA toxicity due to the expression of a mutant DMPK 3'UTR mRNA to model the effects of RNA toxicity on muscle regeneration. Using a BaCl2-induced damage model, we find that RNA toxicity leads to decreased expression of PAX7, and decreased numbers of satellite cells, the stem cells of adult skeletal muscle (also known as MuSCs). This is associated with a delay in regenerative response, a lack of muscle fiber maturation and an inability to maintain a normal number of satellite cells. Repeated muscle damage also elicited key aspects of muscular dystrophy, including fat droplet deposition and increased fibrosis, and the results represent one of the first times to model these classic markers of dystrophic changes in the skeletal muscles of a mouse model of RNA toxicity. Using a ligand-conjugated antisense (LICA) oligonucleotide ASO targeting DMPK sequences for the first time in a mouse model of RNA toxicity in DM1, we find that treatment with IONIS 877864, which targets the DMPK 3'UTR mRNA, is efficacious in correcting the defects in regenerative response and the reductions in satellite cell numbers caused by RNA toxicity. These results demonstrate the possibilities for therapeutic interventions to mitigate the muscular dystrophy associated with RNA toxicity in DM1.


Subject(s)
Muscle Development/genetics , Myotonic Dystrophy/genetics , Myotonin-Protein Kinase/genetics , Oligonucleotides, Antisense/pharmacology , RNA/genetics , Animals , Disease Models, Animal , Humans , Mice , Muscle, Skeletal/growth & development , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Myotonic Dystrophy/pathology , Myotonin-Protein Kinase/antagonists & inhibitors , RNA/toxicity , RNA, Messenger/genetics , Regeneration/genetics
2.
Sci Signal ; 13(619)2020 02 18.
Article in English | MEDLINE | ID: mdl-32071169

ABSTRACT

High-grade serous ovarian carcinoma (HGSOC) is the most lethal gynecological cancer with few effective, targeted therapies. HGSOC tumors exhibit genomic instability with frequent alterations in the protein kinome; however, only a small fraction of the kinome has been therapeutically targeted in HGSOC. Using multiplexed inhibitor beads and mass spectrometry, we mapped the kinome landscape of HGSOC tumors from patients and patient-derived xenograft models. The data revealed a prevalent signature consisting of established HGSOC driver kinases, as well as several kinases previously unexplored in HGSOC. Loss-of-function analysis of these kinases in HGSOC cells indicated MRCKA (also known as CDC42BPA) as a putative therapeutic target. Characterization of the effects of MRCKA knockdown in established HGSOC cell lines demonstrated that MRCKA was integral to signaling that regulated the cell cycle checkpoint, focal adhesion, and actin remodeling, as well as cell migration, proliferation, and survival. Moreover, inhibition of MRCKA using the small-molecule BDP9066 decreased cell proliferation and spheroid formation and induced apoptosis in HGSOC cells, suggesting that MRCKA may be a promising therapeutic target for the treatment of HGSOC.


Subject(s)
Biomarkers, Tumor/antagonists & inhibitors , Cystadenocarcinoma, Serous/drug therapy , Myotonin-Protein Kinase/antagonists & inhibitors , Ovarian Neoplasms/drug therapy , Proteomics/methods , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Mass Spectrometry/methods , Molecular Targeted Therapy/methods , Myotonin-Protein Kinase/genetics , Myotonin-Protein Kinase/metabolism , Neoplasm Grading , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , RNA Interference , Signal Transduction/drug effects , Signal Transduction/genetics
3.
Nucleic Acid Ther ; 30(2): 80-93, 2020 04.
Article in English | MEDLINE | ID: mdl-31873063

ABSTRACT

Myotonic dystrophy type 1 (DM1) is a dominantly inherited, multisystemic disorder characterized clinically by delayed muscle relaxation and weakness. The disease is caused by a CTG repeat expansion in the 3' untranslated region (3' UTR) of the DMPK gene, which leads to the expression of a toxic gain-of-function mRNA. The expanded CUG repeat mRNA sequesters the MBNL1 splicing regulator in nuclear-retained foci structures, resulting in loss of protein function and disruption of alternative splicing homeostasis. In this study, we used CAG repeat antisense oligonucleotides (ASOs), composed of locked nucleic acid (LNA)- and 2'-O-methyl (2'OMe)-modified bases in a chimeric design, to alleviate CUGexpanded-mediated toxicity. Chimeric 14-18mer LNA/2'OMe oligonucleotides, exhibiting an LNA incorporation of ∼33%, significantly ameliorated the misregulated alternative splicing of Mbnl1-dependent exons in primary DM1 mouse myoblasts and tibialis anterior muscles of DM1 mice. Subcutaneous delivery of 14mer and 18mer LNA/2'OMe chimeras in DM1 mice resulted in high levels of accumulation in all tested skeletal muscles, as well as in the diaphragm and heart tissue. Despite the efficient delivery, chimeric LNA/2'OMe oligonucleotides were not able, even at a high-dosage regimen (400 mg/kg/week), to correct the misregulated splicing of Serca1 exon 22 in skeletal muscles. Nevertheless, oligonucleotide doses were well-tolerated as determined by histological and plasma biochemistry analyses. Our results provide proof of concept that inhibition of MBNL1 sequestration by systemic delivery of a steric-blocking ASO is extremely challenging, considering the large number of target sites that need to be occupied per RNA molecule. Although not suitable for DM1 therapy, chimeric LNA/2'OMe oligonucleotides could prove to be highly beneficial for other diseases, such as Duchenne muscular dystrophy, that require inhibition of a single target site per RNA molecule.


Subject(s)
Alternative Splicing/drug effects , Myotonic Dystrophy/therapy , Myotonin-Protein Kinase/genetics , Trinucleotide Repeat Expansion/drug effects , 3' Untranslated Regions/genetics , Alternative Splicing/genetics , Animals , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , Disease Models, Animal , Exons/genetics , Humans , Mice , Myotonic Dystrophy/genetics , Myotonic Dystrophy/pathology , Myotonin-Protein Kinase/antagonists & inhibitors , Oligonucleotides/genetics , Oligonucleotides/pharmacology , RNA Splicing/drug effects , RNA Splicing/genetics , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/genetics , Trinucleotide Repeat Expansion/genetics
4.
Bioorg Med Chem Lett ; 29(2): 342-346, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30503632

ABSTRACT

This letter describes the first account of the chemical optimization (SAR and DMPK profiling) of a new series of mGlu4 positive allosteric modulators (PAMs), leading to the identification of VU0652957 (VU2957, Valiglurax), a compound profiled as a preclinical development candidate. Here, we detail the challenges faced in allosteric modulator programs (e.g., steep SAR, as well as subtle structural changes affecting overall physiochemical/DMPK properties and CNS penetration).


Subject(s)
Drug Discovery , Heterocyclic Compounds, 2-Ring/pharmacology , Isoquinolines/pharmacology , Myotonin-Protein Kinase/antagonists & inhibitors , Receptors, Metabotropic Glutamate/metabolism , Allosteric Regulation/drug effects , Dose-Response Relationship, Drug , Heterocyclic Compounds, 2-Ring/chemistry , Humans , Isoquinolines/chemistry , Molecular Structure , Myotonin-Protein Kinase/metabolism , Structure-Activity Relationship
5.
Int J Mol Sci ; 19(12)2018 Dec 18.
Article in English | MEDLINE | ID: mdl-30567354

ABSTRACT

Myotonic dystrophy type 1 (DM1), the most common cause of adult-onset muscular dystrophy, is autosomal dominant, multisystemic disease with characteristic symptoms including myotonia, heart defects, cataracts and testicular atrophy. DM1 disease is being successfully modelled in Drosophila allowing to identify and validate new pathogenic mechanisms and potential therapeutic strategies. Here we provide an overview of insights gained from fruit fly DM1 models, either: (i) fundamental with particular focus on newly identified gene deregulations and their link with DM1 symptoms; or (ii) applied via genetic modifiers and drug screens to identify promising therapeutic targets.


Subject(s)
Muscle, Skeletal/physiopathology , Myotonic Dystrophy/genetics , Myotonic Dystrophy/therapy , Myotonin-Protein Kinase/genetics , Animals , Disease Models, Animal , Drosophila melanogaster/genetics , Drug Evaluation, Preclinical , Humans , Molecular Targeted Therapy , Myotonic Dystrophy/pathology , Myotonin-Protein Kinase/antagonists & inhibitors , Trinucleotide Repeat Expansion/genetics
6.
Cancer Res ; 78(22): 6509-6522, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30279244

ABSTRACT

Glioblastoma (GBM) is an aggressive and incurable primary brain tumor that causes severe neurologic, cognitive, and psychologic symptoms. Symptoms are caused and exacerbated by the infiltrative properties of GBM cells, which enable them to pervade the healthy brain and disrupt normal function. Recent research has indicated that although radiotherapy (RT) remains the most effective component of multimodality therapy for patients with GBM, it can provoke a more infiltrative phenotype in GBM cells that survive treatment. Here, we demonstrate an essential role of the actin-myosin regulatory kinase myotonic dystrophy kinase-related CDC42-binding kinase (MRCK) in mediating the proinvasive effects of radiation. MRCK-mediated invasion occurred via downstream signaling to effector molecules MYPT1 and MLC2. MRCK was activated by clinically relevant doses per fraction of radiation, and this activation was concomitant with an increase in GBM cell motility and invasion. Furthermore, ablation of MRCK activity either by RNAi or by inhibition with the novel small-molecule inhibitor BDP-9066 prevented radiation-driven increases in motility both in vitro and in a clinically relevant orthotopic xenograft model of GBM. Crucially, treatment with BDP-9066 in combination with RT significantly increased survival in this model and markedly reduced infiltration of the contralateral cerebral hemisphere.Significance: An effective new strategy for the treatment of glioblastoma uses a novel, anti-invasive chemotherapeutic to prevent infiltration of the normal brain by glioblastoma cells.Cancer Res; 78(22); 6509-22. ©2018 AACR.


Subject(s)
Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Glioblastoma/drug therapy , Glioblastoma/metabolism , Myotonin-Protein Kinase/antagonists & inhibitors , Actins/chemistry , Animals , Antineoplastic Agents/pharmacology , Brain Neoplasms/radiotherapy , Cardiac Myosins/metabolism , Cell Line, Tumor , Cell Movement , Female , Glioblastoma/radiotherapy , Humans , Mice , Mice, Nude , Microscopy, Fluorescence , Myosin Light Chains/metabolism , Myosin-Light-Chain Phosphatase/metabolism , Myosins/chemistry , Neoplasm Invasiveness , Phenotype , RNA Interference , RNA, Small Interfering/metabolism
7.
Cancer Res ; 78(8): 2096-2114, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29382705

ABSTRACT

The myotonic dystrophy-related Cdc42-binding kinases MRCKα and MRCKß contribute to the regulation of actin-myosin cytoskeleton organization and dynamics, acting in concert with the Rho-associated coiled-coil kinases ROCK1 and ROCK2. The absence of highly potent and selective MRCK inhibitors has resulted in relatively little knowledge of the potential roles of these kinases in cancer. Here, we report the discovery of the azaindole compounds BDP8900 and BDP9066 as potent and selective MRCK inhibitors that reduce substrate phosphorylation, leading to morphologic changes in cancer cells along with inhibition of their motility and invasive character. In over 750 human cancer cell lines tested, BDP8900 and BDP9066 displayed consistent antiproliferative effects with greatest activity in hematologic cancer cells. Mass spectrometry identified MRCKα S1003 as an autophosphorylation site, enabling development of a phosphorylation-sensitive antibody tool to report on MRCKα status in tumor specimens. In a two-stage chemical carcinogenesis model of murine squamous cell carcinoma, topical treatments reduced MRCKα S1003 autophosphorylation and skin papilloma outgrowth. In parallel work, we validated a phospho-selective antibody with the capability to monitor drug pharmacodynamics. Taken together, our findings establish an important oncogenic role for MRCK in cancer, and they offer an initial preclinical proof of concept for MRCK inhibition as a valid therapeutic strategy.Significance: The development of selective small-molecule inhibitors of the Cdc42-binding MRCK kinases reveals their essential roles in cancer cell viability, migration, and invasive character. Cancer Res; 78(8); 2096-114. ©2018 AACR.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Squamous Cell/drug therapy , Drug Discovery , Myotonin-Protein Kinase/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Pyridines/therapeutic use , Pyrimidines/therapeutic use , Pyrroles/therapeutic use , Skin Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Squamous Cell/enzymology , Cell Line, Tumor , Disease Models, Animal , HEK293 Cells , Humans , Mice , Mice, Nude , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Skin Neoplasms/enzymology , Xenograft Model Antitumor Assays
8.
Oncol Rep ; 38(6): 3554-3566, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29039592

ABSTRACT

The objective of this study was to determine the effect of miR­29a­3p inhibitor on the migration and invasion of colorectal cancer cell lines (CRC) and the underlying molecular mechanisms. miR­29a­3p was detected using reverse transcription-quantitative polymerase chain reaction (RT­qPCR) in the CRC cell lines HCT11, CaCo2, HT29, SW480 and SW620. An invasive subpopulation designated SW480­7 was derived from the parental cell line, detected by Transwell and Transwell Matrigel assays. Cytoskeleton Regulators RT2 profiler PCR array and western blot analysis were utilized to identify the alterations in expression of downstream mRNAs. siRNA against CDC42BPA was transfected into SW480­7 and effects on cell migration and invasion were investigated. Data obtained showed that miR­29a­3p was detected in these five CRC cell lines. miR­29a­3p inhibitor had no effect on viability but stimulated cell migration and invasion of SW480­7 cells. In contrast, miR­29a­3p mimic suppressed cell migration and invasion. TargetScan miRBD and DIANA were employed to identify the potential direct target genes of miR­29a­3p in the Cytoskeleton Regulators RT2-Profiler PCR array. Cytoskeleton Regulators RT2-Profiler PCR array data showed that 3 out of the 5 predicted targets genes, CDC42BPA (2.33-fold), BAIAP2 (1.79-fold) and TIAM1 (1.77-fold), in the array were upregulated by miR­29a­3p. A significant increase in expression IQGAP2, PHLDB2, SSH1 mRNAs and downregulation of PAK1 mRNA was also detected with miR­29a­3p inhibition. Increase in CDC42BPA, SSH1 and IQGAP2 mRNA expression correlated with increased protein level in miR­29a­3p transfected SW-480-7 cells. Silencing of CDC42BPA (an enhancer of cell motility) partially abolished miR­29a­3p inhibitor-induced stimulation of cell migration and invasion. miR­29a­3p expression in stage II and III CRC is relatively lower than that of stage I CRC. However, the data need to be interpreted with caution due to the small sample size. In conclusion, inhibition of miR­29a­3p stimulates SW480­7 cell migration and invasion and downstream expression IQGAP2, PHLDB2, SSH1 mRNAs are upregulated whilst PAK1 mRNA is downregulated. Silencing of CDC42BPA expression partially reduces miR29a­3p inhibitor-induced migration and invasion of SW480­7 cells.


Subject(s)
Colorectal Neoplasms/genetics , MicroRNAs/genetics , Myotonin-Protein Kinase/genetics , Neoplasm Proteins/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Gene Silencing , HT29 Cells , Humans , Myotonin-Protein Kinase/antagonists & inhibitors , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , RNA, Small Interfering
9.
PLoS One ; 12(6): e0178931, 2017.
Article in English | MEDLINE | ID: mdl-28582438

ABSTRACT

Myotonic dystrophy type 1 (DM1) is a rare multisystemic disorder associated with an expansion of CUG repeats in mutant DMPK (dystrophia myotonica protein kinase) transcripts; the main effect of these expansions is the induction of pre-mRNA splicing defects by sequestering muscleblind-like family proteins (e.g. MBNL1). Disruption of the CUG repeats and the MBNL1 protein complex has been established as the best therapeutic approach for DM1, hence two main strategies have been proposed: targeted degradation of mutant DMPK transcripts and the development of CUG-binding molecules that prevent MBNL1 sequestration. Herein, suitable CUG-binding small molecules were selected using in silico approaches such as scaffold analysis, similarity searching, and druggability analysis. We used polarization assays to confirm the CUG repeat binding in vitro for a number of candidate compounds, and went on to evaluate the biological activity of the two with the strongest affinity for CUG repeats (which we refer to as compounds 1-2 and 2-5) in DM1 mutant cells and Drosophila DM1 models with an impaired locomotion phenotype. In particular, 1-2 and 2-5 enhanced the levels of free MBNL1 in patient-derived myoblasts in vitro and greatly improved DM1 fly locomotion in climbing assays. This work provides new computational approaches for rational large-scale virtual screens of molecules that selectively recognize CUG structures. Moreover, it contributes valuable knowledge regarding two compounds with desirable biological activity in DM1 models.


Subject(s)
Anabolic Agents/pharmacology , Benzamidines/pharmacology , Drosophila Proteins/antagonists & inhibitors , Myotonic Dystrophy/drug therapy , Myotonin-Protein Kinase/antagonists & inhibitors , Pyrimidines/pharmacology , Small Molecule Libraries/pharmacology , Alternative Splicing , Anabolic Agents/chemistry , Animals , Benzamidines/chemistry , Disease Models, Animal , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Drug Discovery , Humans , Locomotion/drug effects , Molecular Docking Simulation , Myoblasts/drug effects , Myoblasts/metabolism , Myoblasts/pathology , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , Myotonic Dystrophy/pathology , Myotonin-Protein Kinase/chemistry , Myotonin-Protein Kinase/genetics , Myotonin-Protein Kinase/metabolism , Primary Cell Culture , Pyrimidines/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Signal Transduction , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Trinucleotide Repeat Expansion/drug effects
10.
J Pharmacol Exp Ther ; 355(2): 329-40, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26330536

ABSTRACT

Myotonic dystrophy type 1 (DM1) is the most common form of muscular dystrophy in adults. DM1 is caused by an expanded CTG repeat in the 3'-untranslated region of DMPK, the gene encoding dystrophia myotonica protein kinase (DMPK). Antisense oligonucleotides (ASOs) containing 2',4'-constrained ethyl-modified (cEt) residues exhibit a significantly increased RNA binding affinity and in vivo potency relative to those modified with other 2'-chemistries, which we speculated could translate to enhanced activity in extrahepatic tissues, such as muscle. Here, we describe the design and characterization of a cEt gapmer DMPK ASO (ISIS 486178), with potent activity in vitro and in vivo against mouse, monkey, and human DMPK. Systemic delivery of unformulated ISIS 486718 to wild-type mice decreased DMPK mRNA levels by up to 90% in liver and skeletal muscle. Similarly, treatment of either human DMPK transgenic mice or cynomolgus monkeys with ISIS 486178 led to up to 70% inhibition of DMPK in multiple skeletal muscles and ∼50% in cardiac muscle in both species. Importantly, inhibition of DMPK was well tolerated and was not associated with any skeletal muscle or cardiac toxicity. Also interesting was the demonstration that the inhibition of DMPK mRNA levels in muscle was maintained for up to 16 and 13 weeks post-treatment in mice and monkeys, respectively. These results demonstrate that cEt-modified ASOs show potent activity in skeletal muscle, and that this attractive therapeutic approach warrants further clinical investigation to inhibit the gain-of-function toxic RNA underlying the pathogenesis of DM1.


Subject(s)
Myotonic Dystrophy/drug therapy , Myotonin-Protein Kinase/metabolism , Oligonucleotides, Antisense/pharmacology , Oligonucleotides/pharmacology , Animals , Cell Line , Humans , Macaca fascicularis , Male , Mice , Mice, Transgenic , Muscle, Skeletal/enzymology , Myotonin-Protein Kinase/antagonists & inhibitors , Myotonin-Protein Kinase/genetics , Oligonucleotides/chemistry , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
11.
Clin Transl Sci ; 8(4): 298-304, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26011798

ABSTRACT

Myotonic dystrophy type 1 (DM1) is caused by an expanded trinucleotide (CTG)n tract in the 3' untranslated region (UTR) of the dystrophia myotonica protein kinase (DMPK) gene. This results in the aggregation of an expanded mRNA forming toxic intranuclear foci which sequester splicing factors. We believe down-regulation of DMPK mRNA represents a potential, and as yet unexplored, DM1 therapeutic avenue. Consequently, a computational screen for agents which down-regulate DMPK mRNA was undertaken, unexpectedly identifying the sodium channel blockers mexiletine, prilocaine, procainamide, and sparteine as effective suppressors of DMPK mRNA. Analysis of DMPK mRNA in C2C12 myoblasts following treatment with these agents revealed a reduction in the mRNA levels. In vivo analysis of CD1 mice also showed DMPK mRNA and protein down-regulation. The role of DMPK mRNA suppression in the documented efficacy of this class of compounds in DM1 is worthy of further investigation.


Subject(s)
Myotonin-Protein Kinase/antagonists & inhibitors , RNA, Messenger/analysis , Sodium Channel Blockers/pharmacology , Animals , Cells, Cultured , Humans , Mice , Myotonin-Protein Kinase/analysis , Myotonin-Protein Kinase/genetics , Prilocaine/pharmacology
12.
Cell Commun Signal ; 12: 54, 2014 Oct 05.
Article in English | MEDLINE | ID: mdl-25288205

ABSTRACT

BACKGROUND: The myotonic dystrophy kinase-related CDC42-binding kinases MRCKα and MRCKß regulate actin-myosin contractility and have been implicated in cancer metastasis. Along with the related ROCK1 and ROCK2 kinases, the MRCK proteins initiate signalling events that lead to contractile force generation which powers cancer cell motility and invasion. A potential strategy for cancer therapy is to reduce metastasis by blocking MRCK activity, either alone or in combination with ROCK inhibition. However, to date no potent small molecule inhibitors have been developed with selectivity towards MRCK. RESULTS: Screening a kinase-focused small molecule chemical library resulted in the identification of compounds with inhibitory activity towards MRCK. Medicinal chemistry combined with in vitro enzyme profiling led to the discovery of 4-chloro-1-(4-piperidyl)-N-[5-(2-pyridyl)-1H-pyrazol-4-yl]pyrazole-3-carboxamide (BDP00005290; abbreviated as BDP5290) as a potent MRCK inhibitor. X-ray crystallography of the MRCKß kinase domain in complex with BDP5290 revealed how this ligand interacts with the nucleotide binding pocket. BDP5290 demonstrated marked selectivity for MRCKß over ROCK1 or ROCK2 for inhibition of myosin II light chain (MLC) phosphorylation in cells. While BDP5290 was able to block MLC phosphorylation at both cytoplasmic actin stress fibres and peripheral cortical actin bundles, the ROCK selective inhibitor Y27632 primarily reduced MLC phosphorylation on stress fibres. BDP5290 was also more effective at reducing MDA-MB-231 breast cancer cell invasion through Matrigel than Y27632. Finally, the ability of human SCC12 squamous cell carcinoma cells to invade a three-dimensional collagen matrix was strongly inhibited by 2 µM BDP5290 but not the identical concentration of Y27632, despite equivalent inhibition of MLC phosphorylation. CONCLUSIONS: BDP5290 is a potent MRCK inhibitor with activity in cells, resulting in reduced MLC phosphorylation, cell motility and tumour cell invasion. The discovery of this compound will enable further investigations into the biological activities of MRCK proteins and their contributions to cancer progression.


Subject(s)
Antineoplastic Agents/pharmacology , Myotonin-Protein Kinase/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyridines/pharmacology , Amides/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Humans , Myotonin-Protein Kinase/metabolism , Neoplasm Invasiveness , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/metabolism
13.
Curr Pharm Biotechnol ; 15(8): 727-37, 2014.
Article in English | MEDLINE | ID: mdl-25213310

ABSTRACT

Staphylococcus aureus is a leading causative agent in sepsis, endocarditis, and pneumonia. An emerging concept is that prognosis worsens when the infecting S. aureus strain has the capacity to not only colonize tissue as an extracellular pathogen, but to invade host cells and establish intracellular bacterial populations. In previous work, we identified host CDC42 as a central regulator of endothelial cell invasion by S. aureus. In the current work, we report that ML 141, a first-in-class CDC42 inhibitor, decreases invasion and resultant pathogenesis in a dose-dependent and reversible manner. Inhibition was found to be due in part to decreased remodeling of actin that potentially drives endocytic uptake of bacteria/fibronectin/integrin complexes. ML 141 decreased binding to fibronectin at these complexes, thereby limiting a key pathogenic mechanism used by S. aureus to invade. Structural analogs of ML 141 were synthesized (designated as the RSM series) and a subset identified that inhibit invasion through non-cytotoxic and non-bactericidal mechanisms. Our results support the development of adjunctive therapeutics targeting host CDC42 for mitigating invasive infection at the level of the host.


Subject(s)
Small Molecule Libraries/pharmacology , Staphylococcus aureus/drug effects , Bacterial Adhesion , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/microbiology , Humans , Myotonin-Protein Kinase/antagonists & inhibitors
14.
Cancer Lett ; 354(2): 299-310, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25172415

ABSTRACT

Two structurally related protein kinase families, the Rho kinases (ROCK) and the myotonic dystrophy kinase-related Cdc42-binding kinases (MRCK) are required for migration and invasion of cancer cells. We hypothesized that simultaneous targeting of these two kinase families might represent a novel therapeutic strategy to block the migration and invasion of metastatic cancers. To this end, we developed DJ4 as a novel small molecule inhibitor of these kinases. DJ4 potently inhibited activities of ROCK and MRCK in an ATP competitive manner. In cellular functional assays, DJ4 treatment significantly blocked stress fiber formation and inhibited migration and invasion of multiple cancer cell lines in a concentration dependent manner. Our results strongly indicate that DJ4 may be further developed as a novel anti-metastatic chemotherapeutic agent for multiple cancers.


Subject(s)
Myotonin-Protein Kinase/antagonists & inhibitors , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Thiazolidines/pharmacology , rho-Associated Kinases/antagonists & inhibitors , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/physiology , Humans , Neoplasm Invasiveness , Neoplasms/enzymology , Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...