Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.429
Filter
1.
Biomaterials ; 312: 122736, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39121728

ABSTRACT

The resurgence of influenza viruses as a significant global threat emphasizes the urgent need for innovative antiviral strategies beyond existing treatments. Here, we present the development and evaluation of a novel super-multivalent sialyllactosylated filamentous phage, termed t-6SLPhage, as a potent entry blocker for influenza A viruses. Structural variations in sialyllactosyl ligands, including linkage type, valency, net charge, and spacer length, were systematically explored to identify optimal binding characteristics against target hemagglutinins and influenza viruses. The selected SLPhage equipped with optimal ligands, exhibited exceptional inhibitory potency in in vitro infection inhibition assays. Furthermore, in vivo studies demonstrated its efficacy as both a preventive and therapeutic intervention, even when administered post-exposure at 2 days post-infection, under 4 lethal dose 50% conditions. Remarkably, co-administration with oseltamivir revealed a synergistic effect, suggesting potential combination therapies to enhance efficacy and mitigate resistance. Our findings highlight the efficacy and safety of sialylated filamentous bacteriophages as promising influenza inhibitors. Moreover, the versatility of M13 phages for surface modifications offers avenues for further engineering to enhance therapeutic and preventive performance.


Subject(s)
Antiviral Agents , Animals , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , Dogs , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/drug therapy , Influenza A virus/drug effects , Influenza A virus/physiology , Madin Darby Canine Kidney Cells , Inovirus/drug effects , Oseltamivir/pharmacology , Oseltamivir/chemistry , Mice , Influenza, Human/virology , Influenza, Human/drug therapy , Mice, Inbred BALB C , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/metabolism , Female
2.
Front Immunol ; 15: 1429302, 2024.
Article in English | MEDLINE | ID: mdl-39253089

ABSTRACT

Toxoplasmosis is a worldwide parasitosis that is usually asymptomatic; cell-mediated immunity, particularly T cells, is a crucial mediator of the immune response against this parasite. Membrane protein expression has been studied for a long time in T lymphocytes, providing vital information to determine functional checkpoints. However, less is known about the role of post-translational modifications in T cell function. Glycosylation plays essential roles during maturation and function; particularly, sialic acid modulation is determinant for accurate T cell regulation of processes like adhesion, cell-cell communication, and apoptosis induction. Despite its importance, the role of T cell sialylation during infection remains unclear. Herein, we aimed to evaluate whether different membrane sialylation motifs are modified in T cells during acute Toxoplasma gondii infection using different lectins. To this end, BALB/c Foxp3EGFP mice were infected with T. gondii, and on days 3, 7, and 10 post-infection, splenocytes were obtained to analyze conventional (Foxp3-) CD4+ and CD8+ populations by flow cytometry. Among the different lectins used for analysis, only Sambucus nigra lectin, which detects sialic acid α2,6 linkages, revealed two distinctive populations (SNBright and SN-/Dim) after infection. Further characterization of CD4+ and CD8+ SN-/Dim lymphocytes showed that these are highly activated cells, with a TEf/EM or TCM phenotype that produce high IFN-γ levels, a previously undescribed cell state. This work demonstrates that glycan membrane analysis in T cells reveals previously overlooked functional states by evaluating only protein expression.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Mice, Inbred BALB C , Toxoplasma , Toxoplasmosis , Animals , CD8-Positive T-Lymphocytes/immunology , Toxoplasma/immunology , Mice , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Toxoplasmosis/immunology , Toxoplasmosis/metabolism , N-Acetylneuraminic Acid/metabolism , Female
3.
FASEB J ; 38(15): e23856, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39092913

ABSTRACT

Merozoites utilize sialic acids on the red blood cell (RBC) cell surface to rapidly adhere to and invade the RBCs. Newcastle disease virus (NDV) displays a strong affinity toward membrane-bound sialic acids. Incubation of NDV with the malaria parasites dose-dependently reduces its cellular viability. The antiplasmodial activity of NDV is specific, as incubation with Japanese encephalitis virus, duck enteritis virus, infectious bronchitis virus, and influenza virus did not affect the parasite propagation. Interestingly, NDV is reducing more than 80% invasion when RBCs are pretreated with the virus. Removal of the RBC surface proteins or the NDV coat proteins results in disruption of the virus binding to RBC. It suggests the involvement of specific protein: ligand interaction in virus binding. We established that the virus engages with the parasitized RBCs (PRBCs) through its hemagglutinin neuraminidase (HN) protein by recognizing sialic acid-containing glycoproteins on the cell surface. Blocking of the HN protein with free sialic acid or anti-HN antibodies abolished the virus binding as well as its ability to reduce parasite growth. Interestingly, the purified HN from the virus alone could inhibit the parasite's growth in a dose-dependent manner. NDV binds strongly to knobless murine parasite strain Plasmodium yoelii and restricted the parasite growth in mice. Furthermore, the virus was found to preferentially target the PRBCs compared to normal erythrocytes. Immunolocalization studies reveal that NDV is localized on the plasma membrane as well as weakly inside the PRBC. NDV causes neither any infection nor aggregation of the human RBCs. Our findings suggest that NDV is a potential candidate for developing targeted drug delivery platforms for the Plasmodium-infected RBCs.


Subject(s)
Erythrocytes , N-Acetylneuraminic Acid , Newcastle disease virus , Newcastle disease virus/physiology , Newcastle disease virus/metabolism , Erythrocytes/parasitology , Erythrocytes/metabolism , Animals , N-Acetylneuraminic Acid/metabolism , Humans , Plasmodium yoelii/metabolism , Mice , HN Protein/metabolism , Malaria/parasitology , Malaria/metabolism
4.
Carbohydr Polym ; 343: 122471, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39174097

ABSTRACT

Sialylation, a crucial post-translational modification of glycoconjugates, entails the attachment of sialic acid (SA) to the terminal glycans of glycoproteins and glycolipids through a tightly regulated enzymatic process involving various enzymes. This review offers a comprehensive exploration of sialylation within the gut, encompassing its involvement in mucosal protection and its impact on disease progression. The sialylation of mucins and epithelial glycoproteins contributes to the integrity of the intestinal mucosal barrier. Furthermore, sialylation regulates immune responses in the gut, shaping interactions among immune cells, as well as their activation and tolerance. Additionally, the gut microbiota and gut-brain axis communication are involved in the role of sialylation in intestinal health. Altered sialylation patterns have been implicated in various intestinal diseases, including inflammatory bowel disease (IBD), colorectal cancer (CRC), and other intestinal disorders. Emerging research underscores sialylation as a promising avenue for diagnostic, prognostic, and therapeutic interventions in intestinal diseases. Potential strategies such as sialic acid supplementation, inhibition of sialidases, immunotherapy targeting sialylated antigens, and modulation of sialyltransferases have been utilized in the treatment of intestinal diseases. Future research directions will focus on elucidating the molecular mechanisms underlying sialylation alterations, identifying sialylation-based biomarkers, and developing targeted interventions for precision medicine approaches.


Subject(s)
Intestinal Mucosa , N-Acetylneuraminic Acid , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Animals , N-Acetylneuraminic Acid/metabolism , Gastrointestinal Microbiome , Sialyltransferases/metabolism , Mucins/metabolism , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/immunology
5.
Commun Biol ; 7(1): 1029, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169227

ABSTRACT

Several bacterial flagellins are O-glycosylated with nonulosonic acids on surface-exposed Serine/Threonine residues by Maf glycosyltransferases. The Clostridium botulinum Maf glycosyltransferase (CbMaf) displays considerable donor substrate promiscuity, enabling flagellin O-glycosylation with N-acetyl neuraminic acid (Neu5Ac) and 3-deoxy-D-manno-octulosonic acid in the absence of the native nonulosonic acid, a legionaminic acid derivative. Here, we have explored the sequence/structure attributes of the acceptor substrate, flagellin, required by CbMaf glycosyltransferase for glycosylation with Neu5Ac and KDO, by co-expressing C. botulinum flagellin constructs with CbMaf glycosyltransferase in an E. coli strain producing cytidine-5'-monophosphate (CMP)-activated Neu5Ac, and employing intact mass spectrometry analysis and sialic acid-specific flagellin biotinylation as readouts. We found that CbMaf was able to glycosylate mini-flagellin constructs containing shortened alpha-helical secondary structural scaffolds and reduced surface-accessible loop regions, but not non-cognate flagellin. Our experiments indicated that CbMaf glycosyltransferase recognizes individual Ser/Thr residues in their local surface-accessible conformations, in turn, supported in place by the secondary structural scaffold. Further, CbMaf glycosyltransferase also robustly glycosylated chimeric proteins constructed by grafting cognate mini-flagellin sequences onto an unrelated beta-sandwich protein. Our recombinant engineering experiments highlight the potential of CbMaf glycosyltransferase in future glycoengineering applications, especially for the neo-O-sialylation of proteins, employing E. coli strains expressing CMP-Neu5Ac (and not CMP-KDO).


Subject(s)
Clostridium botulinum , Flagellin , Glycosyltransferases , Substrate Specificity , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/chemistry , Flagellin/metabolism , Flagellin/genetics , Flagellin/chemistry , Clostridium botulinum/enzymology , Clostridium botulinum/metabolism , Clostridium botulinum/genetics , Glycosylation , Escherichia coli/genetics , Escherichia coli/metabolism , Sugar Acids/metabolism , Protein Engineering , N-Acetylneuraminic Acid/metabolism , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Sialic Acids
6.
Sci Rep ; 14(1): 18110, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39103477

ABSTRACT

Sepsis, a life-threatening syndrome, continues to be a significant public health issue worldwide. Sialylation is a hot potential marker that affects the surface of a variety of cells. However, the role of genes related to sialylation and sepsis has not been fully explored. Bulk RNA-seq data sets (GSE66099 and GSE65682) were obtained from the open-access databases GEO. The classification of sepsis samples into subtypes was achieved by employing the R package "ConsensusClusterPlus" on the bulk RNA-seq data. Hub genes were discerned through the application of the R package "limma" and univariate regression analysis, with the calculation of risk scores carried out using the R package "survminer". To identify the best learning method and construct a prognostic model, we used 21 different combinations of machine learning, and C-index ranking results of these combinations have been showed. ROC curves, time-dependent ROC curves, and Kaplan-Meier curves were utilized to evaluate the diagnostic accuracy of the model. The R packages "ESTIMATE" and "GSVA" were employed to quantify the fractions of immune cell infiltration in each sample. The bulk RNA-seq samples were categorized into two distinct sepsis subtypes utilizing 14 prognosis-related sialylation genes. A total of 20 differentially expressed genes (DEGs) were identified as being associated with the relationship between sepsis and sialylation. The RSF was used to identify key genes with importance scores higher than 0.01. The nine hub genes (SLA2A1, TMCC2, TFRC, RHAG, FKBP1B, KLF1, PILRA, ARL4A, and GYPA) with the importance values greater than 0.01 was selected for constructing the prognostic model. This research offers some understanding of the relationship between sepsis and sialylation. Besides, it contains one predictive model that might develop into diagnostic biomarkers for sepsis.


Subject(s)
Sepsis , Humans , Sepsis/genetics , Sepsis/diagnosis , Prognosis , Biomarkers , ROC Curve , Machine Learning , Gene Expression Profiling/methods , N-Acetylneuraminic Acid/metabolism , Kaplan-Meier Estimate
7.
Anal Chem ; 96(32): 13270-13277, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39093913

ABSTRACT

Epithelial-mesenchymal transition (EMT) is a complex process that plays a critical role in tumor progression. In this study, we present an EMT sensing panel for the classification of cancer cells at different EMT stages. This sensing panel consists of three types of fluorescent probes based on boronic acid-functionalized carbon-nitride nanosheet (BCN) derivatives. The selective response toward different EMT-associated biomarkers, namely, EpCAM, N-cadherin, and sialic acid (SA), was achieved by conjugating the corresponding antibodies to each BCN derivative, whereas the rare-earth-doping ensures simultaneous sensing of the three biomarkers with fluorescent emission of the three probes at different wavelengths. Sensitive sensing of the three biomarkers was achieved at the protein level with LODs reaching 1.35 ng mL-1 for EpCAM, 1.62 ng mL-1 for N-cadherin, and 1.54 ng mL-1 for SA. The selective response of these biomarkers on the cell surface also facilitated sensitive detection of MCF-7 cells and MDA-MB-231 cells with LODs of 2 cells/mL and 2 cells/mL, respectively. Based on the simultaneous sensing of the three biomarkers on cancer cells that underwent different extents of EMT, precise discrimination and classification of cells at various EMT stages were also achieved with an accuracy of 93.3%. This EMT sensing panel provided a versatile tool for monitoring the EMT evolution process and has the potential to be used for the evaluation of the EMT-targeting therapy and metastasis prediction.


Subject(s)
Biomarkers, Tumor , Cadherins , Epithelial-Mesenchymal Transition , Humans , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Cadherins/analysis , Cadherins/metabolism , Fluorescent Dyes/chemistry , Cell Line, Tumor , Epithelial Cell Adhesion Molecule/metabolism , MCF-7 Cells , Boronic Acids/chemistry , N-Acetylneuraminic Acid/analysis , N-Acetylneuraminic Acid/metabolism
8.
Microb Pathog ; 194: 106839, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39103126

ABSTRACT

Histophilus somni is an important pathogen of the bovine respiratory disease complex, yet the mechanisms underlying its virulence remain poorly understood. It is known that H. somni can incorporate sialic acid into lipooligosaccharide (LOS), and sialylated H. somni is more resistant to phagocytosis and complement-mediated killing by serum compared to non-sialylated bacteria in vitro. However, the virulence of non-sialylated H. somni has not been evaluated in vivo using an animal model. In this study, we investigated the contribution of sialic acid to virulence by constructing an H. somni sialic acid uptake mutant (ΔnanP-ΔnanU) and comparing the parent and mutant strains in a mouse septicemia and mortality model. Intraperitoneal challenge of mice with wildtype H. somni (1 × 108 colony forming units/mouse, CFU) was lethal to all animals. Mice challenged with three different doses (1, 2, or 5 × 108 CFU/mouse) of an H. somni ΔnanP-ΔnanU sialic acid uptake mutant exhibited survival rates of 90 %, 60 %, and 0 % respectively. High-performance anion exchange chromatography analyses revealed that LOS prepared from both parent and the ΔnanP-ΔnanU mutant strains of H. somni were sialylated. These findings suggest the presence of de novo sialic acid synthesis pathway, although the genes associated with de novo sialic acid synthesis (neuB and neuC) were not identified by genomic analysis. The lower attenuation in mice is most likely attributed to the sialylated LOS of H. somni nanPU mutant.


Subject(s)
Disease Models, Animal , Lipopolysaccharides , N-Acetylneuraminic Acid , Pasteurellaceae , Sepsis , Animals , Mice , N-Acetylneuraminic Acid/metabolism , Pasteurellaceae/genetics , Pasteurellaceae/pathogenicity , Pasteurellaceae/metabolism , Virulence/genetics , Sepsis/microbiology , Sepsis/mortality , Lipopolysaccharides/metabolism , Lipopolysaccharides/genetics , Female , Mutation , Cattle , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
9.
Viruses ; 16(8)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39205232

ABSTRACT

Bufaviruses (BuV) are members of the Parvoviridae of the Protoparvovirus genus. They are non-enveloped, T = 1 icosahedral ssDNA viruses isolated from patients exhibiting acute diarrhea. The lack of treatment options and a limited understanding of their disease mechanisms require studying these viruses on a molecular and structural level. In the present study, we utilize glycan arrays and cell binding assays to demonstrate that BuV1 capsid binds terminal sialic acid (SIA) glycans. Furthermore, using cryo-electron microscopy (cryo-EM), SIA is shown to bind on the 2/5-fold wall of the capsid surface. Interestingly, the capsid residues stabilizing SIA binding are conserved in all human BuVs identified to date. Additionally, biophysical assays illustrate BuV1 capsid stabilization during endo-lysosomal (pH 7.4-pH 4) trafficking and capsid destabilization at pH 3 and less, which correspond to the pH of the stomach. Hence, we determined the cryo-EM structures of BuV1 capsids at pH 7.4, 4.0, and 2.6 to 2.8 Å, 3.2 Å, and 2.7 Å, respectively. These structures reveal capsid structural rearrangements during endo-lysosomal escape and provide a potential mechanism for this process. The structural insights gained from this study will add to the general knowledge of human pathogenic parvoviruses. Furthermore, the identification of the conserved SIA receptor binding site among BuVs provides a possible targetable surface-accessible pocket for the design of small molecules to be developed as anti-virals for these viruses.


Subject(s)
Capsid Proteins , Capsid , Cryoelectron Microscopy , Endosomes , Humans , Hydrogen-Ion Concentration , Capsid/metabolism , Capsid/ultrastructure , Capsid/chemistry , Endosomes/virology , Endosomes/metabolism , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Parvoviridae Infections/virology , Parvoviridae Infections/metabolism , Protein Binding , Polysaccharides/metabolism , Polysaccharides/chemistry , N-Acetylneuraminic Acid/metabolism , N-Acetylneuraminic Acid/chemistry , Receptors, Virus/metabolism , Models, Molecular
10.
J Biotechnol ; 392: 180-189, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39038661

ABSTRACT

Sialylation during N-glycosylation plays an important role in the half-life of therapeutic glycoproteins in vivo and has sparked interest in the production of therapeutic proteins using recombinant Chinese hamster ovary (rCHO) cells. To improve the sialylation of therapeutic proteins, we examined the effect of sialyllactose supplementation on sialylation of Fc-fusion glycoproteins produced in rCHO cells. Two enzymatically-synthesized sialyllactoses, 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL), were administered separately to two rCHO cell lines producing the same Fc-fusion glycoprotein derived from DUKX-B11 and DG44, respectively. Two sialyllactoses successfully increased sialylation of Fc-fusion glycoprotein in both cell lines, as evidenced by isoform distribution, sialylated N-glycan formation, and sialic acid content. Increased sialylation by adding sialyllactose was likely the result of increased amount of intracellular CMP-sialic acid (CMP-SA), the direct nucleotide sugar for sialylation. Furthermore, the degree of sialylation enhanced by sialyllactoses was slightly effective or nearly similar compared with the addition of N-acetylmannosamine (ManNAc), a representative nucleotide sugar precursor, to increase sialylation of glycoproteins. The effectiveness of sialyllactose was also confirmed using three commercially available CHO cell culture media. Taken together, these results suggest that enzymatically-synthesized sialyllactose represents a promising candidate for culture media supplementation to increase sialylation of glycoproteins in rCHO cell culture.


Subject(s)
Cricetulus , Immunoglobulin Fc Fragments , Lactose , Animals , CHO Cells , Lactose/analogs & derivatives , Lactose/metabolism , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/metabolism , Cricetinae , Glycosylation , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Glycoproteins/metabolism , Glycoproteins/genetics , Culture Media/chemistry , Sialic Acids/metabolism , N-Acetylneuraminic Acid/metabolism , Oligosaccharides
11.
Sci Rep ; 14(1): 16568, 2024 07 17.
Article in English | MEDLINE | ID: mdl-39019950

ABSTRACT

Mucus stasis is a pathologic hallmark of muco-obstructive diseases, including cystic fibrosis (CF). Mucins, the principal component of mucus, are extensively modified with hydroxyl (O)-linked glycans, which are largely terminated by sialic acid. Sialic acid is a negatively charged monosaccharide and contributes to the biochemical/biophysical properties of mucins. Reports suggest that mucin sialylation may be altered in CF; however, the consequences of reduced sialylation on mucus clearance have not been fully determined. Here, we investigated the consequences of reduced sialylation on the charge state and conformation of the most prominent airway mucin, MUC5B, and defined the functional consequences of reduced sialylation on mucociliary transport (MCT). Reduced sialylation contributed to a lower charged MUC5B form and decreased polymer expansion. The inhibition of total mucin sialylation de novo impaired MCT in primary human bronchial epithelial cells and rat airways, and specific α-2,3 sialylation blockade was sufficient to recapitulate these findings. Finally, we show that ST3 beta-galactoside alpha-2,3-sialyltransferase (ST3Gal1) expression is downregulated in CF and partially restored by correcting CFTR via Elexacaftor/Tezacaftor/Ivacaftor treatment. Overall, this study demonstrates the importance of mucin sialylation in mucus clearance and identifies decreased sialylation by ST3Gal1 as a possible therapeutic target in CF and potentially other muco-obstructive diseases.


Subject(s)
Mucin-5B , Mucus , Humans , Animals , Mucin-5B/metabolism , Rats , Mucus/metabolism , Sialyltransferases/metabolism , N-Acetylneuraminic Acid/metabolism , Mucociliary Clearance , Respiratory Mucosa/metabolism , Cystic Fibrosis/metabolism , Mucins/metabolism , Epithelial Cells/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Bronchi/metabolism
12.
J Am Soc Mass Spectrom ; 35(8): 1692-1701, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39052897

ABSTRACT

Gangliosides play important roles in innate and adaptive immunity. The high degree of structural heterogeneity results in significant variability in ganglioside expression patterns and greatly complicates linking structure and function. Structural characterization at the site of infection is essential in elucidating host ganglioside function in response to invading pathogens, such as Staphylococcus aureus (S. aureus). Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) enables high-specificity spatial investigation of intact gangliosides. Here, ganglioside structural and spatial heterogeneity within an S. aureus-infected mouse kidney abscess was characterized. Differences in spatial distributions were observed for gangliosides of different classes and those that differ in ceramide chain composition and oligosaccharide-bound sialic acid. Furthermore, integrating trapped ion mobility spectrometry (TIMS) allowed for the gas-phase separation and visualization of monosialylated ganglioside isomers that differ in sialic acid type and position. The isomers differ in spatial distributions within the host-pathogen interface, where molecular patterns revealed new molecular zones in the abscess previously unidentified by traditional histology.


Subject(s)
Abscess , Gangliosides , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Staphylococcal Infections , Staphylococcus aureus , Animals , Gangliosides/chemistry , Gangliosides/analysis , Gangliosides/metabolism , Mice , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Staphylococcus aureus/chemistry , Staphylococcal Infections/microbiology , Abscess/microbiology , Kidney/chemistry , Kidney/microbiology , Kidney/metabolism , Ion Mobility Spectrometry/methods , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/analysis , N-Acetylneuraminic Acid/metabolism , Kidney Diseases/microbiology , Kidney Diseases/metabolism
13.
Front Endocrinol (Lausanne) ; 15: 1289653, 2024.
Article in English | MEDLINE | ID: mdl-38978616

ABSTRACT

Background: Type 1 (T1D) and type 2 (T2D) diabetes lead to an aberrant metabolism of sialoglycoconjugates and elevated free serum sialic acid (FSSA) level. The present study evaluated sialidase and sialyltranferase activities in serum and some organs relevant to diabetes at early and late stages of T1D and T2D. Methods: Sialic acid level with sialidase and sialyltransferase activities were monitored in the serum, liver, pancreas, skeletal muscle and kidney of diabetic animals at early and late stages of the diseases. Results: The FSSA and activity of sialidase in the serum were significantly increased at late stage of both T1D and T2D while sialic acid level in the liver was significantly decreased in the early and late stages of T1D and T2D, respectively. Furthermore, the activity of sialidase was significantly elevated in most of the diabetes-relevant organs while the activity of sialyltransferase remained largely unchanged. A multiple regression analysis revealed the contribution of the liver to the FSSA while pancreas and kidney contributed to the activity of sialidase in the serum. Conclusions: We concluded that the release of hepatic sialic acid in addition to pancreatic and renal sialidase might (in)directly contribute to the increased FSSA during both types of diabetes mellitus.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , N-Acetylneuraminic Acid , Neuraminidase , Sialyltransferases , Animals , Neuraminidase/metabolism , Sialyltransferases/metabolism , N-Acetylneuraminic Acid/metabolism , Diabetes Mellitus, Type 2/metabolism , Rats , Male , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/blood , Liver/metabolism , Liver/enzymology , Rats, Wistar , Pancreas/metabolism , Pancreas/enzymology , Kidney/metabolism , Muscle, Skeletal/metabolism
14.
PLoS Pathog ; 20(7): e1012371, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39052678

ABSTRACT

Sialoglycan-binding enveloped viruses often possess receptor-destroying activity to avoid being immobilized by non-functional decoy receptors. Sialic acid (Sia)-binding paramyxoviruses contain a hemagglutinin-neuraminidase (HN) protein that possesses both Sia-binding and -cleavage activities. The multivalent, dynamic receptor interactions of paramyxovirus particles provide virion motility and are a key determinant of host tropism. However, such multivalent interactions have not been exhaustively analyzed, because such studies are complicated by the low affinity of the individual interactions and the requirement of high titer virus stocks. Moreover, the dynamics of multivalent particle-receptor interactions are difficult to predict from Michaelis-Menten enzyme kinetics. Therefore, we here developed Ni-NTA nanoparticles that multivalently display recombinant soluble HN tetramers via their His tags (HN-NPs). Applying this HN-NP platform to Newcastle disease virus (NDV), we investigated using biolayer interferometry (BLI) the role of important HN residues in receptor-interactions and analyzed long-range effects between the catalytic site and the second Sia binding site (2SBS). The HN-NP system was also applicable to other paramyxoviruses. Comparative analysis of HN-NPs revealed and confirmed differences in dynamic receptor-interactions between type 1 human and murine parainfluenza viruses as well as of lab-adapted and clinical isolates of human parainfluenza virus type 3, which are likely to contribute to differences in tropism of these viruses. We propose this novel platform to be applicable to elucidate the dynamics of multivalent-receptor interactions important for host tropism and pathogenesis, particularly for difficult to grow sialoglycan-binding (paramyxo)viruses.


Subject(s)
HN Protein , Nanoparticles , Newcastle disease virus , Receptors, Virus , HN Protein/metabolism , HN Protein/genetics , Animals , Newcastle disease virus/metabolism , Newcastle disease virus/physiology , Newcastle disease virus/genetics , Receptors, Virus/metabolism , Humans , N-Acetylneuraminic Acid/metabolism
15.
IUCrJ ; 11(Pt 5): 664-674, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38965900

ABSTRACT

Sialic acids play crucial roles in cell surface glycans of both eukaryotic and prokaryotic organisms, mediating various biological processes, including cell-cell interactions, development, immune response, oncogenesis and host-pathogen interactions. This review focuses on the ß-anomeric form of N-acetylneuraminic acid (Neu5Ac), particularly its binding affinity towards various proteins, as elucidated by solved protein structures. Specifically, we delve into the binding mechanisms of Neu5Ac to proteins involved in sequestering and transporting Neu5Ac in Gram-negative bacteria, with implications for drug design targeting these proteins as antimicrobial agents. Unlike the initial assumptions, structural analyses revealed significant variability in the Neu5Ac binding pockets among proteins, indicating diverse evolutionary origins and binding modes. By comparing these findings with existing structures from other systems, we can effectively highlight the intricate relationship between protein structure and Neu5Ac recognition, emphasizing the need for tailored drug design strategies to inhibit Neu5Ac-binding proteins across bacterial species.


Subject(s)
N-Acetylneuraminic Acid , Protein Binding , N-Acetylneuraminic Acid/metabolism , N-Acetylneuraminic Acid/chemistry , Binding Sites , Gram-Negative Bacteria/metabolism , Humans , Drug Design , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry
16.
Sci Adv ; 10(29): eadk4920, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39018397

ABSTRACT

Conformational dynamics of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (S) mediate exposure of the binding site for the cellular receptor, angiotensin-converting enzyme 2 (ACE2). The N-terminal domain (NTD) of S binds terminal sialic acid (SA) moieties on the cell surface, but the functional role of this interaction in virus entry is unknown. Here, we report that NTD-SA interaction enhances both S-mediated virus attachment and ACE2 binding. Through single-molecule Förster resonance energy transfer imaging of individual S trimers, we demonstrate that SA binding to the NTD allosterically shifts the S conformational equilibrium, favoring enhanced exposure of the ACE2-binding site. Antibodies that target the NTD block SA binding, which contributes to their mechanism of neutralization. These findings inform on mechanisms of S activation at the cell surface.


Subject(s)
Angiotensin-Converting Enzyme 2 , N-Acetylneuraminic Acid , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , N-Acetylneuraminic Acid/metabolism , N-Acetylneuraminic Acid/chemistry , Binding Sites , Single Molecule Imaging , COVID-19/virology , COVID-19/metabolism , Allosteric Regulation , Virus Internalization , Fluorescence Resonance Energy Transfer , Protein Domains , Virus Attachment
17.
Cell Host Microbe ; 32(7): 1089-1102.e10, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38889725

ABSTRACT

Avian influenza A virus (IAV) surveillance in Northern California, USA, revealed unique IAV hemagglutinin (HA) genome sequences in cloacal swabs from lesser scaups. We found two closely related HA sequences in the same duck species in 2010 and 2013. Phylogenetic analyses suggest that both sequences belong to the recently discovered H19 subtype, which thus far has remained uncharacterized. We demonstrate that H19 does not bind the canonical IAV receptor sialic acid (Sia). Instead, H19 binds to the major histocompatibility complex class II (MHC class II), which facilitates viral entry. Unlike the broad MHC class II specificity of H17 and H18 from bat IAV, H19 exhibits a species-specific MHC class II usage that suggests a limited host range and zoonotic potential. Using cell lines overexpressing MHC class II, we rescued recombinant H19 IAV. We solved the H19 crystal structure and identified residues within the putative Sia receptor binding site (RBS) that impede Sia-dependent entry.


Subject(s)
Ducks , Hemagglutinin Glycoproteins, Influenza Virus , Histocompatibility Antigens Class II , Influenza A virus , Phylogeny , Receptors, Virus , Animals , Influenza A virus/genetics , Influenza A virus/immunology , Receptors, Virus/metabolism , Receptors, Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/genetics , Ducks/virology , Humans , Virus Internalization , Influenza in Birds/virology , Binding Sites , Protein Binding , Crystallography, X-Ray , Cell Line , N-Acetylneuraminic Acid/metabolism , Host Specificity , Species Specificity
18.
Clin Nephrol ; 102(2): 89-96, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38856027

ABSTRACT

INTRODUCTION: IgA nephropathy (IgAN) is a kidney disorder characterized by the deposition of circulating immune complexes of IgG bound to galactose-deficient IgA1 (Gd-IgA1) in the mesangial glomeruli. However, limited research has been conducted on the levels of IgA binding in relation to the various sialylation profiles of IgG in IgAN. MATERIALS AND METHODS: Sialylated IgG (SA-IgG) and desialylated IgG (DSA-IgG) were isolated from IgAN patients. The IgG-IgA immune complex (IgG-IgA-IC) was detected using two customized commercial ELISA kits. Additionally, IgG was enzymatically digested with neuraminidase to produce DSA-IgG. Subsequently, the binding capacities of both intact IgG and the neuraminidase-digested DSA-IgG with Gd-IgA1 were determined using ELISA kits. RESULTS: Our research revealed that SA-IgG levels were negatively correlated with Gd-IgA1 (R = -0.16, p = 0.03) in IgAN patients. The optical density (OD) levels of IgG-IgA complexes in SA-IgG samples were significantly lower (0.58 ± 0.09) compared to those in DSA-IgG samples (0.78 ± 0.12) when using the Gd-IgA1 assay kit. These results were confirmed using an IgG assay kit, which showed that the SA-IgG groups had significantly lower IgA indices (0.31 ± 0.12) compared to the DSA-IgG groups (0.57 ± 0.19). Furthermore, we investigated the binding capacity of IgG with different sialic acid levels to Gd-IgA1. The results revealed that neuraminidase digestion of IgG increased its propensity to bind to Gd-IgA1. Additionally, we examined the binding capacity of both intact IgG and DSA-IgG to Gd-IgA1 at different mix ratios (IgG 1.5 µg and Gd-IgA1 1.5 µg, IgG 1.5 µg and Gd-IgA1 3 µg, IgG 3 µg and Gd-IgA1 1.5 µg). Interestingly, DSA-IgG demonstrated significantly higher binding capacity to Gd-IgA1 compared to intact IgG at all mix ratios tested. CONCLUSION: The preliminary findings from our present study indicate that the binding level of IgA in purified sialylated IgG is lower than that in desialylated IgG.


Subject(s)
Glomerulonephritis, IGA , Immunoglobulin A , Immunoglobulin G , Humans , Glomerulonephritis, IGA/immunology , Glomerulonephritis, IGA/metabolism , Immunoglobulin A/metabolism , Immunoglobulin A/immunology , Immunoglobulin G/metabolism , Immunoglobulin G/immunology , Immunoglobulin G/blood , Male , Female , Adult , Middle Aged , Antigen-Antibody Complex/metabolism , Antigen-Antibody Complex/immunology , Young Adult , Enzyme-Linked Immunosorbent Assay , N-Acetylneuraminic Acid/metabolism , Neuraminidase/metabolism , Neuraminidase/immunology
19.
J Neuromuscul Dis ; 11(5): 905-917, 2024.
Article in English | MEDLINE | ID: mdl-38875046

ABSTRACT

Background: GNE Myopathy is a unique recessive neuromuscular disorder characterized by adult-onset, slowly progressive distal and proximal muscle weakness, caused by mutations in the GNE gene which is a key enzyme in the biosynthesis of sialic acid. To date, the precise pathophysiology of the disease is not well understood and no reliable animal model is available. Gne KO is embryonically lethal in mice. Objective: To gain insights into GNE function in muscle, we have generated an inducible muscle Gne KO mouse. To minimize the contribution of the liver to the availability of sialic acid to muscle via the serum, we have also induced combined Gne KO in liver and muscle. Methods: A mouse carrying loxp sequences flanking Gne exon3 was generated by Crispr/Cas9 and bred with a human skeletal actin (HSA) promoter driven CreERT mouse. Gne muscle knock out was induced by tamoxifen injection of the resulting homozygote GneloxpEx3loxp/HSA Cre mouse. Liver Gne KO was induced by systemic injection of AAV8 vectors carrying the Cre gene driven by the hepatic specific promoter of the thyroxine binding globulin gene. Results: Characterization of these mice for a 12 months period showed no significant changes in their general behaviour, motor performance, muscle mass and structure in spite of a dramatic reduction in sialic acid content in both muscle and liver. Conclusions: We conclude that post weaning lack of Gne and sialic acid in muscle and liver have no pathologic effect in adult mice. These findings could reflect a strong interspecies versatility, but also raise questions about the loss of function hypothesis in Gne Myopathy. If these findings apply to humans they have a major impact on therapeutic strategies.


Subject(s)
Disease Models, Animal , Liver , Mice, Knockout , Muscle, Skeletal , Animals , Mice , Muscle, Skeletal/metabolism , Liver/metabolism , Distal Myopathies/genetics , Distal Myopathies/metabolism , Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/metabolism , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , N-Acetylneuraminic Acid/metabolism
20.
Emerg Infect Dis ; 30(7): 1361-1373, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38861554

ABSTRACT

In March 2024, the US Department of Agriculture's Animal and Plant Health Inspection Service reported detection of highly pathogenic avian influenza (HPAI) A(H5N1) virus in dairy cattle in the United States for the first time. One factor that determines susceptibility to HPAI H5N1 infection is the presence of specific virus receptors on host cells; however, little is known about the distribution of the sialic acid (SA) receptors in dairy cattle, particularly in mammary glands. We compared the distribution of SA receptors in the respiratory tract and mammary gland of dairy cattle naturally infected with HPAI H5N1. The respiratory and mammary glands of HPAI H5N1-infected dairy cattle are rich in SA, particularly avian influenza virus-specific SA α2,3-gal. Mammary gland tissues co-stained with sialic acids and influenza A virus nucleoprotein showed predominant co-localization with the virus and SA α2,3-gal. HPAI H5N1 exhibited epitheliotropism within the mammary gland, and we observed rare immunolabeling within macrophages.


Subject(s)
Influenza A Virus, H5N1 Subtype , Mammary Glands, Animal , Orthomyxoviridae Infections , Receptors, Cell Surface , Animals , Cattle , Mammary Glands, Animal/virology , Female , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/genetics , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/veterinary , Receptors, Cell Surface/metabolism , Cattle Diseases/virology , Dairying , N-Acetylneuraminic Acid/metabolism , Receptors, Virus/metabolism , Influenza in Birds/virology
SELECTION OF CITATIONS
SEARCH DETAIL