ABSTRACT
Dronedarone (DRN) is a clinically used drug to mitigate arrhythmias with multichannel block properties, including the sodium channel Nav1.5. Extracellular acidification is known to change the pharmacological properties of several antiarrhythmic drugs. Here, we explore how modification in extracellular pH (pHe) shapes the pharmacological profile of DRN upon Nav1.5 sodium current (INa) and in the ex vivo heart preparation. Embryonic human kidney cells (HEK293T/17) were used to transiently express the human isoform of Nav1.5 α-subunit. Patch-Clamp technique was employed to study INa. Neurotoxin-II (ATX-II) was used to induce the late sodium current (INaLate). Additionally, ex vivo Wistar male rat preparations in the Langendorff system were utilized to study electrocardiogram (ECG) waves. DRN preferentially binds to the closed state inactivation mode of Nav1.5 at pHe 7.0. The recovery from INa inactivation was delayed in the presence of DRN in both pHe 7.0 and 7.4, and the use-dependent properties were distinct at pHe 7.0 and 7.4. However, the potency of DRN upon the peak INa, the voltage dependence for activation, and the steady-state inactivation curves were not altered in both pHe tested. Also, the pHe did not change the ability of DRN to block INaLate. Lastly, DRN in a concentration and pH dependent manner modulated the QRS complex, QT and RR interval in clinically relevant concentration. Thus, the pharmacological properties of DRN upon Nav1.5 and ex vivo heart preparation partially depend on the pHe. The pHe changed the biological effect of DRN in the heart electrical function in relevant clinical concentration.
Subject(s)
Anti-Arrhythmia Agents , Dronedarone , NAV1.5 Voltage-Gated Sodium Channel , Rats, Wistar , Humans , Hydrogen-Ion Concentration , Dronedarone/pharmacology , Animals , Male , HEK293 Cells , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Rats , Anti-Arrhythmia Agents/pharmacology , Heart/drug effects , Heart/physiology , Electrocardiography/drug effects , Action Potentials/drug effects , Extracellular Space/metabolism , Extracellular Space/drug effectsABSTRACT
BACKGROUND: Amiodarone (AMIO) is an antiarrhythmic drug with the pKa in the physiological range. Here, we explored how mild extracellular pH (pHe) changes shape the interaction of AMIO with atrial tissue and impact its pharmacological properties in the classical model of sea anemone sodium channel neurotoxin type 2 (ATX) induced late sodium current (INa-Late) and arrhythmias. METHOD: Isolated atrial cardiomyocytes from male Wistar rats and human embryonic kidney cells expressing SCN5A Na+ channels were used for patch-clamp experiments. Isolated right atria (RA) and left atria (LA) tissue were used for bath organ experiments. RESULTS: A more acidophilic pHe caused negative inotropic effects on isolated RA and LA atrial tissue, without modification of the pharmacological properties of AMIO. A pHe of 7.0 changed the sodium current (INa) related components of the action potential (AP), which was enhanced in the presence of AMIO. ATXinduced arrhythmias in isolated RA and LA. Also, ATX prolonged the AP duration and enhanced repolarization dispersion in isolated cardiomyocytes in both pHe 7.4 and pHe 7.0. Pre-incubation of the isolated RA and LA and isolated atrial cardiomyocytes with AMIO prevented arrhythmias induced by ATX only at a pHe of 7.0. Moreover, AMIO was able to block INa-Late induced by ATX only at a pHe of 7.0. CONCLUSION: The pharmacological properties of AMIO concerning healthy rat atrial tissue are not dependent on pHe. However, the prevention of arrhythmias induced by INa-Late is pHe-dependent. The development of drugs analogous to AMIO with charge stabilization may help to create more effective drugs to treat arrhythmias related to the INa-Late.
Subject(s)
Action Potentials , Amiodarone , Anti-Arrhythmia Agents , Arrhythmias, Cardiac , Heart Atria , Myocytes, Cardiac , Rats, Wistar , Animals , Amiodarone/pharmacology , Anti-Arrhythmia Agents/pharmacology , Male , Humans , Rats , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Action Potentials/drug effects , Heart Atria/drug effects , Heart Atria/metabolism , Hydrogen-Ion Concentration , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/chemically induced , NAV1.5 Voltage-Gated Sodium Channel/metabolism , HEK293 Cells , Sodium/metabolism , Patch-Clamp Techniques , Cnidarian Venoms/pharmacologyABSTRACT
INTRODUCTION: Cardiac arrest or arrhythmia caused by bupivacaine may be refractory to treatment. Apelin has been reported to directly increase the frequency of spontaneous activation and the propagation of action potentials, ultimately promoting cardiac contractility. This study aimed to investigate the effects of apelin-13 in reversing cardiac suppression induced by bupivacaine in rats. METHODS: A rat model of cardiac suppression was established by a 3-min continuous intravenous infusion of bupivacaine at the rate of 5 mg.kg-1.min-1, and serial doses of apelin-13 (50, 150 and 450 µg.kg-1) were administered to rescue cardiac suppression to identify its dose-response relationship. We used F13A, an inhibitor of Angiotensin Receptor-Like 1 (APJ), and Protein Kinase C (PKC) inhibitor chelerythrine to reverse the effects of apelin-13. Moreover, the protein expressions of PKC, Nav1.5, and APJ in ventricular tissues were measured using Western blotting and immunofluorescence assay. RESULTS: Compared to the control rats, the rats subjected to continuous intravenous administration of bupivacaine had impaired hemodynamic stability. Administration of apelin-13, in a dose-dependent manner, significantly improved hemodynamic parameters in rats with bupivacaine-induced cardiac suppression (p < 0.05), and apelin-13 treatment also significantly upregulated the protein expressions of p-PKC and Nav1.5 (p < 0.05), these effects were abrogated by F13A or chelerythrine (p < 0.05). CONCLUSION: Exogenous apelin-13, at least in part, activates the PKC signaling pathway through the apelin/APJ system to improve cardiac function in a rat model of bupivacaine-induced cardiac suppression.
Subject(s)
Bupivacaine , Cardiotoxicity , Intercellular Signaling Peptides and Proteins , Rats, Sprague-Dawley , Animals , Bupivacaine/toxicity , Rats , Male , Intercellular Signaling Peptides and Proteins/pharmacology , Intercellular Signaling Peptides and Proteins/administration & dosage , Cardiotoxicity/etiology , Cardiotoxicity/prevention & control , Protein Kinase C/metabolism , Dose-Response Relationship, Drug , Anesthetics, Local/pharmacology , Disease Models, Animal , NAV1.5 Voltage-Gated Sodium Channel/metabolism , NAV1.5 Voltage-Gated Sodium Channel/drug effects , Receptors, G-Protein-Coupled/drug effects , Receptors, G-Protein-Coupled/metabolism , Apelin Receptors , BenzophenanthridinesABSTRACT
BACKGROUND: The Brugada syndrome (BrS) is a heart rhythm condition that is commonly associated with a strong predisposition for sudden cardiac death. Malignant ventricular arrhythmias could occur secondary to the dysfunction of the cardiac sodium voltage-gated Na(v)1.5 channel (SCN5A). OBJECTIVE: This study aimed to perform a multiparametric computational analysis of the physicochemical properties of SCN5A mutants associated with BrS using a set of bioinformatics tools. METHODS: In-house algorithms were calibrated to calculate, in a double-blind test, the Polarity Index Method (PIM) profile and protein intrinsic disorder predisposition (PIDP) profile of each sequence, and computer programs specialized in the genomic analysis were used. RESULTS: Specific regularities in the charge/polarity and PIDP profile of the SCN5A mutant proteins enabled the re-creation of the taxonomy, allowing us to propose a bioinformatics method that takes advantage of the PIM profile to identify this group of proteins from their sequence. CONCLUSION: Bioinformatics programs could reproduce characteristic PIM and PIDP profiles of the BrS-related SCN5A mutant proteins. This information can contribute to a better understanding of these altered proteins.
Subject(s)
Brugada Syndrome , Humans , Brugada Syndrome/genetics , Brugada Syndrome/metabolism , Computational Biology , Electrocardiography/methods , Genetic Predisposition to Disease , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolismABSTRACT
BACKGROUND: Glutamate and voltage-gated sodium channels, both have been the target of intense investigation for its involvement in carcinogenesis and progression of malignant disease. Breast cancer with increased level of glutamate often metastasize to other organs (especially bone), whilst re-expression of 'neonatal' Nav1.5, nNav1.5 in breast cancer is known to promote cell invasion in vitro, metastasis in vivo and positive lymph node metastasis in patients. METHODS: In this study, the role of nNav1.5 in regulating glutamate level in human breast cancer cells was examined using pharmacological approach (VGSCs specific blocker, TTX, glutamate release inhibitor, riluzole and siRNA-nNav1.5). Effect of these agents were evaluated based on endogenous and exogenous glutamate concentration using glutamate fluorometric assay, mRNA expression of nNav1.5 using qPCR and finally, invasion using 3D culture assay. RESULTS: Endogenous and exogenous glutamate levels were significantly higher in aggressive human breast cancer cells, MDA-MB-231 cells compared to less aggressive human breast cancer cells, MCF-7 and non-cancerous human breast epithelial cells, MCF-10A. Treatment with TTX to MDA-MB-231 cells resulted in significant reduction of endogenous and exogenous glutamate levels corresponded with significant suppression of cell invasion. Subsequently, downregulation of nNav1.5 gene was observed in TTX-treated cells. CONCLUSIONS: An interesting link between nNav1.5 expression and glutamate level in aggressive breast cancer cells was detected and requires further investigation.
Subject(s)
Breast Neoplasms , Breast Neoplasms/genetics , Cell Line, Tumor , Female , Glutamic Acid , Humans , Infant, Newborn , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , RNA, Small InterferingABSTRACT
Abstract Background: Glutamate and voltage-gated sodium channels, both have been the target of intense investigation for its involvement in carcinogenesis and progression of malignant disease. Breast cancer with increased level of glutamate often metastasize to other organs (especially bone), whilst re-expression of 'neonatal' Nav1.5, nNav1.5 in breast cancer is known to promote cell invasion in vitro, metastasis in vivo and positive lymph node metastasis in patients. Methods: In this study, the role of nNav1.5 in regulating glutamate level in human breast cancer cells was examined using pharmacological approach (VGSCs specific blocker, TTX, glutamate release inhibitor, riluzole and siRNA-nNav1.5). Effect of these agents were evaluated based on endogenous and exogenous glutamate concentration using glutamate fluorometric assay, mRNA expression of nNav1.5 using qPCR and finally, invasion using 3D culture assay. Results: Endogenous and exogenous glutamate levels were significantly higher in aggressive human breast cancer cells, MDA-MB-231 cells compared to less aggressive human breast cancer cells, MCF-7 and non-cancerous human breast epithelial cells, MCF-10A. Treatment with TTX to MDA-MB-231 cells resulted in significant reduction of endogenous and exogenous glutamate levels corresponded with significant suppression of cell invasion. Subsequently, downregulation of nNav1.5 gene was observed in TTX-treated cells. Conclusions: An interesting link between nNav1.5 expression and glutamate level in aggressive breast cancer cells was detected and requires further investigation.
Subject(s)
Humans , Female , Infant, Newborn , Breast Neoplasms/genetics , Glutamic Acid , RNA, Small Interfering , Cell Line, Tumor , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolismABSTRACT
AIMS: Eugenol is a natural compound found in the essential oils of many aromatic plants. The compound is used as a local anesthetic because of its inhibitory effect on the voltage-gated Na+ channels (Nav), which are expressed in the nociceptive neurons. Eugenol has shown wide range of activities in the cardiovascular system; most of these activities are attributed to the modulation of voltage-sensitive Ca2+ channels. However, its action on Nav1.5, the main subtype of Nav expressed in the mammalian myocardium, is unknown. The interaction of eugenol with Nav1.5 could also contribute to its antiarrhythmic properties in vitro and ex vivo. We investigated the compound's effect on sodium current (INa) and its possible cardiac antiarrhythmic activity. METHODS: The effect of eugenol on cardiac contractility was investigated using isolated atrium from guinea pig (for isometric force measurements). The compound's effect on INa was evaluated using human embryonic cell transiently expressing human Nav1.5 and patch-clamp technique. KEY FINDINGS: Eugenol caused negative inotropic and chronotropic effects in the atria. In the ex vivo arrhythmia model, eugenol decreased atrial pacing disturbance induced by ouabain. Eugenol reduced the INa in a concentration-dependent manner. Furthermore, the compound left-shifted the stationary inactivation curve, delayed recovery from inactivation of the INa, and preferentially blocked the channel in the inactivated state. Importantly, eugenol was able to attenuate the late sodium current. All these aspects are considered to be antiarrhythmic. SIGNIFICANCE: Overall, our findings demonstrate that eugenol has antiarrhythmic activity due, at least in part, to its interaction with Nav1.5.
Subject(s)
Anti-Arrhythmia Agents/therapeutic use , Arrhythmias, Cardiac/drug therapy , Eugenol/therapeutic use , Heart/drug effects , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Animals , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Female , Guinea Pigs , HEK293 Cells , Heart/physiopathology , Humans , Male , Patch-Clamp TechniquesABSTRACT
AIMS: SCN5A gene encodes the α-subunit of Nav1.5, mainly found in the human heart. SCN5A variants are the most common genetic alterations associated with Brugada syndrome (BrS). In rare cases, compound heterozygosity is observed; however, its functional consequences are poorly understood. We aimed to analyze the functional impact of de novo Nav1.5 mutations in compound heterozygosity in distinct alleles (G400R and T1461S positions) previously found in a patient with BrS. Moreover, we evaluated the potential benefits of quinidine to improve the phenotype of mutant Na+ channels in vitro. MATERIALS AND METHODS: The functional properties of human wild-type and Nav1.5 variants were evaluated using whole-cell patch-clamp and immunofluorescence techniques in transiently expressed human embryonic kidney (HEK293) cells. KEY FINDINGS: Both variants occur in the highly conservative positions of SCN5A. Although all variants were expressed in the cell membrane, a significant reduction in the Na+ current density (except for G400R alone, which was undetected) was observed along with abnormal biophysical properties, once the variants were expressed in homozygosis and heterozygosis. Interestingly, the incubation of transfected cells with quinidine partially rescued the biophysical properties of the mutant Na+ channel. SIGNIFICANCE: De novo compound heterozygosis mutations in SNC5A disrupt the Na+ macroscopic current. Quinidine could partially reverse the in vitro loss-of-function phenotype of Na+ current. Thus, our data provide, for the first time, a detailed biophysical characterization of dysfunctional Na+ channels linked to compound heterozygosity in BrS as well as the benefits of the pharmacological treatment using quinidine on the biophysical properties of Nav1.5.
Subject(s)
Brugada Syndrome/genetics , Loss of Function Mutation , NAV1.5 Voltage-Gated Sodium Channel/genetics , Amino Acid Sequence , Brugada Syndrome/drug therapy , Brugada Syndrome/metabolism , HEK293 Cells , Heterozygote , Humans , Loss of Function Mutation/drug effects , NAV1.5 Voltage-Gated Sodium Channel/chemistry , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Point Mutation/drug effects , Quinidine/pharmacologyABSTRACT
Host genetic factors have been proposed as determinants of the variable progression of Chagas disease (ChD). Two polymorphisms, H558R and A572D, of the voltage-gated sodium channel α-subunit SCN5A gene were studied in chagasic patients in order to determine their contribution to the susceptibility to the development and/or to the progression of the cardiovascular disease. A total of 104 patients were classified as seronegative or seropositive for Trypanosoma cruzi antibodies. Clinical evaluation, electrocardiograms (ECG) and echocardiograms (Echo) were performed to detect any conduction and/or structural alteration. Patients were classified into: G1: without ECG and/or Echo alterations, G2: with ECG alterations and G3: with ECG and Echo alterations. H558R and A572D polymorphisms were detected by PCR. Cardiac alterations were more frequent in G2 + G3 seropositive patients. For H558R polymorphism, the C allele was significantly increased in seropositive G2 + G3 patients (P = 0.049. OR = 2.08; 95% CI = 1.12-4.33). When comparing the disease cardiac progression (G2 vs G3), the genotypes from the H558R polymorphism were associated to more intense cardiac alterations (P = 0.018). For A572D polymorphism, no associations were found. The results suggest a possible involvement of SCN5A polymorphisms in the susceptibility to chronic ChD and the disease progression, contributing to the elucidation of the molecular mechanism underlying this complex myocardiopathy. In this regard, this is the first work that studies this gene in the context of chagasic cardiomyopathy.
Subject(s)
Chagas Cardiomyopathy/genetics , NAV1.5 Voltage-Gated Sodium Channel/genetics , Polymorphism, Genetic , Adult , Aged , Argentina , Chagas Cardiomyopathy/pathology , Female , Genetic Markers/genetics , Humans , Male , Middle Aged , NAV1.5 Voltage-Gated Sodium Channel/metabolismABSTRACT
Long QT syndrome type 3 (LQT-3) is a disease related to abnormal cardiac sodium channel function (Nav 1.5), usually due to augmented late sodium current (INaL ), and may lead to ventricular fibrillation. Amiodarone is approved for ventricular fibrillation. Thus, we investigated whether pacing frequency impacts the ability of amiodarone to reverse the arrhythmic phenotype observed in LQT-3. Anemone neurotoxin 2 (ATX-II, here named only ATX) was used to enhance INaL in mice left ventricular myocytes (LVM). A video detector system monitored sarcomere shortening. At 1 Hz, amiodarone attenuated sarcomere shortening only at 10 µmol/L; at 3 and 5 Hz, 0.1 and 1 µmol/L amiodarone also reduced sarcomere shortening. However, no effect of amiodarone was observed on time to 50% of sarcomere contraction and relaxation. In LVM exposed to ATX (10 nmol/L), an arrhythmic phenotype was observed, and it was more severe when cells were paced at 1 Hz. Amiodarone failed to reverse the ATX induced phenotype at different pacing frequencies. Thus, our results suggest that amiodarone's ability to reverse arrhythmias induced by augmentation of INaL is limited. These findings suggest further experimentation will be required to clarify whether a clinical effect can be ascribed to an effect of amiodarone on other ion channels in LQT-3.
Subject(s)
Amiodarone/pharmacology , Cardiac Conduction System Disease/drug therapy , Long QT Syndrome/drug therapy , Myocytes, Cardiac/drug effects , Voltage-Gated Sodium Channel Blockers/pharmacology , Amiodarone/therapeutic use , Animals , Cardiac Conduction System Disease/chemically induced , Cardiac Conduction System Disease/physiopathology , Cells, Cultured , Cnidarian Venoms/pharmacology , Disease Models, Animal , Humans , Long QT Syndrome/chemically induced , Long QT Syndrome/physiopathology , Male , Mice , Myocytes, Cardiac/physiology , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Primary Cell Culture , Voltage-Gated Sodium Channel Blockers/therapeutic useABSTRACT
Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) resemble fetal cardiomyocytes and electrical stimulation (ES) has been explored to mature the differentiated cells. Here, we hypothesize that ES applied at the beginning of the differentiation process, triggers both differentiation of the hiPSC-CMs into a specialized conduction system (CS) phenotype and cell maturation. We applied ES for 15 days starting on day 0 of the differentiation process and found an increased expression of transcription factors and proteins associated with the development and function of CS including Irx3, Nkx2.5 and contactin 2, Hcn4 and Scn5a, respectively. We also found activation of intercalated disc proteins (Nrap and ß-catenin). We detected ES-induced CM maturation as indicated by increased Tnni1 and Tnni3 expression. Confocal micrographs showed a shift towards expression of the gap junction protein connexin 40 in ES hiPSC-CM compared to the more dominant expression of connexin 43 in controls. Finally, analysis of functional parameters revealed that ES hiPSC-CMs exhibited faster action potential (AP) depolarization, longer intracellular Ca2+ transients, and slower AP duration at 90% of repolarization, resembling fast conducting fibers. Altogether, we provided evidence that ES during the differentiation of hiPSC to cardiomyocytes lead to development of cardiac conduction-like cells with more mature cytoarchitecture. Thus, hiPSC-CMs exposed to ES during differentiation can be instrumental to develop CS cells for cardiac disease modelling, screening individual drugs on a precison medicine type platform and support the development of novel therapeutics for arrhythmias.
Subject(s)
Action Potentials/physiology , Calcium/metabolism , Induced Pluripotent Stem Cells/physiology , Myocytes, Cardiac/physiology , Biomarkers/metabolism , Cell Differentiation , Cell- and Tissue-Based Therapy/methods , Connexins/genetics , Connexins/metabolism , Contactin 2/genetics , Contactin 2/metabolism , Electric Stimulation , Gene Expression , Heart Conduction System/cytology , Heart Conduction System/physiology , Homeobox Protein Nkx-2.5/genetics , Homeobox Protein Nkx-2.5/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Induced Pluripotent Stem Cells/cytology , Muscle Proteins/genetics , Muscle Proteins/metabolism , Myocytes, Cardiac/cytology , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Potassium Channels/genetics , Potassium Channels/metabolism , Primary Cell Culture , Transcription Factors/genetics , Transcription Factors/metabolism , Troponin I/genetics , Troponin I/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Gap Junction alpha-5 ProteinABSTRACT
The mechanisms underlying atrial-selective prolongation of effective refractory period (ERP) and suppression of atrial fibrillation (AF) by NS8593 and UCL1684, small conductance calcium-activated potassium (SK) channel blockers, are poorly defined. The purpose of the study was to confirm the effectiveness of these agents to suppress AF and to probe the underlying mechanisms. Transmembrane action potentials and pseudoelectrocardiograms were recorded from canine isolated coronary-perfused canine atrial and ventricular wedge preparations. Patch clamp techniques were used to record sodium channel current (INa) in atrial and ventricular myocytes and human embryonic kidney cells. In both atria and ventricles, NS8593 (3-10 µM) and UCL1684 (0.5 µM) did not significantly alter action potential duration, suggesting little to no SK channel inhibition. Both agents caused atrial-selective: (1) prolongation of ERP secondary to development of postrepolarization refractoriness, (2) reduction of Vmax, and (3) increase of diastolic threshold of excitation (all are sodium-mediated parameters). NS8593 and UCL1684 significantly reduced INa density in human embryonic kidney cells as well as in atrial but not in ventricular myocytes at physiologically relevant holding potentials. NS8593 caused a shift of steady-state inactivation to negative potentials in atrial but not ventricular cells. NS8593 and UCL1684 prevented induction of acetylcholine-mediated AF in 6/6 and 8/8 preparations, respectively. This anti-AF effect was associated with strong rate-dependent depression of excitability. The SK channel blockers, NS8593 and UCL1684, are effective in preventing the development of AF due to potent atrial-selective inhibition of INa, causing atrial-selective prolongation of ERP secondary to induction of postrepolarization refractoriness.
Subject(s)
1-Naphthylamine/analogs & derivatives , Alkanes/pharmacology , Anti-Arrhythmia Agents/pharmacology , Atrial Fibrillation/prevention & control , Heart Atria/drug effects , Heart Rate/drug effects , Myocytes, Cardiac/drug effects , NAV1.5 Voltage-Gated Sodium Channel/drug effects , Quinolinium Compounds/pharmacology , Sodium Channel Blockers/pharmacology , 1-Naphthylamine/pharmacology , Action Potentials/drug effects , Animals , Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Dogs , Female , HEK293 Cells , Heart Atria/metabolism , Heart Atria/physiopathology , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Humans , Male , Myocytes, Cardiac/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Potassium Channel Blockers/pharmacology , Refractory Period, Electrophysiological/drug effects , Small-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Small-Conductance Calcium-Activated Potassium Channels/metabolismABSTRACT
An effective bacterial system for the production of ß-toxin Ts1, the main component of the Brazilian scorpion Tityus serrulatus venom, was developed. Recombinant toxin and its 15N-labeled analogue were obtained via direct expression of synthetic gene in Escherichia coli with subsequent folding from the inclusion bodies. According to NMR spectroscopy data, the recombinant toxin is structured in an aqueous solution and contains a significant fraction of ß-structure. The formation of a stable disulfide-bond isomer of Ts1, having a disordered structure, has also been observed during folding. Recombinant Ts1 blocks Na+ current through NaV1.5 channels without affecting the processes of activation and inactivation. At the same time, the effect upon NaV1.4 channels is associated with a shift of the activation curve towards more negative membrane potentials.
Subject(s)
Scorpion Venoms , Sodium Channel Blockers , Animals , Humans , Muscle Proteins/metabolism , NAV1.4 Voltage-Gated Sodium Channel/metabolism , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Secondary , Rats , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , Scorpion Venoms/biosynthesis , Scorpion Venoms/chemistry , Scorpion Venoms/isolation & purification , Scorpion Venoms/pharmacology , Sodium Channel Blockers/chemistry , Sodium Channel Blockers/isolation & purification , Sodium Channel Blockers/pharmacology , Sodium Channels/metabolism , Structure-Activity Relationship , Xenopus laevisABSTRACT
Inhaling solvents can lead to occurrence of cardiac arrhythmias and sudden sniffing death. Mechanisms related to this phenomenon are not fully understood. The purpose of this study was to investigate the effect of acute toluene exposure on heart reactivity to epinephrine and the participation of voltage-gated sodium and calcium channels. We found that acute toluene exposure increased perfusion pressure, left ventricular developed pressure, and heart rate. These actions were inhibited by lidocaine and nifedipine. Our results suggest that acute toluene exposure modify voltage-gated sodium and calcium channel function and expression likely due to a cardiac adrenergic mechanism and these effects could be participating, at least in part, in the presence of cardiac arrhythmias. To our best knowledge, this is the first report to establish a direct participation of voltage-gated Na+ and Ca2+ channels, toluene and epinephrine on cardiac function in rats.
Subject(s)
Calcium Channels, L-Type/metabolism , Heart Ventricles/drug effects , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Solvents/toxicity , Toluene/toxicity , Animals , Calcium Channels, L-Type/biosynthesis , Coronary Circulation/drug effects , Dose-Response Relationship, Drug , Epinephrine/pharmacology , Heart Function Tests , Heart Rate/drug effects , Heart Ventricles/metabolism , Inhalation Exposure , Male , NAV1.5 Voltage-Gated Sodium Channel/biosynthesis , Rats, WistarABSTRACT
The three-dimensional structures of the long-chain mammalian scorpion ß-toxin CssII from Centruroides suffusus suffusus and of its recombinant form, HisrCssII, were determined by NMR. The neurotoxin CssII (nCssII) is a 66 amino acid long peptide with four disulfide bridges; it is the most abundant and deadly toxin from the venom of this scorpion. Both native and recombinant CssII structures were determined by nuclear magnetic resonance using a total of 828 sequential distance constraints derived from the volume integration of the cross peaks observed in 2D NOESY spectra. Both nCssII and HisrCssII structures display a mixed α/ß fold stabilized by four disulfide bridges formed between pairs of cysteines: C1-C8, C2-C5, C3-C6, and C4-C7 (the numbers indicate the relative positions of the cysteine residues in the primary structure), with a distortion induced by two cis-prolines in its C-terminal part. The native CssII electrostatic surface was compared to both the recombinant one and to the Cn2 toxin, from the scorpion Centruroides noxius, which is also toxic to mammals. Structural features such N- and C-terminal differences could influence toxin specificity and affinity towards isoforms of different sub-types of Na(v) channels.