Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Gen Virol ; 105(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38687001

ABSTRACT

Nairoviridae is a family for negative-sense RNA viruses with genomes of about 17.2-21.1 kb. These viruses are maintained in and/or transmitted by arthropods among birds, reptiles and mammals. Norwaviruses and orthonairoviruses can cause febrile illness in humans. Several orthonairoviruses can infect mammals, causing mild, severe and sometimes, fatal diseases. Nairovirids produce enveloped virions containing two or three single-stranded RNA segments with open reading frames that encode a nucleoprotein (N), sometimes a glycoprotein precursor (GPC), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) report on the family Nairoviridae, which is available at www.ictv.global/report/nairoviridae.


Subject(s)
Genome, Viral , Animals , Humans , Open Reading Frames , Viral Proteins/genetics , Nairovirus/genetics , Nairovirus/classification , Nairovirus/isolation & purification , RNA, Viral/genetics , Phylogeny , Virion/ultrastructure , RNA-Dependent RNA Polymerase/genetics
2.
Emerg Microbes Infect ; 10(1): 1200-1208, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34044749

ABSTRACT

ABSTRACTSeveral nairo-like viruses have been discovered in ticks in recent years, but their relevance to public health remains unknown. Here, we found a patient who had a history of tick bite and suffered from a febrile illness was infected with a previously discovered RNA virus, Beiji nairovirus (BJNV), in the nairo-like virus group of the order Bunyavirales. We isolated the virus by cell culture assay. BJNV could induce cytopathic effects in the baby hamster kidney and human hepatocellular carcinoma cells. Negative-stain electron microscopy revealed enveloped and spherical viral particles, morphologically similar to those of nairoviruses. We identified 67 patients as BJNV infection in 2017-2018. The median age of patients was 48 years (interquartile range 41-53 years); the median incubation period was 7 days (interquartile range 3-12 days). Most patients were men (70%), and a few (10%) had underlying diseases. Common symptoms of infected patients included fever (100%), headache (99%), depression (63%), coma (63%), and fatigue (54%), myalgia or arthralgia (45%); two (3%) patients became critically ill and one died. BJNV could cause growth retardation, viremia and histopathological changes in infected suckling mice. BJNV was also detected in sheep, cattle, and multiple tick species. These findings demonstrated that the newly discovered nairo-like virus may be associated with a febrile illness, with the potential vectors of ticks and reservoirs of sheep and cattle, highlighting its public health significance and necessity of further investigation in the tick-endemic areas worldwide.


Subject(s)
Bunyaviridae Infections/virology , Communicable Diseases, Emerging/virology , Nairovirus , Tick-Borne Diseases/virology , Adult , Animals , Antibodies, Viral/blood , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/immunology , Bunyaviridae Infections/physiopathology , China/epidemiology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/immunology , Communicable Diseases, Emerging/physiopathology , Female , Fever , Genome, Viral , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Nairovirus/classification , Nairovirus/genetics , Nairovirus/immunology , Nairovirus/isolation & purification , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/immunology , Tick-Borne Diseases/physiopathology , Ticks/virology , Viremia
3.
Nat Med ; 27(3): 434-439, 2021 03.
Article in English | MEDLINE | ID: mdl-33603240

ABSTRACT

The genus Orthonairovirus, which is part of the family Nairoviridae, includes the important tick-transmitted pathogens Crimean-Congo hemorrhagic fever virus and Nairobi sheep disease virus, as well as many other poorly characterized viruses found in ticks, birds and mammals1,2. In this study, we identified a new orthonairovirus, Songling virus (SGLV), from patients who reported being bitten by ticks in Heilongjiang Province in northeastern China. SGLV shared similar genomic and morphological features with orthonairoviruses and phylogenetically formed a unique clade in Tamdy orthonairovirus of the Nairoviridae family. The isolated SGLV induced cytopathic effects in human hepatoma cells in vitro. SGLV infection was confirmed in 42 hospitalized patients analyzed between 2017 and 2018, with the main clinical manifestations being headache, fever, depression, fatigue and dizziness. More than two-thirds (69%) of patients generated virus-specific antibody responses in the acute phase. Taken together, these results suggest that this newly discovered orthonairovirus is associated with human febrile illness in China.


Subject(s)
Fever/complications , Nairovirus/isolation & purification , Nairovirus/pathogenicity , Tick-Borne Diseases/virology , Virus Diseases/virology , Adult , Aged , China , Female , Fever/virology , Humans , Male , Middle Aged , Tick-Borne Diseases/complications , Virus Diseases/complications
4.
Sci Rep ; 10(1): 22384, 2020 12 24.
Article in English | MEDLINE | ID: mdl-33361773

ABSTRACT

Bats have been gaining attention as potential reservoir hosts of numerous viruses pathogenic to animals and man. Issyk-Kul virus, a member of the family Nairoviridae, was first isolated in the 1970s from vespertilionid bats in Central Asia. Issyk-Kul virus has been described as human-pathogenic virus, causing febrile outbreaks in humans with headaches, myalgia and nausea. Here we describe the detection of a novel strain of Issyk-Kul virus from Eptesicus nilssonii in Germany. This finding indicates for the first time the prevalence of these zoonotic viruses in Europe.


Subject(s)
Chiroptera/virology , Nairovirus/classification , Nairovirus/isolation & purification , Animals , Germany
5.
Ticks Tick Borne Dis ; 11(5): 101448, 2020 09.
Article in English | MEDLINE | ID: mdl-32723637

ABSTRACT

We conducted orthonairovirus RNA screening of 7043 tick specimens-representing 16 species-collected from various regions of Anatolia. In 602 pools, Crimean-Congo hemorrhagic fever virus (CCHFV) Europe 1 and 2 lineages were detected in seven pools (1.1 %) comprising Hyalomma marginatum, Hyalomma scupense, Rhipicephalus bursa, Rhipicephalus sanguineus sensu lato and Rhipicephalus turanicus ticks. In pools of Hyalomma aegyptium, we detected Tamdy virus (TAMV) and an unclassified nairovirus sequence. Next-generation sequencing revealed complete coding regions of three CCHFV Europe 2 (AP92-like) viruses, TAMV and the novel orthonairovirus, tentatively named herein as Meram virus. We further performed in silico functional analysis of all available CCHFV Europe 2, TAMV, Meram and related virus genomes. The CCHFV Europe 2 viruses possessed several conserved motifs, including those with OTU-like cysteine protease activity. Probable recombinations were identified in L genome segments of CCHFV and TAMV. Through phylogeny reconstruction using individual genome segments, Meram virus emerged as a distinct virus among species within the Orthonairovirus genus. It further exhibited conserved motifs associated with RNA binding, encapsidation, signal peptidase cleavage, post-translational modification, RNA-dependent RNA polymerase and OTU-like activities. Bole tick virus 3 was also detected in two pools with CCHFV reactivity. Hereby, we describe a novel tick-associated orthonairovirus, in a CCHFV-endemic region with confirmed TAMV activity. Human and animal health impact of these viruses need to be addressed.


Subject(s)
Genome, Viral , Ixodidae/virology , Nairovirus/isolation & purification , Animals , Computer Simulation , Female , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever Virus, Crimean-Congo/isolation & purification , High-Throughput Nucleotide Sequencing , Ixodidae/growth & development , Larva/growth & development , Larva/virology , Male , Nairovirus/classification , Nairovirus/genetics , Nymph/growth & development , Nymph/virology , Phylogeny , Rhipicephalus/growth & development , Rhipicephalus/virology , Turkey
6.
Vopr Virusol ; 64(5): 221-228, 2019.
Article in Russian | MEDLINE | ID: mdl-32167687

ABSTRACT

INTRODUCTION: There are natural foci of Crimean-Congo hemorrhagic fever (CCHF) that vectored by Hyalomma marginatum ticks in Volga river delta (Astrakhan region, South of Russia). The circulation of Dhori virus (DHOV) (Thogotovirus: Orthomyxoviridae) has been also shown here. We hypothesized that other tick-borne arboviruses are also likely to circulate in the region. In particular, Bhanja virus (Phlebovirus: Phenuiviridae), Wad Medani virus (Orbivirus: Reoviridae), and Tamdy virus (Orthonairovirus: Nairoviridae), which were found to circulate in neighboring regions and are vectored by Haemaphysalis spp., Dermacenter spp., and Hyalomma spp. ticks. OBJECTIVES: The aim of the study was to examine ixodid ticks in Volga river delta for the presence of CCHFV, DHOV, Bhanja virus, Wad Medani virus, and Tamdy virus. MATERIAL AND METHODS: Ticks were collected in Volga river delta in 2017. We used molecular genetic methods for the detection and analysis of nucleic acids (PCR, sequencing, phylogenetic analysis). RESULTS: We detect CCHFV and DHOV RNA in H. marginatum ticks. The rate of infected H. marginatum ticks was 1.98% for CCHFV and 0.4% for DHOV. The results of genetic analysis showed that found DHOV strains are almost identical (99-100% in the M gene) and forms a separate genetic lineage alongside of Batken virus from Central Asia. At the same time, Bhanja virus, Wad Medani virus, and Tamdy virus were not found in ticks, collected in this region. CONCLUSIONS: DHOV is circulating in the natural foci of CCHF in the Volga river delta. The ratio of infection of H. marginatum with CCHFV and DHOV was determined for the first time.


Subject(s)
Arachnid Vectors/virology , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Ixodidae/virology , Nairovirus/genetics , Orbivirus/genetics , Phlebovirus/genetics , Animals , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/transmission , Bunyaviridae Infections/virology , Epidemiological Monitoring , Hemorrhagic Fever Virus, Crimean-Congo/classification , Hemorrhagic Fever Virus, Crimean-Congo/isolation & purification , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/transmission , Hemorrhagic Fever, Crimean/virology , Humans , Nairovirus/classification , Nairovirus/isolation & purification , Orbivirus/classification , Orbivirus/isolation & purification , Phlebovirus/classification , Phlebovirus/isolation & purification , Phylogeny , RNA, Viral/genetics , Reoviridae Infections/epidemiology , Reoviridae Infections/transmission , Reoviridae Infections/virology , Reverse Transcriptase Polymerase Chain Reaction , Rivers , Russia/epidemiology
7.
Ticks Tick Borne Dis ; 10(2): 269-279, 2019 02.
Article in English | MEDLINE | ID: mdl-30448254

ABSTRACT

Paramushir virus belongs to Sakhalin virus genogroup within Orthonairovirus genus and is one of the poorly studied viruses with unknown pathogenicity. At the moment, only one nearly complete sequence of Paramushir virus genome, isolated in 1972, is available. Two new strains of PARV were isolated in 2015 from a sample collected at the Tyuleniy Island in the Okhotsk Sea and sequenced using a combination of high throughput sequencing and specific multiplex PCR. Both strains are closely related to the early sequenced PARV strain LEIV-1149 K. The signs of intersegment reassortment and probable recombination were revealed, which point to a high variability potential of Paramushir virus and may lead to the formation of strains with novel properties, different from those of the predecessors. The new data regarding Paramushir virus can promote a better understanding of the diversity and relations within Orthonairovirus genus and help define intragenic demarcation criteria, which have not yet been established.


Subject(s)
Nairovirus/genetics , Phylogeny , Ticks/virology , Animals , Genome, Viral , High-Throughput Nucleotide Sequencing , Islands , Multiplex Polymerase Chain Reaction , Nairovirus/isolation & purification , RNA, Viral/isolation & purification , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Recombination, Genetic , Russia
8.
Viruses ; 9(12)2017 12 05.
Article in English | MEDLINE | ID: mdl-29206186

ABSTRACT

This report describes the near complete genomic sequence and subsequent analysis of Vinegar Hill virus (VINHV; tentative member of the genus Orthonairovirus, family Nairoviridae, order Bunyavirales). VINHV is the second nairovirus reported to be isolated on mainland Australia and the first to be sequenced and analysed. Our genetic analysis shows that VINHV belongs to the Dera Ghazi Khan genogroup, a group of viruses previously isolated in other parts of the world including Asia, South Africa, and the USA. We discuss possible routes of entry for nairoviruses into Australia and the need to understand the virome of Australian ticks in the context of new and emerging disease.


Subject(s)
Genome, Viral , Nairovirus/genetics , Animals , Australia , Nairovirus/classification , Nairovirus/isolation & purification , Phylogeny , Sequence Analysis, DNA , Sequence Homology , Ticks/virology
9.
Sci Rep ; 7(1): 12234, 2017 09 25.
Article in English | MEDLINE | ID: mdl-28947798

ABSTRACT

An increasing number of emerging tick-borne diseases has been reported in the United States since the 1970s. Using metagenomic next generation sequencing, we detected nucleic acid sequences from 2 novel viruses in the family Bunyaviridae and an emerging human rickettsial pathogen, Rickettsia philipii, in a population of the Pacific Coast tick, Dermacentor occidentalis in Mendocino County sampled annually from 2011 to 2014. A total of 250 adults of this human-biting, generalist tick were collected from contiguous chaparral and grassland habitats, and RNA from each individually extracted tick was deep sequenced to an average depth of 7.3 million reads. We detected a Francisella endosymbiont in 174 ticks (70%), and Rickettsia spp. in 19 ticks (8%); Rickettsia-infected ticks contained R. rhipicephali (16 of 250, 6.4%) or R. philipii (3 of 250,1.2%), the agent of eschar-associated febrile illness in humans. The genomes of 2 novel bunyaviruses (>99% complete) in the genera Nairovirus and Phlebovirus were also identified and found to be present in 20-91% of ticks, depending on the year of collection. The high prevalence of these bunyaviruses in sampled Dermacentor ticks suggests that they may be viral endosymbionts, although further studies are needed to determine whether they are infectious for vertebrate hosts, especially humans, and their potential role in tick ecology.


Subject(s)
Dermacentor/microbiology , Dermacentor/virology , Metagenomics , Nairovirus/isolation & purification , Phlebovirus/isolation & purification , Rickettsia/isolation & purification , Animals , California , Epidemiological Monitoring , High-Throughput Nucleotide Sequencing , Nairovirus/classification , Nairovirus/genetics , Phlebovirus/classification , Phlebovirus/genetics , Prevalence , Rickettsia/classification , Rickettsia/genetics
10.
Viruses ; 8(6)2016 06 10.
Article in English | MEDLINE | ID: mdl-27294949

ABSTRACT

Nairovirus, one of five bunyaviral genera, includes seven species. Genomic sequence information is limited for members of the Dera Ghazi Khan, Hughes, Qalyub, Sakhalin, and Thiafora nairovirus species. We used next-generation sequencing and historical virus-culture samples to determine 14 complete and nine coding-complete nairoviral genome sequences to further characterize these species. Previously unsequenced viruses include Abu Mina, Clo Mor, Great Saltee, Hughes, Raza, Sakhalin, Soldado, and Tillamook viruses. In addition, we present genomic sequence information on additional isolates of previously sequenced Avalon, Dugbe, Sapphire II, and Zirqa viruses. Finally, we identify Tunis virus, previously thought to be a phlebovirus, as an isolate of Abu Hammad virus. Phylogenetic analyses indicate the need for reassignment of Sapphire II virus to Dera Ghazi Khan nairovirus and reassignment of Hazara, Tofla, and Nairobi sheep disease viruses to novel species. We also propose new species for the Kasokero group (Kasokero, Leopards Hill, Yogue viruses), the Ketarah group (Gossas, Issyk-kul, Keterah/soft tick viruses) and the Burana group (Wenzhou tick virus, Huángpí tick virus 1, Tǎchéng tick virus 1). Our analyses emphasize the sister relationship of nairoviruses and arenaviruses, and indicate that several nairo-like viruses (Shayáng spider virus 1, Xinzhou spider virus, Sanxiá water strider virus 1, South Bay virus, Wǔhàn millipede virus 2) require establishment of novel genera in a larger nairovirus-arenavirus supergroup.


Subject(s)
Genetic Variation , Genome, Viral , Nairovirus/classification , Nairovirus/genetics , Phylogeny , Animals , Cluster Analysis , High-Throughput Nucleotide Sequencing , Nairovirus/isolation & purification , RNA, Viral/genetics , Sequence Analysis, DNA , Sequence Homology
11.
Am J Trop Med Hyg ; 93(5): 1041-51, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26324724

ABSTRACT

The genus Nairovirus of arthropod-borne bunyaviruses includes the important emerging human pathogen, Crimean-Congo hemorrhagic fever virus (CCHFV), as well as Nairobi sheep disease virus and many other poorly described viruses isolated from mammals, birds, and ticks. Here, we report genome sequence analysis of six nairoviruses: Thiafora virus (TFAV) that was isolated from a shrew in Senegal; Yogue (YOGV), Kasokero (KKOV), and Gossas (GOSV) viruses isolated from bats in Senegal and Uganda; Issyk-Kul virus (IKV) isolated from bats in Kyrgyzstan; and Keterah virus (KTRV) isolated from ticks infesting a bat in Malaysia. The S, M, and L genome segments of each virus were found to encode proteins corresponding to the nucleoprotein, polyglycoprotein, and polymerase protein of CCHFV. However, as observed in Leopards Hill virus (LPHV) and Erve virus (ERVV), polyglycoproteins encoded in the M segment lack sequences encoding the double-membrane-spanning CCHFV NSm protein. Amino acid sequence identities, complement-fixation tests, and phylogenetic analysis indicated that these viruses cluster into three groups comprising KKOV, YOGV, and LPHV from bats of the suborder Yingochiroptera; KTRV, IKV, and GOSV from bats of the suborder Yangochiroptera; and TFAV and ERVV from shrews (Soricomorpha: Soricidae). This reflects clade-specific host and vector associations that extend across the genus.


Subject(s)
Bunyaviridae Infections/virology , Chiroptera/virology , Genome, Viral/genetics , Nairovirus/genetics , Shrews/virology , Ticks/virology , Amino Acid Sequence , Animals , Base Sequence , Bunyaviridae Infections/epidemiology , Genomics , Humans , Kyrgyzstan/epidemiology , Malaysia/epidemiology , Nairovirus/classification , Nairovirus/isolation & purification , Nucleoproteins/genetics , Phylogeny , Senegal/epidemiology , Sequence Alignment , Sequence Analysis, DNA , Uganda/epidemiology , Viral Proteins/genetics
12.
PLoS One ; 10(3): e0121609, 2015.
Article in English | MEDLINE | ID: mdl-25799057

ABSTRACT

Besides mosquitoes, ticks are regarded as the primary source of vector-borne infectious diseases. Indeed, a wide variety of severe infectious human diseases, including those involving viruses, are transmitted by ticks in many parts of the world. To date, there are no published reports on the use of next-generation sequencing for studying viral diversity in ticks or discovering new viruses in these arthropods from China. Here, Ion-torrent sequencing was used to investigate the presence of viruses in three Rhipicephalus spp. tick pools (NY-11, NY-13, and MM-13) collected from the Menglian district of Yunnan, China. The sequencing run resulted in 3,641,088, 3,106,733, and 3,871,851 reads in each tick pool after trimming. Reads and assembled contiguous sequences (contigs) were subject to basic local alignment search tool analysis against the GenBank database. Large numbers of reads and contigs related to known viral sequences corresponding to a broad range of viral families were identified. Some of the sequences originated from viruses that have not been described previously in ticks. Our findings will facilitate better understanding of the tick virome, and add to our current knowledge of disease-causing viruses in ticks living under natural conditions.


Subject(s)
Arachnid Vectors/virology , Genome, Viral , Metagenomics , Rhipicephalus/virology , Anelloviridae/genetics , Anelloviridae/isolation & purification , Animals , Bacteriophages/genetics , Bacteriophages/isolation & purification , China , High-Throughput Nucleotide Sequencing , Nairovirus/genetics , Nairovirus/isolation & purification , Phylogeny , Plant Viruses/genetics , Plant Viruses/isolation & purification , Rhabdoviridae/genetics , Rhabdoviridae/isolation & purification , Rhipicephalus/classification , Rhipicephalus/genetics
13.
Nat Commun ; 5: 5651, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25451856

ABSTRACT

Bats can carry important zoonotic pathogens. Here we use a combination of next-generation sequencing and classical virus isolation methods to identify novel nairoviruses from bats captured from a cave in Zambia. This nairovirus infection is highly prevalent among giant leaf-nosed bats, Hipposideros gigas (detected in samples from 16 individuals out of 38). Whole-genome analysis of three viral isolates (11SB17, 11SB19 and 11SB23) reveals a typical bunyavirus tri-segmented genome. The strains form a single phylogenetic clade that is divergent from other known nairoviruses, and are hereafter designated as Leopards Hill virus (LPHV). When i.p. injected into mice, the 11SB17 strain causes only slight body weight loss, whereas 11SB23 produces acute and lethal disease closely resembling that observed with Crimean-Congo Haemorrhagic Fever virus in humans. We believe that our LPHV mouse model will be useful for research on the pathogenesis of nairoviral haemorrhagic disease.


Subject(s)
Chiroptera/virology , Gastroenteritis/virology , Gastrointestinal Hemorrhage/virology , Hemorrhagic Fever, Crimean/virology , Hepatitis, Viral, Animal/virology , Nairovirus/genetics , RNA, Viral/analysis , Animals , Base Sequence , Disease Models, Animal , Mice , Molecular Sequence Data , Nairovirus/isolation & purification
14.
Vopr Virusol ; 59(3): 18-23, 2014.
Article in Russian | MEDLINE | ID: mdl-25335414

ABSTRACT

Full-length genome of the Chim virus (CHIMV) (strain LEIV-858Uz) was sequenced using the next-generation sequencing approach (ID GenBank: KF801656). The CHIMV/LEIV-858Uz was isolated from the Ornithodoros tartakovskyi Olenev, 1931 ticks collected in the great gerbil (Rhombomys opimus Lichtenstein, 1823) burrow in Uzbekistan near Chim town (Kashkadarinsky region) in July of 1971. Later, four more CHIMV strains were isolated from the O. tartakovskyi, O. papillipes Birula, 1895, Rhipicephalus turanicus Pomerantsev, 1936 collected in the great gerbil burrows in Kashkadarinsky, Bukhara, and Syrdarya regions of Uzbekistan, and three strains--from the Hyalomma asiaticum Schulze et Schlottke, 1930 from the great gerbil burrows in Dzheskazgan region of Kazakhstan. The virus is a potential pathogen of humans and camels. The phylogenetic analysis revealed that the CHIMV is a novel member of the Nairovirus genus (Bunyaviridae) and closely related to the Qalyub virus (QYBV), which is prototype for the group of the same name. The amino acid homology between the CHIMV and QYBV is 87% for the RdRp catalytic center (L-segment) that is coincident with both QYBV and CHIMV associated with the Ornithodoros ticks and burrow of rodents as well. The CHIMV homologies with other nairoviruses are 30-40% for the amino acid sequences of precursor polyprotein GnGc (M-segment), whereas 50%--for the nucleocapsid N (S-segment). The data obtained permit to classify the CHIMV as a member of the QYBV group in the genus of Nairovirus (Bunyaviridae).


Subject(s)
Argasidae/virology , Bunyaviridae Infections/veterinary , Genome, Viral , Gerbillinae/virology , Ixodes/virology , Nairovirus/classification , Phylogeny , Rodent Diseases/virology , Amino Acid Sequence , Animals , Base Sequence , Bunyaviridae Infections/virology , Gerbillinae/parasitology , Kazakhstan , Molecular Sequence Data , Nairovirus/genetics , Nairovirus/isolation & purification , RNA-Dependent RNA Polymerase/genetics , Sequence Homology, Amino Acid , Uzbekistan
15.
Vopr Virusol ; 59(3): 11-7, 2014.
Article in Russian | MEDLINE | ID: mdl-25335413

ABSTRACT

Full-length genomes of the Sakhalin virus (SAKH) and Paramushir virus (PRMV) (Sakhalin group, Nairovirus, Bunyaviridae) isolated from the ticks Ixodes uriae White 1852 were sequenced using the next-generation sequencing (Genbank ID: KF801659, KF801656). SAKV and PRMV have 81% identity for the part of RNA-dependent RNA-polymerase (RdRp) on the nucleotide level and 98.5% on the amino acid level. Full-length genome comparison shows that SAKV have, in average, from 25% (N-protein, S-segment) to 50% (RdRp, L-segment) similarity with the nairoviruses. The maximum value of the amino acid similarity (50.3% for RdRp) SAKV have with the Crimean-Congo hemorrhagic fever virus (CCHFV) and Dugbe virus (DUGV), which are also associated with the Ixodidae ticks. Another virus studied is Rukutama virus (RUKV) (isolated from ticks I. signatus Birulya, 1895) that recently was classified (based on morphology and antigenic reaction) to the Nairovirus genus, presumably to the Sakhalin group. In this work the genome of the RUKV was sequenced (KF892052-KF892054) and RUKV was classified as a member of the Uukuniemi group (Phlebovirus, Bunyaviridae). RUKV is closely related (93.0-95.5% similarity) with our previously described Komandory virus (KOMV). RUKV and KOMV form separate phylogenetic line neighbor of Manawa virus (MWAV) isolated from the ticks Argas abdussalami Hoogstraal et McCarthy, 1965 in Pakistan. The value of the similarity between RUCV and MWAV is 65-74% on the amino acid level.


Subject(s)
Bird Diseases/virology , Birds/virology , Bunyaviridae Infections/veterinary , Genome, Viral , Ixodes/virology , Nairovirus/genetics , Phlebovirus/genetics , Amino Acid Sequence , Animals , Base Sequence , Birds/parasitology , Bunyaviridae Infections/virology , Molecular Sequence Data , Nairovirus/classification , Nairovirus/isolation & purification , Pacific Ocean , Phlebovirus/classification , Phlebovirus/isolation & purification , Phylogeny , Russia , Sequence Homology, Amino Acid
16.
Vopr Virusol ; 59(3): 24-8, 2014.
Article in Russian | MEDLINE | ID: mdl-25335415

ABSTRACT

The Artashat virus (ARTSV) was originally isolated fom the Ornithodoros alactagalis Issaakjan, 1936 (Argasidae Koch, 1844), which were collected in the burrow of small five-toed jerboa (Allactaga elater Lichtenstein, 1825) in Armenia in 1972. Later, the ARTSV was isolated from the O. verrucosus Olenev, Sassuchin et Fenuk, 1934 collected in the burrows of Persian gerbil (Meriones persicus Blanford, 1875) in Azerbaijan. Based on the virion morphology, the ARTSV was assigned to the Bunyaviridae viruses. In this work, the ARTSV genome was partially sequenced (GenBank ID: KF801650) and it was shown that the ARTSV is a new member of the Nairovirus genus. ARTSV has from 42% (Issyk-Kul virus) to 58% (Raza virus, Hughes group) similarity with the nairoviruses for nucleotide sequence of part of RNA-dependent RNA-polymerase (RdRp). The similarity on the amino acid level is 65-70%. Low level of homology and the equidistant position of the ARTSV on phylogenetic tree indicate that the ARTSV is a new prototype species of the Nairovirus genus (Bunyaviridae) forming a separate phylogenetic branch.


Subject(s)
Argasidae/virology , Bunyaviridae Infections/veterinary , Genome, Viral , Gerbillinae/virology , Nairovirus/classification , Ornithodoros/virology , Phylogeny , Rodent Diseases/virology , Amino Acid Sequence , Animals , Base Sequence , Bunyaviridae Infections/virology , Gerbillinae/parasitology , Molecular Sequence Data , Nairovirus/genetics , Nairovirus/isolation & purification , RNA-Dependent RNA Polymerase/genetics , Sequence Homology, Amino Acid , Transcaucasia
17.
J Virol ; 88(19): 11480-92, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25056893

ABSTRACT

UNLABELLED: A wide range of bacterial pathogens have been identified in ticks, yet the diversity of viruses in ticks is largely unexplored. In the United States, Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis are among the principal tick species associated with pathogen transmission. We used high-throughput sequencing to characterize the viromes of these tick species and identified the presence of Powassan virus and eight novel viruses. These included the most divergent nairovirus described to date, two new clades of tick-borne phleboviruses, a mononegavirus, and viruses with similarity to plant and insect viruses. Our analysis revealed that ticks are reservoirs for a wide range of viruses and suggests that discovery and characterization of tick-borne viruses will have implications for viral taxonomy and may provide insight into tick-transmitted diseases. IMPORTANCE: Ticks are implicated as vectors of a wide array of human and animal pathogens. To better understand the extent of tick-borne diseases, it is crucial to uncover the full range of microbial agents associated with ticks. Our current knowledge of the diversity of tick-associated viruses is limited, in part due to the lack of investigation of tick viromes. In this study, we examined the viromes of three tick species from the United States. We found that ticks are hosts to highly divergent viruses across several taxa, including ones previously associated with human disease. Our data underscore the diversity of tick-associated viruses and provide the foundation for further studies into viral etiology of tick-borne diseases.


Subject(s)
Arachnid Vectors , DNA-Directed RNA Polymerases/genetics , Genome, Viral , Phylogeny , Ticks , Viral Proteins/genetics , Amino Acid Sequence , Animals , Dermacentor/classification , Dermacentor/genetics , Disease Reservoirs , Encephalitis Viruses, Tick-Borne/classification , Encephalitis Viruses, Tick-Borne/genetics , Encephalitis Viruses, Tick-Borne/isolation & purification , High-Throughput Nucleotide Sequencing , Humans , Ixodes/classification , Ixodes/genetics , Molecular Sequence Data , Mononegavirales/classification , Mononegavirales/genetics , Mononegavirales/isolation & purification , Nairovirus/classification , Nairovirus/genetics , Nairovirus/isolation & purification , Phlebovirus/classification , Phlebovirus/genetics , Phlebovirus/isolation & purification , Sequence Alignment , Tick Infestations/epidemiology , Tick Infestations/virology , Ticks/classification , Ticks/genetics , United States/epidemiology
18.
Vopr Virusol ; 59(1): 24-9, 2014.
Article in Russian | MEDLINE | ID: mdl-25065142

ABSTRACT

Full-genome sequencing of the Caspiy virus (CASV - Caspiy virus) (ID GenBank KF801658) revealed its attribution to the Nairovirus genus of the Bunyaviridae family as a separate species. CASV forms separate line, which is the most close to the Hughes virus (HUGV) and Sakhalin virus (SAKV) groups containing viruses linked with seabirds and ticks parasitizing on them and distributed over the shelf and island ecosystems in the Northern Eurasia, as well as the North and South America.


Subject(s)
Argasidae/virology , Birds/parasitology , Nairovirus/genetics , Phylogeny , Animals , Asia, Northern , Base Sequence , Molecular Sequence Data , Nairovirus/classification , Nairovirus/isolation & purification
19.
PLoS One ; 9(1): e87194, 2014.
Article in English | MEDLINE | ID: mdl-24489870

ABSTRACT

The prediction of viral zoonosis epidemics has become a major public health issue. A profound understanding of the viral population in key animal species acting as reservoirs represents an important step towards this goal. Bats harbor diverse viruses, some of which are of particular interest because they cause severe human diseases. However, little is known about the diversity of the global population of viruses found in bats (virome). We determined the viral diversity of five different French insectivorous bat species (nine specimens in total) in close contact with humans. Sequence-independent amplification, high-throughput sequencing with Illumina technology and a dedicated bioinformatics analysis pipeline were used on pooled tissues (brain, liver and lungs). Comparisons of the sequences of contigs and unassembled reads provided a global taxonomic distribution of virus-related sequences for each sample, highlighting differences both within and between bat species. Many viral families were present in these viromes, including viruses known to infect bacteria, plants/fungi, insects or vertebrates, the most relevant being those infecting mammals (Retroviridae, Herpesviridae, Bunyaviridae, Poxviridae, Flaviviridae, Reoviridae, Bornaviridae, Picobirnaviridae). In particular, we detected several new mammalian viruses, including rotaviruses, gammaretroviruses, bornaviruses and bunyaviruses with the identification of the first bat nairovirus. These observations demonstrate that bats naturally harbor viruses from many different families, most of which infect mammals. They may therefore constitute a major reservoir of viral diversity that should be analyzed carefully, to determine the role played by bats in the spread of zoonotic viral infections.


Subject(s)
Bornaviridae/genetics , Chiroptera/virology , Gammaretrovirus/genetics , Nairovirus/genetics , Rotavirus/genetics , Animals , Bornaviridae/classification , Bornaviridae/isolation & purification , Female , France , Gammaretrovirus/classification , Gammaretrovirus/isolation & purification , High-Throughput Nucleotide Sequencing , Humans , Male , Metagenome , Molecular Sequence Data , Nairovirus/classification , Nairovirus/isolation & purification , Phylogeny , RNA, Viral/genetics , Rotavirus/classification , Rotavirus/isolation & purification , Sequence Analysis, RNA
20.
Vopr Virusol ; 59(5): 13-8, 2014.
Article in Russian | MEDLINE | ID: mdl-25895205

ABSTRACT

The full-length genome of the unclassified Geran virus (GERV, strain LEIV-10899Az) isolated from the ticks (Ornithodoros verrucosus Olenev, Zasukhin and Fenyuk, 1934 (Argasidae, Ornithodorinae)) collected in the burrow of the red-tailed gerbils (Meriones (Cricedidae) erythrourus Grey, 1842) near the Geran station (Azerbaijan) was sequenced using the next-generation approach (GenBank ID: KF801649). It was shown that the GERV is a new representative of the Nairovirus genus (family Bunyaviridae). The comparative analysis of the full-length genome sequences of the GERV with other nairoviruses showed that the highest level of homology (55.6% for N protein (S-segment) of 54.2% for the polyprotein Gn/Gc (M-segment) and 74.8% for the RNA-dependent RNA polymerase (L-segment)) GERV had with the Chim virus (CHIMV) that is also associated with the shelters biocenoses (rodent burrows) in Central Asia and was previously assigned to the Qalyub virus group (QYBV). Comparing the GERV with the QYBV sequences (partial sequence 413 n.o. of RdRp gene) revealed a high level of homology: 74.3 and 97.4% for the nucleotide and amino acid sequences, respectively. The data obtained in this work provided an opportunity to classify the GERV to the QYBV group; the Nairovirus genus, to the family Bunyaviridae.


Subject(s)
Bunyaviridae Infections/veterinary , Genome, Viral , Gerbillinae/virology , Nairovirus/genetics , Ornithodoros/virology , Phylogeny , Viral Proteins/genetics , Amino Acid Sequence , Animals , Azerbaijan/epidemiology , Base Sequence , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/transmission , Bunyaviridae Infections/virology , Disease Vectors , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Nairovirus/classification , Nairovirus/isolation & purification , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL